Oct 23

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use exactly the same HL7 message structures in terms of versions, optional/mandatory segments, extension Z segments, and so on. A sensible approach to dealing with these kinds of issues, and a key component of the HL7 Enterprise Architecture, is the so called Canonical (or Common) Message Model (CMM). The CMM works hand-in-glove with the enterprise architecture in which transformation to/from the CMM is performed at the edges of the integration domain. This article discusses major considerations and works through the mechanics of deriving a Canonical Message Model for a fictitious Healthcare Enterprise and implementing it using the Oracle SOA Suite 11g HL7 tooling as an example. The article will also discuss and illustrate a mechanism for injecting arbitrary metadata into the canonical message, generated by the B2B Document Editor, in such a way that it is ignored by the Edge-dwelling B2B infrastructure but is significant to the SOA infrastructure.

The text of the article is available at https://blogs.czapski.id.au/wp-content/uploads/2010/10/HB01_OSS11g_HL7CannonicalMessageModel_v1.0.1.pdf

Oct 06

This article is of potential interest to these Sun/SeeBeyond customers who have an investment in moderate and large Java Collaboration Definition-based transformation and mapping rules, and who are looking for ways to reuse as much as possible of the Java code involved, when migrating to the Oracle SOA Suite. The example developed in this article comes from the healthcare domain and uses the HL7 OTDs (Object Type Definitions). This is a deliberate choice because all but the most trivial HL7 transformations will involve hundreds of lines of Java code, therefore are a good candidates for migrating to the SOA Suite Spring Component as means of preserving the code and the effort invested in developing it. This does not make the method domain-specific. On the contrary, the method is applicable to all other domains where JCDs with significant transformation and mapping rules content are used.

Discussion in this article addresses a subset of technologies available in the Java CAPS and in the SOA Suite. Specifically, the Java Collaboration Definitions supported in Java CAPS 5.x and in Java CAPS 6/Repository, and the Spring Component supported in the SOA Suite 11g R1 PS2. Both use the Java programming language and related runtime environment to implement processing logic.  There is no discussion pertaining to JBI-based technologies or Java CAPS BPEL-based technologies. There is no discussion about other ways in which Java logic can be deployed as part of a Oracle SOA Suite solution.

The HL7 eWay and JCD based Java CAPS solution will be ported to the Oracle SOA Suite 11g B2B and Mediator-based environment. HL7 Adapters will be replaced with the Oracle “Healthcare Adapters”, provided by the SOA Suite B2B HL7 support infrastructure. Routing will be provided by the Mediator component and transformation logic will be ported to the Spring Component.

This article walks through the process of “extracting” JCD source and related archives from Java CAPS, developing a stand-alone Java application which uses the JCD source, encapsulating JCD source in a Spring component and finally reproducing Java CAPS HL7 solution functionality in an equivalent SOA Suite solution.

The complete article is available at https://blogs.czapski.id.au/wp-content/uploads/2010/10/08_HL7JCD2SpringComponentMigration_v1.3.pdf

preload preload preload