
SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 1

Oracle SOA Suite 11g R1 PS5

SOA Suite for healthcare integration Series

HL7 v2 solution using JMS “the Java CAPS way”
michael@czapski.id.au

February 2013

Table of Contents
Introduction .. 1

Java CAPS Note ... 2

Solution Overview ... 4

Preliminaries – Queue Browser Tool .. 6

Preliminaries – Create JMS Queues in WebLogic JMS .. 6

Preliminaries – CMM_v1.0 and ACK Documents .. 10

Preliminaries – Exception Handling .. 10

Clear Instances from the Repository... 10

Configure HL7JMSOut Endpoint ... 12

Submit a message to JMS Queue for sending ... 16

Configure HL7JMSIn Endpoint .. 23

Implement Pass-through Composite Application ... 28

Summary ... 31

Introduction

This article may be of interest to these who would like to use the “SOA Suite for healthcare

integration” HL7 v2 delimited message handling functionality in solutions similarly to how

Oracle Java CAPS HL7 eWay-based solutions were built, perhaps as endpoints in a “Service

Bus”-based infrastructure, or to these who would like to use the HL7 messaging handing

functionality in OSB environments. In essence, for these unfamiliar with the Java CAPS

pattern of use, there were the “Inbound HL7 eWay” and the “Outbound HL7 eWay” patterns.

An inbound HL7 v2 Adapter (eWay) would receive a HL7 message, perform all (minimal)

validation and acknowledgement processing and store the incoming message in a

persistent JMS Queue for some downstream component to process the message as

necessary. An Outbound HL7 v2 Adapter (eWay) would read a HL7 message from a JMS

Queue (where it was deposited by some upstream component) and send it out to the

external system, performing any HL7 ACK processing that might have been required.

In the prior articles in this series we used direct integration between the HL7 v2 endpoints

and SOA Suite Composites which provided processing logic. While in my articles JMS is

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 2

used implicitly as an internal mechanism (via B2B_IN_QUEUE and B2B_OUT_QUEUE JMS

queues) the SOA Suite composite did not explicitly use JMS adapters.

It is possible to configure SOA Suite for healthcare integration endpoints in such a way that

messages the inbound endpoint receives will be deposited in a particular JMS destination

(queue or topic other than the B2B_IN_QUEUE) associated with the endpoint, and

messages to be sent by an outbound endpoint will originate in a specific JMS destination

(queue or topic other than the B2B_OUT_QUEUE). This will allow such endpoints to be used

in Oracle Service Bus-based or other ESB-based solutions as services with JMS interfaces.

In this article we will develop and exercise an inbound-to-JMS and JMS-to-outbound HL7 v2

delimited message processing solutions to demonstrate this capability.

This article assumes that the reader has the SOA Suite for healthcare integration

environment with all necessary components installed and ready to use. The Bill of Materials

for such an environment and a discussion on where the components can be obtained is

provided in the earlier article, “SOA Suite for healthcare integration Series - Overview of

the Development Environment”, to be found at

http://blogs.czapski.id.au/2012/08/soa-suite-for-healthcare-integration-series-overview-

of-the-development-environment.

Java CAPS Note

A HL7 processing solution in Java CAPS will typically receive HL7 v2 Delimited messages

through the HL7 eWay, transform them in some way, and potentially send them on to HL7

receivers through a HL7 eWay. Standard HL7 processing, acknowledgements, message

header validation, sequence number processing, are handed by pre-built Java CAPS

projects, which are available as part of the installation and must be imported and

potentially modified for use in a solution. The inbound project, prjHL7Inbound, receives

HL7 messages and deposits them in a JMS Queue for a downstream solution to process

further. The outbound project, prjHL7Outbound, receives HL7 messages from a JMS Queue

and sends them on to the receivers. The site-specific transformations and message

processing happens in one or more components, the initial of which receives messages

from the JMS Queue to which the HL7 Inbound sent them, and the final of which ultimately

deposits messages in a JMS Queue for the HL7 outbound to send. The complexity involved

in transformational of messages, access to various enterprise resources and message

manipulation will vary from solution to solution.

The schematic below shows major components involved in a typical Java CAPS HL7 solution

described above.

Figure 1, Simplest possible Java CAPS JCD JL7 Solution

If we construct a Java CAPS solution in such a way that the HL7 Inbound, the HL7

Transform and the HL7 Outbound are implemented as separate Java CAPS projects we

might get a project hierarchy like the one shown below.

http://blogs.czapski.id.au/2012/08/soa-suite-for-healthcare-integration-series-overview-of-the-development-environment
http://blogs.czapski.id.au/2012/08/soa-suite-for-healthcare-integration-series-overview-of-the-development-environment

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 3

The HL7 Inbound Connectivity Map for the HL701Inbound, which is derived from

prjHL7Imbound, is shown below.

The HL7 eWay receives messages and deposits them in the JMS Queue called qHL7DataIn.

The JCD itself is the unmodified JCD imported with the project prjHL7Inbound. It handles

all HL7-related communication functionality including ACKs.

The Connectivity Map for the HL703Outbound is shown below.

The HL7 eWay sends messages it reads from the JMS Queue called qHL7OutData. The JCD

itself is the unmodified JCD imported with the project prjHL7Outbound. It handles all

HL7-related communication functionality including ACKs.

Figure 2, HL7 Transformer Project Hierarchy

Figure 4, HL7 Inbound Connectivity Map

Figure 3, HL7 Outbound Connectivity Map

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 4

The connectivity map for the HL702Transformer project is simplicity itself and requires no

elaboration.

The collaboration receives a message from qHL7DataIn, transforms it in some manner and

deposits the resulting message in qHL7OutData.

To anticipate what will follow let's say upfront that the HL701Inbound and the

HL703Outbound projects will be replaced, in their entirety, by the “Oracle SOA Suite for

healthcare integration” infrastructure with correctly configured Endpoints, therefore there

will be no further discussion of these projects. The HL702Transformer project will be

re-implemented using a SOA Suite Mediator Component in a Composite. Other forms of

logic components could be used, for example logic hosted in the Oracle Enterprise Service

Bus, as long as they support reading from/writing to JMS Queues hosted in an Oracle

WebLogic Server.

Solution Overview

The point of developing the solution set discussed in this article is to allow a SOA

Suite-based HL7 v2 delimited message processing solution to be architected as a SEDA

(Staged Event-Driven Architecture) solution using JMS destinations as staging points. This

is very much the way that Java CAPS HL7 v2 delimited processing solutions were typically

architected.

We will replace the HL7 eWay and its associated JCD and JMS destinations with the “SOA

Suite for healthcare integration” endpoints and use internal channels to direct HL7

messages to/from JMS queues.

We can replace the “HL7 Transform” component with any piece of logic which can receive

messages from a JMS destination and send messages to a JMS destination. In this article a

SOA Suite Mediator component is used but it could equally well be a piece of Oracle Service

Bus-based logic or indeed any other piece of logic which can interact with WebLogic JMS

destinations.

The overall architecture is depicted in Figure 6.

Figure 6, “SOA Suite for healthcare integration” HL7 Endpoint-based solution schematic

Figure 5, HL7 Transformer Connectivity Map

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 5

In this article the inbound HL7 v2 A01 messages will be received by the inbound endpoint

and will be routed by the outbound endpoint to a receiver system. Message streams will be

passed on unchanged.

The inbound SOA Suite for healthcare integration adapter will perform the casting activity

while translating the message from HL7 v2 delimited to the “equivalent” XML format. The

outbound SOA Suite for healthcare integration adapters will translate messages from HL7

v2 XML to the “equivalent” HL7 v2 delimited format before sending it out.

The runtime components and their relationships are presented in Figure 7.

Figure 7, Runtime components

To summarize:

An external system will send HL7 v2 delimited messages to the “SOA Suite for

healthcare integration” endpoint, which will acknowledge them and deposit them in

a JMS Queue.

A SOA Suite composite will use a mediator component to read messages from the

JMS Queue construct required JMS user-defined properties and send them to the

outbound JMS Queue.

A “SO Suite for healthcare integration” endpoint will be handed messages from a

JMS Queue. It will translate them if appropriate and will send them to the external

system.

The solution components are depicted in Error! Reference source not found..

Figure 8, Solution Components

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 6

The diagram uses the convention which clearly separates the external systems, the SOA

Suite for healthcare integration-specific components and generic SOA Suite components

using the “swim-line” analogy.

A01 Sender is the CMDHL7 sender tool, or another tool capable of sending HL7 v2 Delimited

messages over TCP/IP using the MLLP protocol. It will send ADT A01 messages and will

receive and display acknowledgements.

A01 Receiver is the CMDHL7 sender tool, or another tool capable of receiving HL7 v2

Delimited messages over TCP/IP using the MLLP protocol. It will receive ADT A01 messages

and will send acknowledgements.

We will reuse CMM_v1.0 message structures / documents, configure inbound and

outbound Endpoints and implement a forwarder composite application. This we will do in

the subsequent sections.

Preliminaries – Queue Browser Tool

We will be working explicitly with JMS Queues. To make it easy to see what is going on, as

well as to be able to explicitly delete messages from a queue or send messages to a queue,

we will use a QBrowser tool. Please read the article I published about 1 ½ years ago, “Using

QBrowser v2 with WebLogic JMS for 10.3”, at

http://blogs.czapski.id.au/2011/05/using-qbrowser-v2-with-weblogic-jms-for-10-3, for

details of obtaining and configuring QBrowser for use with the WebLogic JMS infrastructure.

Preliminaries – Create JMS Queues in WebLogic JMS

Unlike the Java CAPS, which would create JMS Queues and Topics in the supported STCMS

or Sun Java MQ JMS servers on reference, the queues and topics hosted by the WebLogic

JMS must be explicitly created. In this section we will create the connection factories and

queues which will be used by the internal delivery channels associated with the inbound

and outbound endpoints for passing messages to and from the HL7 Transformer

component.

It is assumed that the WebLogic Server is running, as it needs to be, to allow us to interact

with the SOA Suite for healthcare integration infrastructure.

To keep things simple we will do the minimum necessary to create two JMS queues, qHL7In

and qHL7Out. To that end we will re-use the existing JMS server “SOAJMSServer” and the

existing JMS Module “”SOAJMSModule.

 Start the WebLogic Administration Console, perhaps http://localhost:7001/console,

and log in with your credentials, perhaps weblogic/welcome1

 Expand the “single_server_domain” node (or whatever yoyr WebLogic domain is called)
in the “Domain Structure” pane at the right of the console window, “Services” 

“Messaging”, click “JMS Modules” and then click “SOAJMSModue” in the right hand pane

http://blogs.czapski.id.au/2011/05/using-qbrowser-v2-with-weblogic-jms-for-10-3
http://localhost:7001/console

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 7

 Click “New” under the “Summary of Resources”

 Select the “Connection Factory” radio button and click “Next”

 Specify “cfHL7In” as name of the connection factory and “jms/b2b/cfHL7In” and JNDI

name then click “Next”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 8

 Choose the target server in your domain or accept the onlt server if you are using a

development environment with no managed servers, as I do for these articles, the click

“Finish” to complete creation of the connection factory belonging to the

“SOAJMSModule” hosted in the “SOAJMSServer”

 Click “New” under the “Summary of Resources”

 Select the “Queue” radio button and click “Next”

 Name the queue “qHL7In”, give it the JNDI name of “jms/b2b/qHL7In” and click “Next”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 9

 Choose “SOASubDeployment” from the “Subdeployments” drop-down, make sure the

“SOAJMSServer” is selected and click “Finish” to complete creation of the JMS queue

 Repeat the steps to create “cfHL7Out” / “jms/b2b/cfHL7Out” connection factory and

“qHL7Out” “jms/b2b/qHL7Out” queue

 Use QBrowser to view the two new queues

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 10

Preliminaries – CMM_v1.0 and ACK Documents

It is assumed that the ADT messages will be cast from the Canonical Message Model using

the CMM message structure which was developed in the earlier article, “SOA Suite for

healthcare integration Series - Creating a Canonical HL7 v2 Message Model”, to be found at

http://blogs.czapski.id.au/2012/09/soa-suite-for-healthcare-integration-series-creating-

a-canonical-hl7-v2-message-model.

The CMM_v1.0 document must be available and “introduced” to the “SOA Suite for

healthcare integration”, as discussed in section “Add CMM_v1.0 Document to Document

Protocol Hierarchy”, page 4 and subsequent, in the article “SOA Suite for healthcare

integration Series - HL7 v2 Inbound to File Solution” at http://blogs.czapski.id.au/2012/

11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution.

It is assumed that the ADT ACK message will be received from the external system and will

be discarded. To support this we need to have the ADT ACK document defined, as discussed

in section “Define Functional Acknowledgement Document”, page 27, and “introduced” to

the “SOA Suite for healthcare integration”, as discussed in section ““Introduce” the ACK

document to SOA Suite for healthcare integration”, pages 28-29 in the article “SOA Suite

for healthcare integration Series - HL7 v2 Inbound to File Solution” at http://blogs.czaps

ki.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-soluti

on.

Preliminaries – Exception Handling

If you followed this series of articles and implemented solutions discussed in them you will

have an exception handling solution in place. This solution will pick up exception messages

from the B2B_IN_QUEUE and will write them to files in the file system. If you did not follow

the series but would like to have this facility then implement the solution discussed in the

article “SOA Suite for healthcare integration Series – Exception Handling – Processing

Endpoint Errors” at http://blogs.czapski.id.au/2013/01/soa-suite-for-healthcare-integrati

on-series-exception-handling-processing-endpoint-errors.

Clear Instances from the Repository

To start with a “clean slate” we will use the Healthcare Integration Console to clear out all

old message tracking information. Bear in mind that this is irreversible and one should

think carefully about clearing instance repository in production systems.

http://blogs.czapski.id.au/2012/09/soa-suite-for-healthcare-integration-series-creating-a-canonical-hl7-v2-message-model
http://blogs.czapski.id.au/2012/09/soa-suite-for-healthcare-integration-series-creating-a-canonical-hl7-v2-message-model
http://blogs.czapski.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution
http://blogs.czapski.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution
http://blogs.czapski.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution
http://blogs.czapski.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution
http://blogs.czapski.id.au/2012/11/soa-suite-for-healthcare-integration-series-hl7-v2-inbound-to-file-solution
http://blogs.czapski.id.au/2013/01/soa-suite-for-healthcare-integration-series-exception-handling-processing-endpoint-errors
http://blogs.czapski.id.au/2013/01/soa-suite-for-healthcare-integration-series-exception-handling-processing-endpoint-errors

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 11

 Start the Healthcare Integration Console, http://localhost:7001/healthcare, and log in

with your credentials, perhaps weblogic/welcome1

 Click “Designer” Tab, click “Administration” Tab and double-click on the “Repository

Management” node

 Check the “Purge Control Number” checkbox, if appropriate, and click the “Purge

Instance Data” button

 Click “OK” to purge messages and message tracking information from the repository

 Once the process is completed, dismiss the wizard by clicking “OK”

 Click on the “Reports” Tab, look at the last 24-hours report and note that there are no

messages in the repository

http://localhost:7001/healthcare

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 12

Configure HL7JMSOut Endpoint

For greater educational value we will develop the solution a bit at a time, starting with the

endpoint which delivers the payload from a JMS queue to the external system.

Figure 9 shows the components involved in this part of the solution.

Figure 9, Sending solution components

We will use the CMDHL7Listener command line client to receive HL7 ADT messages and

look at the output in the output directory specified on the listener’s command line – for me

c:\hl7\received. The CMDHL7Listener will display trace of message exchange in the console

window.

Please note that in this solution the CMDHL7Listener returns an ACK as soon as it gets the

message.

 Check that your configured output directory is empty

 In a command / terminal window execute the following command

java -jar c:\tools\CMDHL7\CMDHL7Listener_v0.7.jar -p 11100 -s

c:\hl7\received

 Inspect the CMDHL7Listener console output making sure the listener started and is

listening on the appropriate port

C:\Documents and Settings\Administrator>java -jar

c:\tools\CMDHL7\CMDHL7Listener_v0.7.jar -c ID_ -p 11100 -s

c:\hl7\received

03/02/2013 10:32:24 AM au.id.czapski.hl7.CMDHL7Listener main

INFO: Port: 11100

03/02/2013 10:32:24 AM au.id.czapski.hl7.CMDHL7Listener main

INFO: Store in: c:\hl7\received

03/02/2013 10:32:24 AM ca.uhn.log.HapiLogImpl info

INFO: au.id.czapski.hl7.SimpleACKApplication registered to handle *^*

messages

03/02/2013 10:32:25 AM ca.uhn.log.HapiLogImpl info

INFO: SimpleServer running on port 11100

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 13

Once the external system is ready to receive messages we can configure the endpoint

which will send messages to it.

 Start the Healthcare Integration Console application in your favorite web browser –

http://localhost:7001/healthcare.

 Log in with administrative credentials, for example weblogic/welcome1.

 Right-click on the “Endpoint” node and choose “Create”

 Name the endpoint “HL7JMSOut”, configure it as a client which uses the MLLP 1.0

protocol and sends to localhost on port 11100, then click “OK”

 Check the “Enabled” checkbox. When we “Apply” this configuration later, the endpoint

will be started.

 Click the “Transport Details” button

 Click the “Advanced” tab in the “Transport Protocol Parameters” dialogue box, set the

following properties, and click “OK”:

o Discard ACK: AA

o Uncheck Sequencing

http://localhost:7001/healthcare

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 14

 Click the “Add” “button” (a plus sign) in the “Documents to Send” section

 Right-click the “Document Protocol” node in the “Document” dialog box and choose

“Expand All Below"

 Select the “CMM_v1.0” document in the HL72.3.1ADT hierarch and click “OK”

 Click the “Add” “button” (a plus sign) in the “Documents to Receive” section

 Right-click the “Document Protocol” node in the “Document” dialog box and choose

“Expand All Below"

 Select the “ADT_2.3.1” document in the HL72.3.1ACK hierarch and click “OK”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 15

 Uncheck the “Translation” checkbox, review the configuration to make sure it is correct

and click the “Apply” button, remembering that with the “Enabled” checkbox checked

this action will cause the “SOA Suite for healthcare integration” to attempt to start the

endpoint

 Note the trace in the command window belonging to the listening external

As it stands, the sender will only be given messages from the B2B_OUT_QUEUE, if there

are any destined for it. What we want to do in this article is to have this endpoint handle

messages deposited in the “qHL7Out” JMS queue. To accomplish this we must configure an

“Internal Delivery Channel” of the right kind, which will be polled by the “SOA Suite for

healthcare integration” infrastructure for messages to process. We will do this in this

section.

 Click the “Designer” Tab  “Administration” Tab, expand the “Internal Delivery

Channel”, right click on the “Receive from Internal” node” and choose “Create”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 16

 Name the channel “HL7JMSOut”, specify “jms/b2b/qHL7Out” as destination name,

“jsm/b2b/cfHL7Out” as connection factory and click “OK”. Note that these are the JNDI

names we defined when we created the JMS destination objects earlier in this article

 Check the “Enabled” checkbox and click “Apply” to enable this delivery channel

From this point onward any messages which are deposited in the qHL7Out will be delivered

to the “SOA Suite for healthcare integration” for processing. Whether it can process these

messages successfully will depend on the content of the message and the set of required

JMS user-defined properties which the “SOA Suite for healthcare integration” requires to

work out which endpoint is to handle the message.

Submit a message to JMS Queue for sending

Recall that we configured the endpoint to not perform translation so the endpoint expects

the message it gets to send to already be a HL7 v2 delimited message.

Let’s assume that we have a HL7 v2 delimited payload shown below, where the symbol “┘”

denotes the carriage return which separates HL7 v2 segments.

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 17

MSH|^~\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|000000_CTLID_2008090801529|P|2.

3.1|||AL|NE┘

EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS┘

PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||7 South 3rd

Circle^^Downham Market^England - Norfolk^30828^UK||||||||A2008090801529┘

PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V2008090801529^^^^VISIT|

||||||||||||||||||||||||2008090801529┘

It is very important that carriage returns which separate segments are not converted to

new lines (as on Unix) or carriage return+new line (as on Windows). If you are using a text

editor use one which can convert line terminators and preserve line terminators, for

example Notepad++, which I use.

Specific user-defined JMS properties must be set on the message to allow the “SOA Suite

for healthcare integration” to figure out which endpoint will handle the message and to

figure out what kind of document this message is. The following minimum JMS user-defined

properties must be set:

Table 1, JMS User-defined Properties for sending by HL7JMSOut endpoint

Property Name Property Value

DOCUMENT_PROTOCOL_NAME HL7

DOCTYPE_REVISION 2.3.1

DOCTYPE_NAME ADT

DOCUMENT_DEFINITION_NAME CMM_v1.0

TO_ENDPOINT HL7JMSOut

The first four properties allow the “SOA Suite for healthcare integration” to workl out the

document type to use. The last property allows it to deliver it to the correct endpoint for

sending.

Recall these values form the “Design”  “Configuration”  “Document Protocol” hierarchy.

Let’s now use the QBrowser to construct and send this message.

 Start the QBrowser application, choose “File”  “New Connection” and log in, perhaps

with credentials weblogic/welcome1

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 18

 Click on the name of the queue, qHL7Out, to select it

 Right-click on the name of the queue, qHL7Out, and choose “Send message to”

 Use the “Plus” button alongside the “Message Properties” to add five string properties

as shown in Table 1

 If you have the ADT_A01_output1.hl7 file from earlier articles, use the “Load from file”

button to locate and load the payload for the message – if not, copy and paste the

payload

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 19

 Click “Send”, “Send” and “OK”

 Click the “Reports” Tab in the healthcare integration console to see message completed

in the message tracker

 Inspect the message file in the c:\hl7\receive directory, or the directory you configured

for the CMDHL7Listener to which to write files

 Switch to Healthcare Integration Console, “HL7JMSOut” endpoint configuration, check

the “Translation” checkbox and “Apply” – this will cause the endpoint to expect a HL7 v2

XML message, rather than the delimited message we used before, and will cause it to

translate the XML message to the delimited message on the way out

 Switch to the QBrowser and replace the HL7 v2 delimited payload with the equivalent

XML payload, perhaps from the ADT_A01_output1.xml file from earlier articles, use the

“Load from file” button to locate and load the payload for the message – if not, copy and

paste the payload shown in the code box below

<?xml version="1.0" encoding="utf-8"?>

<ADT_A01 xmlns="urn:hl7-org:v2xml" Standard="HL7"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:hl7-org:v2xml

C:/GlassFishESBv22/glassfish/domains/domain1/jbi/service-assemblies/HL7A01Delim2XML

/HL7A01Delim2XML-sun-file-binding/sun-file-binding/HL7v231/ADT_A01.xsd">

 <MSH>

 <MSH.1>|</MSH.1>

 <MSH.2>^~\&</MSH.2>

 <MSH.3>

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 20

 <HD.1>SystemA</HD.1>

 </MSH.3>

 <MSH.4>

 <HD.1>HosA</HD.1>

 </MSH.4>

 <MSH.5>

 <HD.1>PI</HD.1>

 </MSH.5>

 <MSH.6>

 <HD.1>MDM</HD.1>

 </MSH.6>

 <MSH.7>

 <TS.1>2008090801529</TS.1>

 </MSH.7>

 <MSH.9>

 <MSG.1>ADT</MSG.1>

 <MSG.2>A01</MSG.2>

 </MSH.9>

 <MSH.10>000000_CTLID_2008090801529</MSH.10>

 <MSH.11>

 <PT.1>P</PT.1>

 </MSH.11>

 <MSH.12>

 <VID.1>2.3.1</VID.1>

 </MSH.12>

 <MSH.15>AL</MSH.15>

 <MSH.16>NE</MSH.16>

 </MSH>

 <EVN>

 <EVN.1>A01</EVN.1>

 <EVN.2>

 <TS.1>2008090801529</TS.1>

 </EVN.2>

 <EVN.5>

 <XCN.1>JavaCAPS6</XCN.1>

 <XCN.8>USERS</XCN.8>

 </EVN.5>

 </EVN>

 <PID>

 <PID.1>1</PID.1>

 <PID.3>

 <CX.1>A000010</CX.1>

 <CX.4>

 <HD.1>HosA</HD.1>

 </CX.4>

 <CX.5>MR</CX.5>

 <CX.6>

 <HD.1>HosA</HD.1>

 </CX.6>

 </PID.3>

 <PID.5>

 <XPN.1>

 <FN.1>Kessel</FN.1>

 </XPN.1>

 <XPN.2>Abigail</XPN.2>

 </PID.5>

 <PID.7>

 <TS.1>19460101123045</TS.1>

 </PID.7>

 <PID.8>M</PID.8>

 <PID.11>

 <XAD.1>7 South 3rd Circle</XAD.1>

 <XAD.3>Downham Market</XAD.3>

 <XAD.4>England - Norfolk</XAD.4>

 <XAD.5>30828</XAD.5>

 <XAD.6>UK</XAD.6>

 </PID.11>

 <PID.19>A2008090801529</PID.19>

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 21

 </PID>

 <PV1>

 <PV1.1>1</PV1.1>

 <PV1.2>I</PV1.2>

 <PV1.4>I</PV1.4>

 <PV1.7>

 <XCN.1>FUL</XCN.1>

 <XCN.2>

 <FN.1>Fulde</FN.1>

 </XCN.2>

 <XCN.3>Gordian</XCN.3>

 <XCN.13>MAIN</XCN.13>

 </PV1.7>

 <PV1.10>EMR</PV1.10>

 <PV1.19>

 <CX.1>V2008090801529</CX.1>

 <CX.5>VISIT</CX.5>

 </PV1.19>

 <PV1.44>

 <TS.1>2008090801529</TS.1>

 </PV1.44>

 </PV1>

</ADT_A01>

Note the attribute ‘Standard="HL7"’ at the top of the XML message, as an attribute of the ADT_A01.

This is a required attribute which enable the “SOA Suite for healthcare integration” to figure out which

protocol it is dealing with. Any XML message which does not carry this attribute will fail (capitalisation

is critical as well) with an exception message along the lines of:

Error Text Error Brief : XEngine error.

Error Code HC-51507

Error Severity ERROR

Error Level ERROR_LEVEL_COLLABORATION

Error Description Machine Info: (R1PS5HCI) Description: Payload validation error.

The application server log will have a somewhat more enlightening message, along the lines of:

[2013-02-03T12:55:43.847+11:00] [AdminServer] [TRACE] [] [oracle.soa.hc.engine] [tid: Workmanager:

, Version: 0, Scheduled=false, Started=false, Wait time: 0 ms\r\n] [userId: <anonymous>] [ecid:

c332ab9c10f8b387:-27494294:13c9d91215d:-8000-0000000000001341,0] [SRC_CLASS:

oracle.tip.b2b.system.DiagnosticService] [APP: soa-infra] [SRC_METHOD: synchedLog_J] Notification:

notifyApp: Enqueue the exception message:[[

<Exception xmlns="http://integration.oracle.com/B2B/Exception"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <correlationId>C0A8E9E913C9DC424DD00000202D31FA</correlationId>

 <b2bMessageId>ID:<175441.1359856542910.0></b2bMessageId>

 <errorCode>HC-51507</errorCode>

 <errorText>

 <![CDATA[

Error Brief :

XEngine error.

]]>

 </errorText>

 <errorDescription>

 <![CDATA[

Error :

Mandatory attribute missing: Standard.

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 22

]]>

 </errorDescription>

 <errorSeverity>2</errorSeverity>

 <errorDetails>

 <parameter name="hc.messageId" value="ID:<175441.1359856542910.0>"/>

 <parameter name="hc.documentTypeName" value="ADT"/>

 <parameter name="hc.documentProtocolVersion" value="2.3.1"/>

 <parameter name="hc.documentDefinitionName" value="CMM_v1.0"/>

 <parameter name="hc.documentProtocolName" value="HL7"/>

 <parameter name="hc.messageType" value="1"/>

 <parameter name="hc.toEndpoint" value="HL7JMSOut"/>

 </errorDetails>

</Exception>

]]

 Click “Send”, “Send” and “OK”

 Click the “Reports” Tab in the healthcare integration console to see message completed

in the message tracker

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 23

 Inspect the message file in the c:\hl7\receive directory, or the directory you configured

for the CMDHL7Listener to which to write files

 If you like, experiment by removing user-defined properties or modifying their values.

The user-defined properties we provided are critical to ensuring that the correct

document type is used and that the correct endpoint sends the messages.

Configure HL7JMSIn Endpoint

We will now configure the HL7 Inbound endpoint, which will receive HL7 v2 delimited

messages and will deliver them, without and with translation, to the JMS Queue named

HL7In. Figure 10 highlights the components we will configure.

Figure 10, HL7JMSIn solution components

It is assumed that the WebLogic Server is running, as it needs to be, to allow us to interact

with the SOA Suite for healthcare integration infrastructure.

 Start Healthcare Integration Console, http://localhost:7001/healthcare, and log in

To make the “SOA Suite for healthcare integration” use a JMS Queue other than the

B2B_IN_QUEUE we must create an “Internal Delivery Channel” for the purpose.

 Expand “Design”  “Administration”  “Internal Delivery Channels”, right-click “Send

to Internal” and choose “Create”

 Name the channel “idcHL7JMSIn”, provide “jms/b2b/qHL7In” as destination name,

provide “jms/b2b/cfHL7In” as connection factory and click “OK” – recall the queue and

connection factory JNDI names from earlier in this article

http://localhost:7001/healthcare

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 24

With the internal delivery channel configured we can now configure the endpoint which will

use it.

 Right-click the “Endpoint” node in the “Configuration” tab and choose “Create”

 Enter the following in the “Configure Endpoint” dialogue box then click “OK”

o Name: HL7JMSIn

o Transport Protocol: MLLP10

o Connection Mode: server

o Host Name: localhost (or the name of whatever host you are using)

o Port: 11000

The endpoint is not quite configured as we want it. We will change the non-default values

to suit our requirement in the following steps.

 Check the “Enabled” checkbox. When we “Apply” this configuration later the endpoint

will be started.

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 25

 Click the “Transport Details” button

 Click the “Advanced” tab in the “Transport Protocol Parameters” dialogue box, set the

following properties, and click “OK”:

o Immediate ACK: Default

o Sequencing: Unchecked

 Click the “Add” “button” (a plus sign) in the “Documents to Receive” section

 Right-click the “Document Protocol” node in the “Document” dialog box and choose

“Expand All Below"

 Select the “CMM_v1.0” document in the HL72.3.1ADT hierarch and click “OK”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 26

 Uncheck the “Translation” checkbox, choose “idcHL7JMSIn” internal channel, review

the configuration to make sure it is correct and click the “Apply” button, remembering

that with the “Enabled” checkbox checked this action will cause the SOA Suite for

healthcare integration to attempt to start the endpoint

 Open a command / terminal windows and use the “netstat” command to determine

whether the endpoint is running (it behooves us to find out whether the port is used

before configuring the port number, and use a different port it 11000 is used)

netstat –an | grep 11000

or

netstat –an | find "11000"

The ADT Receiver endpoint is configured and running. It is ready to accept connections and

messages. If we now submit a message to this endpoint it will be received and

acknowledged, and will be sent to the JMS queue qHL7In.

 Use the QBrowser to view messages in the JMS Queue qHL7In – there should be none

at this point

We will use the CMDHL7Sender command line client to read a file containing a single HL7

ADT A01 message and submit it to the ADT Receiver endpoint. We will then look at the

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 27

message and its properties in the JMS Queue qHL7In using the QBrowser tool, and review

message tracking information in the Healthcare Integration Console.

Please note that in this solution the receiver endpoint returns immediate ACK as soon as it

gets the message. There may be a delay, most noticeable the first time one executes the

processing flow after application server restart, between the receipt of the ACK and the

time the message is send to the JMS Queue.

 Locate the input file containing a single HL7 message - for me this will be

C:\hl7\adt\sources\ADT_A01_output_1.hl7

The content of my file, where each segment starting with the 3 character segment ID in

bold text is a single line up to the next 3 character segment ID, looks like this:

MSH|^~\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|000000_CTLID_2008

090801529|P|2.3.1|||AL|NE

EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS

PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||7

South 3rd Circle^^Downham Market^England -

Norfolk^30828^UK||||||||A2008090801529

PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V200809080

1529^^^^VISIT|||||||||||||||||||||||||2008090801529

 In a command / terminal window execute the following command

java -jar c:\tools\CMDHL7\CMDHL7Sender_v0.7.jar -a SystemA -b HosA -n 1

-d \r\r\n -p 11000 -h localhost -t 30000 -f

c:\hl7\adt\sources\ADT_A01_output_1.hl7

 Refresh the QBrowser display by pressing Ctrl+R (Display  Refresh destination name

list) or by selecting a different queue and then selecting the qHL7In again

 Double-click the message in the window to open it in a dialogue box

 Review JMS properties, most notably the user-defined properties, and the payload –

note that the payload is a binary payload so you can’t see the actual content at this

point

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 28

Note that the critical property “TO_ENDPOINT”, which was required for the outbound

sender to determine the endpoint, is not present. All other critical properties, dealing with

the document name and its hierarchy are there. We could pass this message to the

outbound queue as soon as we added the TO_ENDPOINT property with the correct value,

alas, QBrowser does not allow us to add properties to the existing message so we need to

develop and piece of logic to read from the inbound queue, qHL7In, add the TO_ENDPOINT

property and write the message with the modified properties to qHL7Out. We will do this

next.

Implement Pass-through Composite Application

With the endpoint configured and deployed we will now develop the SOA Composite to read

the message from the JMS queue qHL7In, add a user-defined property TO_ENDPOINT, and

write it to the JMS queue qHL7Out.

 Start JDeveloper Studio

 Create a new SOA application, “JMSPassThroughApp” and a new project

“JMSPassThroughProj” with an empty composite – we did this often enough in this

article series to not require detailed steps, right?

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 29

 Drag the “JMS Adapter” from the “Component Palette”  “SOA”  “Service Adapters”

list to the “Exposed Services” swim line

 Name the service “HL7In” and click “Next”

 Choose “WebLogic JMS” as “oracle Enterprise Messaging Service” and click “Next”

 Choose the appserver connection and click “Next”

 Accept the default for “Adapter Schema” and click “Next”

 Choose “Consume Message” “Operation Type” and click “Next”

 Choose “jms/b2b/qHL7In” destination name, “jms/b2b/cfHL7In” connection factory,

“BytesMessage” for message body type and click “Next”

 Check the “Native format translation is not required” check box, then click “Next” and

“Finish”

 Drag the “JMS Adapter” from the “Component Palette”  “SOA”  “Service Adapters”

list to the “External References” swim line

 Name the service “HL7Out” and click “Next”

 Choose “WebLogic JMS” as “oracle Enterprise Messaging Service” and click “Next”

 Choose the appserver connection and click “Next”

 Accept the default for “Adapter Schema” and click “Next”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 30

 Choose “Produce Message” as “Operation Type” and click “Next”

 Choose “jms/b2b/qHL7Out” destination name, “jms/b2b/cfHL7Out” connection factory,

“BytesMessage” for message body type and click “Next”

 Check the “Native format translation is not required” check box, then click “Next” and

“Finish”

 Drag the “Mediator” component from the “Component Palette”  “SOA”  “Service

Components” to the “Components” swim line

 Name the mediator “HL7InOutMediator”

 Connect the adapters to the mediator component

 Double-click the mediator component to open the mplan and add the following value

assignments

o Constant “HL7JMSOut” to property “jca.jms.JMSProperty.TO_ENDPOINT”

o From Property “jca.jms.JMSProperty.DOCUMENT_PROTOCOL_NAME” to To

Property “jca.jms.JMSProperty.DOCUMENT_PROTOCOL_NAME”

o From Property “jca.jms.JMSProperty.DOCTYPE_REVISION” to To Property

“jca.jms.JMSProperty.DOCTYPE_REVISION”

o From Property “jca.jms.JMSProperty.DOCTYPE_NAME” to To Property

“jca.jms.JMSProperty.DOCTYPE_NAME”

o From Property “jca.jms.JMSProperty.DOCUMENT_DEFINITION_NAME” to To

Property “jca.jms.JMSProperty.DOCUMENT_DEFINITION_NAME”

SOA Suite for healthcare integration – Implementing an A19 Query Processor Page 31

 Click “Save All”, close the “mplan” editor

 Deploy the project

 Submit more messages to see the solution work

Summary

In this article we developed and exercise an inbound-to-JMS and JMS-to-outbound HL7 v2

delimited message processing solutions to demonstrate how “SOA Suite for healthcare

integration” HL7 messaging endpoints can be used in a SEDA environment where payloads

are passed between components via JMS destinations. This is the architecture employed by

Java CAPS for this purpose. This model can also be used in ESB-based solutions where JMS

destinations are used as persistence points.

