
SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 1

Oracle SOA Suite 11g R1 PS5

SOA Suite for healthcare integration Series

HL7 v2 Inbound to File Solution
michael@czapski.id.au

November 2012

Table of Contents
Introduction .. 1

Solution Overview ... 2

HL7 v2 Inbound to file – delimited message pass-through .. 4

Add CMM_v1.0 Document to Document Protocol Hierarchy .. 4

Configure ADT Receiver .. 8

Create Router Composite .. 10

Process ADT messages .. 21

Explore Message Tracking ... 22
HL7 v2 Inbound to file with XML translation .. 27

Define Functional Acknowledgement Document ... 27

“Introduce” the ACK document to SOA Suite for healthcare integration 28

Configure Translation and Functional Acknowledgement .. 29

Re-configure and re-deploy the FileWriter project ... 30

Process ADT messages .. 34

Explore Message Tracking ... 35
HL7 v2 Inbound to file with explicit name .. 38

Undeploy the FileWriter Project ... 42

Summary ... 43

Introduction
The archetypical “Hello World” solution in the HL7 v2 messaging world will consist of a HL7 v2

message receiver which writes the messages it receives to files in the file system.

This article works through the mechanics of configuring the “SOA Suite for healthcare integration” to

receive a HL7 v2.3.1 ADT message as a Canonical Message and configuring the SOA Suite to write

each message to a file in the file system.

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 2

This article assumes that the reader is sufficiently familiar with HL7 v2 and HL7 v2 messaging to

require no elaboration on the message structures, message acknowledgement processing and the

“equivalence” of HL7 v2 delimited and HL7 v2 XML message forms.

This article assumes that the reader has the SOA Suite for healthcare integration environment with

all necessary components installed and ready to use. The Bill of Materials for such an environment

and a discussion on where the components can be obtained is provided in the earlier article, “SOA

Suite for healthcare integration Series - Overview of the Development Environment”, to be found at

http://blogs.czapski.id.au/wp-content/uploads/2012/08/SOASuiteHCI_ch2_Dev_Environ_v0.1.0.pdf.

Solution Overview
An enterprise system, say a Hospital Information System, a Patient Administration System, or some

other system in a Hospital, produces HL7 v2 ADT messages, specifically ADT A01 – Admission, ADT

A03 – Discharge and ADT A08 – Update Patient Information messages. Eventually, towards the end

of this article, ADT A01 and ADT A03 messages, used in this solution, will be cast to the Canonical

Message Model using the CMM message structure which was developed in the earlier article, “SOA

Suite for healthcare integration Series - Creating a Canonical HL7 v2 Message Model”, to be found at

http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.

0.pdf. The inbound SOA Suite for healthcare integration adapter will perform this casting activity

while translating the message from HL7 v2 delimited to the “equivalent” XML format.

The runtime components and their relationships are presented in Figure 1.

Figure 1 Runtime Components of the Solution

The components and the relationships are discussed in the article “”, to be found at ???. To

summarise:

1. External Sender is the component which stands for a HIS or PAS – the sender of HL7

messages

http://blogs.czapski.id.au/wp-content/uploads/2012/08/SOASuiteHCI_ch2_Dev_Environ_v0.1.0.pdf
http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.0.pdf
http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.0.pdf

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 3

2. The Oracle Healthcare Integration infrastructure is the part of the SOA Suite which deals

with HL7 messages, acknowledgements, message tracking, message persistence, message

processing KPI collection and so on, and the Receive Endpoint is the listening endpoint which

receives messages

3. Direct Integration is the behind-the-scenes mechanism which hands messages over to an

appropriate SOA Suite-based logic component for further processing

4. ESB / SOA / Integration infrastructure hosts the SOA Composites and other logic components

which process messages, whether HL7 v2 or not. In our solution it will write each message to

a separate file.

The solution components are depicted in Figure 2.

Figure 2 Solution Components

The diagram uses the convention which clearly separates the external systems, the SOA Suite for

healthcare integration-specific components and generic SOA Suite components using the

“swim-line” analogy.

A0x Sender is the CMDHL7 sender tool, or another tool capable of sending HL7 v2 Delimited

messages over TCP/IP using the MLLP protocol. It will send A01 and A03 messages.

ADT Receiver is the SOA Suite for healthcare integration HL7 v2 listener.

Router is a SOA Composite which receives the message from the HL7 listener and writes it to a file.

The solution will be developed in stages, adding (some) complexity and exploring relevant features

as we go along.

First, a solution will simply receive a HL7 v2 message, acknowledge it with an immediate

acknowledgement and write it to a file with a generated name without transforming it in any way.

The immediate acknowledgement will be sent as soon as the message is received and persisted,

before it is processed in any way.

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 4

In the next stage the solution will be re-configured to transform the HL7 v2 Delimited message to its

“equivalent” HL7 v2 XML format and acknowledge it using a Functional Acknowledgement. This

acknowledgement will be sent only after the message is parsed by the inbound adapter and

validated. If the message passes validation a positive acknowledgement will be sent. If message

validation fails a negative acknowledgment will be sent.

Finally, the solution will be modified to set the name of the file to a string which uses message

content and messaging environment attribute values, for example HL7 message type and the

document type. This variant does not have anything to do with HL7 messaging but illustrates how

message content and messaging environment attribute values can be accessed if needed in

real-world solutions.

HL7 v2 Inbound to file – delimited message pass-through
It is assumed that the WebLogic Server is running, as it needs to be, to allow us to interact with the

SOA Suite for healthcare integration infrastructure.

It is assumed that the CMM_v1.0.ecs and CMM_v1.0.xsd message structure files, developed in the

article “SOA Suite for healthcare integration Series - Creating a Canonical HL7 v2 Message Model”, to

be found at

http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.

0.pdf are available, since they will be required in this step. If they are not available please go back tp

that article and follow the steps to create them.

 Start the Healthcare Integration Console application in your favourite web browser –

http://localhost:7001/healthcare.

 Log in with administrative credentials, for example weblogic/welcome1.

Add CMM_v1.0 Document to Document Protocol Hierarchy

It may sound strange to users of other H7 messaging environments but SOA Suite for healthcare

integration uses the term “Document” to describe a HL7 message structure and the message that

such a structure describes. The meaning is normally clear in context – we defined documents

(message structures) and receive/send documents (messages).

To be able to deal with HL7 messages of a particular kind (HL7 documents of a particular kind) the

SOA Suite for healthcare integration must be configured to recognise such messages (documents)

and to parse them if required using the correct structure (document) definition. This is what we will

do in this section.

 Expand “Document Protocol” in the “Configuration” tab, right-click “HL7” and choose

“Create”

http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.0.pdf
http://blogs.czapski.id.au/wp-content/uploads/2012/09/SOASuiteHCI_ch5_CanonicalMessage_v0.1.0.pdf
http://localhost:7001/healthcare

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 5

 Enter “2.3.1” as the value of the Name field in the “Create Document Version“ dialogue

box and click “OK”.

 Expand the “HL7” node, right-click the new “2.3.1” node and choose “Create”

 Enter “ADT” as the value of the Name filed in the “Create Document Type” dialog box

and click “OK”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 6

 Expand the node “2.3.1”, right click the new node “ADT” and choose “Create”

A short explanation is in order. The “ADT” message type is a

“Generic Message Type”. Normally one would define specific

message types, for example ADT_A01, ADT_A03, and so on, and the

SOA Suite for healthcare integration would expect and match such

messages with appropriate types. Conversely, message of type

ADT_A01 message will not match message type ADT_A03

consequently SOA Suite for healthcare integration will not find the

document to use to parse it. To allow us to parse multiple ADT

messages using a single document type we exploit SOA Suite for

healthcare integration’s administrative runtime configuration option

– “Generic Message Type” – which when checked allows generic

message type configuration to be used for messages for which

specific message type has not been defined. We will verify the

setting of this configuration option later in this article.

 Enter “CMM_v1.0” into the Name field of the “Create Document “ dialog box, click the

“Browse” button alongside the “Definition” label, locate the XML Schema Definition file,

CMM_v1.0.xsd, and select it

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 7

 Click the “Browse” button alongside the “Transaction Set ecs File” label, locate the ECS

file, CMM_v1.0.ecs, and select it

 Click “OK” to complete the dialogue

 Use the “Close” “Button” to close the “ADT”, “2.3.1” and “CMM_v1.0” Tabs – you will

find the Healthcare Integration Console more responsive with fewer open tabs

Our document hierarchy should now look like that shown in the illustration.

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 8

We will use other document types in subsequent articles. We could have “introduced” the all at this

time and saved ourselves the time later. For simplicity we will work through step-by-step,

configuring components as we need them.

Configure ADT Receiver

We the HL7 v2.3.1 ADT canonical message defined we are in a position to configure the adapter /

endpoint which will receive messages of this type.

Typically, and in our solution necessarily, the receiver will be a TCP/IP listener supporting the MLLP

1.0 encapsulation protocol. Such a receiver typically “listens” for connections on a specific TCP/IP

port, accepts a connection, establishes a session with the sender, receives messages sent to it, sends

acknowledgements back over the same connection, and stops when the partner closes the session /

connection. SOA Suite for healthcare integration uses the term “Endpoint” to describe both a

receiver/listener and a sender. We will use the same term to reduce confusion. In the listening /

receiving mode the endpoint is configured as a “server”.

 Right-click the “Endpoint” node in the “Configuration” tab and choose “Create”

 Enter the following in the “Configure Endpoint” dialogue box then click “OK”

o Name: HosA_SystemA_In

o Transport Protocol: MLLP10

o Connection Mode: server

o Host Name: localhost (or the name of whatever host you are using)

o Port: 22222

The endpoint is not quite configured as we want it. We will change the non-default values to suit our

requirement in the following steps.

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 9

 Check the “Enabled” checkbox. When we “Apply” this configuration later the endpoint

will be started.

 Click the “Transport Details” button

 Click the “Advanced” tab in the “Transport Protocol Parameters” dialogue box, set the

following properties, and click “OK”:

o Immediate ACK: Default

o Sequencing: Unchecked

 Click the “Add” “button” (a plus sign) in the “Documents to Receive” section

 Right-click the “Document Protocol” node in the “Document” dialog box and choose

“Expand All Below"

 Select the “CMM_v1.0” document in the HL72.3.1ADT hierarch and click “OK”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 10

 Uncheck the “Translation” checkbox, review the configuration to make sure it is correct

and click the “Apply” button, remembering that with the “Enabled” checkbox checked

this action will cause the SOA Suite for healthcare integration to attempt to start the

endpoint

 Open a command / terminal windows and use the “netstat” command to determine

whether the endpoint is running (it behooves us to find out whether the port is used

before configuring the port number, and use a different port it 22222 is used)

netstat –an | grep 22222

or

netstat –an | find "22222"

The ADT Receiver endpoint is configured and running. It is ready to accept connections and

messages. If we now submit a message to this endpoint it will be received and acknowledged, but

will not go anywhere useful because we don’t have the other part of the solution, the file writer SOA

Composite.

Create Router Composite

The term “Router” is used here for convenience rather than as a descriptive term. The SOA

Composite which is called the “Router” will “route” each message it receives to a file in the file

system. In subsequent solutions, which are developed in subsequent articles, this name becomes

descriptive.

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 11

The “Router” composite will receive HL7 v2 delimited messages and will write them “as-is” to files.

We made sure that messages are not translated by the ADT Receiver endpoint by unchecking the

“Translation” checkbox in the endpoint configuration. As SOA Suite adapters by default deal with

XML messages, we need to make sure we override default configuration of the ADT Receiver

endpoint and for the File adapter which will do the writing.

Tying together two adapters in SOA Suite requires a logic component - BPEL, Mediator, Business

Rules, … . The role of this component is to receive a message from the inbound adapter and pass it

to the outbound adapter, potentially transforming it in the process. At this point in the solution

development we will simply pass the message as is, therefore the logic component will be the

simplest we can get – Mediator component – and it will be configured as a pass-through.

 Start the JDeveloper Studio IDE

 Pull down the “Application” menu and choose “New…”

 Enter “FileWriterApp” as “Application Name”, choose “SOA Application” and click “Next”

 Enter “FileWriterPrj” as “Project Name” and click “Next”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 12

 Accept “Empty Composite” and click “Finish”

 Drag the “Healthcare Adapter” from the list of “Service Adapters” to the “Exposed

Services swim-line and release

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 13

 Name the adapter “HCI_CMM_In” and click “Next”

 Choose your “AppServer Connection” from the drop down or add one with the “plus”

button if you have not done so before, then click the “Test Healthcare” button to make

sure JDeveloper and the appropriate WebLogic server can communicate, then click

“Next”

 Select the “Receive” operation and click “Next”

 In the “Document Definition Handling” dialogue box click the “Advanced” tab, select

“Opaque” and click “Next” – this is where we are instructing the SOA Suite leave the

message alone and not try to treat is an a XML message

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 14

 Expand the Document Protocol hierarchy, select the “CMM_V1.0” document, click “Next”

and “Finish”

The Healthcare Adapter is configured to receive untranslated HL7 messages from the ADT Receiver

endpoint. The two work in concert – one receives and acknowledges messages and the other makes

them available for processing by a SOA Composite.

Let’s now add and configure the File Adapter.

 Drag the “File Adapter” from the “Service Adapters” to the “External References”

swim-line

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 15

 Name it “File_CMM_Out” and click “Next”

 Accept the default “Define from operation and schema (defined later)” “Adapter

Interface” and click “Next”

 Choose “Write File” in the “Operation” dialogue box and click “Next”

 Specify the path to which to write the file and a file name of the form

“ADT_In_%yyMMddHHmmssSS%.txt”, then click “Next” – note that the file name for

each message will be different and will embed a timestamp to tell message files apart

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 16

 Check the “Native format translation is not required (Schema is Opaque)” checkbox,

click “Next” and “Finish” – note that here, too, we are configuring the adapter to treat

the message as an opaque message

The File adapter is configured. We now need to tie the inbound and the outbound with a “Service

Component”. We will use “Mediator” component for simplicity.

 Drag the “Mediator” component from the list of “Service Components” to the

“Components” swim-line

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 17

 Name the component “HCI2toileMediator” and click “OK”

 Drag from the “Chevron in a circle” symbol in the top right hand corner of the

HCI_CMM_In adapter to the HCItoFileMediator component’s left pointing triangle to

connect the two components

 Drag from the right hand pointing triangle in the HCItoFileMediator to the chevron in a

circle symbol in the top left corner of the File_CMM_Out adapter to connect the two

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 18

If we were passing through XML messages we would be done configuring the Mediator component.

By default it will simply pass its input to its output. Because we are using opaque messages we must

explicitly configure this pass through.

 Double-click the HCItoFileMediator component to open its properties

 Click on the “Assign Values” button to start assigning values – we onlt need to assign

the input to the output

 Click the “Add a new value assignment” (the plus sign) button

 Choose “expression” in the “Type” drop-down on the “From” side and click the “Invoke

Expression Builder” button

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 19

 Expand the “in” variable and double-click the “body” node to make it appear in the

“Expression” box – alternatively select the “body” node and click the “Insert Into

Expression” button – then click “OK”

 Repeat the process for the “To” side, choosing “expression” for “Type”, clicking the

“Invoke Expression Builder” and adding the $out.opaque expression

 Click “OK” and “OK” again to complete assignment

The Mediator properties we changed will look like the illustration below

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 20

The application development is completed. Let’s now save and deploy this application to the

nominated application server.

 Click the “Save All” button in the main toolbar

 Right-click on the name of the name of the project – “FileWriterPrj” – choose “Deploy”

then “FileWriterPrj…”

 Accept default “Deploy to Application Server” and click “Next”

 Check the “Overwrite any existing composite with the same revision ID.” Checkobox

and click “Next”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 21

 Choose the correct application server connection and click “Finish”

 Observe deployment log messages looking for completion without errors

The application is deployed and ready to accept and write messages.

At this point you can close the JDeveloper Studio IDE. We don’t need it for the moment.

Process ADT messages

We will use the CMDHL7Sender command line client to read a file containing a single HL7 ADT A01

message and submit it to the ADT Receiver endpoint. We will then look at the output in our

configured output directory – for me c:\hl7\received, and review message tracking information in

the Healthcare Integration Console.

Please note that in this solution the receiver endpoint returns immediate ACK as soon as it gets the

message. There may be a delay, most noticeable the first time one executes the processing flow

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 22

after application server restart, between the receipt of the ACK and the time the message is written

to a file in the file system.

 Check that your configured output directory is empty

 Locate the input file containing a single HL7 message - for me this will be

C:\hl7\adt\sources\ADT_A01_output_1.hl7

The content of my file, where each segment starting with the 3 character segment ID in bold text is a

single line up to the next 3 character segment ID, looks like this:

MSH|^~\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|000000_CTLID_2008

090801529|P|2.3.1|||AL|NE

EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS

PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||7

South 3rd Circle^^Downham Market^England -

Norfolk^30828^UK||||||||A2008090801529

PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V200809080

1529^^^^VISIT|||||||||||||||||||||||||2008090801529

 In a command / terminal window execute the following command

java -jar c:\tools\CMDHL7\CMDHL7Sender_v0.7.jar -a SystemA -b HosA -c ID_

-n 1 -d \r\r\n -p 22222 -h localhost -t 30000 -f

c:\hl7\adt\sources\ADT_A01_output_1.hl7

 Locate the output file in the received directory and inspect it to confirm that a) it has

been written and b) that is has the same content as the input file

The content of my output file, where each segment starting with the 3 character segment ID in bold

text is a single line up to the next 3 character segment ID, looks like this:

MSH|^~\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|ID__0000000|P|2.3

.1|||AL|NE

EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS

PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||7

South 3rd Circle^^Downham Market^England -

Norfolk^30828^UK||||||||A2008090801529

PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V200809080

1529^^^^VISIT|||||||||||||||||||||||||2008090801529

The content of the file is the same as the message which was sent. The only difference is the

message control id, which the send command explicitly changed with the –c switch to a serial

number prefixed by “ID__”.

 Submit the ADT A03 file, ADT_A03_output_1.hl7, and inspect the output.

Our solution works to the extent of receiving HL7 v2.3.1 messages, and acknowledging them and

writing them to files in the file system.

Explore Message Tracking

Let’s explore message tracking.

 Start the Healthcare Integration Console – http://localhost:7001/healthcare

 Log in with your credentials – mine are weblogic/welcome1

http://localhost:7001/healthcare

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 23

 Click the “Reports” Tab

 If you submitted two messages following instructions in the previous section, but you

don’t see any messages here, and you are looking at this text more than 24 hours after

you did the previous section, then pull down the “Plus” sign drop down and choose “All”

 Select the first message in the list (there ought to be only 2 – or select the second last

if there are more than two because you submitted more than two), review the State,

Endpoint and other attributes, and review “Identification” and “Communication and

Protocol” attribute sections – you should recall most of these from the endpoint

configuration steps

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 24

 Scroll down the “Business Message Details” pane, expand the “Payload” node and

inspect the HL7 message payload, noting the “Download as Text” button, which allows

the payload to be “externalized”, i.e. saved into a file in the file system

 Click the “Wire Message” Icon or link, inspect the wire message-related attribute values

and the message content

 Click the “Business Message” icon/link and note that by default this is the view

presented when a message us selected in the list of messages

 Click the “Application Message” icon/link, inspect attribute values (paying particular

attention to “Key” and “Value” columns in “Message Properties”) , expand the “Payload”

node and inspect the HL7 message

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 25

Note that both the Application Message and the Business Message payloads are HL7 v2 delimited

messages. This is because we disabled HL7 v2 delimited to HL7 v2 XML translation at the time we

configured this endpoint. Had we not done so, we would have seen XML messages in these cases.

Note that from now on whenever the expression “Inspect the Wire Message/Business

Message/Application Message” or a similar expression is used it refers to the functionality just

discussed as the means to perform this “inspection”.

 Click the “Composite” link, log into the Enterprise Manager Console with your credential

(my credentials are weblogic/welcome1) and review the message processing “Trace”,

noting component hierarchy, component names, types, state and so on

 Click the “HCI2FileMediator” link and inspect the instance details, expanding nodes as

you go along to see what can be seen – this display shows the SOA Composite and the

message and message properties as they are at different stages of processing

 Note the property values and message content – these will be much more “interesting”

when we perform message translation in the next section – close the Enterprise

Manager windows

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 26

Note that the Base64-encoded HL7 v2 Delimited message is the content of the opaqueElements

node in the payload XML structure

 Explicitly open the Enterprise Manager Console - http://localhost:7001/em - and click

on the name of the FileWriterPrj composite

 Click the “Instances” Tab, choose the starting date range to include the period during

which instances were executed, click the “Search” button and click on the “Instance ID”

link for one of the instances – not that this brings the same display as that shown when

the “Instance” link was clicked in the message tracking window of the “Healthcare

Integration Console”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 27

 Close the Enterprise Manager Console windows

HL7 v2 Inbound to file with XML translation
In the previous section we received a HL7 v2 delimited message and wrote it as-is to a file in the file

system. In this section we will re-configure the receiving endpoint to cause the message to be

automatically translated to XML. We will also re-configure acknowledgement processing so that the

Functional Acknowledgement is sent after the message is parsed and translated, and that it correctly

indicates the outcome of translation and validation, if any.

Define Functional Acknowledgement Document

In the case of the “Immediate ACK” the infrastructure implicitly generated the acknowledgement. In

the case where the Fictional Acknowledgement is used, the case we are working through now, we

must explicitly create and “introduce” the ACK message structure so it can be configured as

outbound document the endpoint will be sending.

 Start the Oracle Document Editor

 Click the “New Document” button, expand the “HL7””2.3.1””Event A01 : …”, select

the “ACK: General acknowledgement message” node and click “Next”

 Click the “Save” button and save the ECS file with the name of “ACK_2.3.1.ecs”

 Pull down the “File” men, select the “Export …” option, select the “Oracle B2B 2.0”

option and click “Next”

 Save the XSD file as ACK_2.3.1.xsd in the same location as the corresponding ECS file

and click “Finish”

 Exit the Oracle Document Editor

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 28

“Introduce” the ACK document to SOA Suite for healthcare integration

 Switch to the Healthcare integration Console

 Expand the “Designer””Configuration””Document Protocol””HL7” hierarchy,

right-click the “2.3.1” node and choose the “Create” option

 Name the document type “ACK”, check the “HL7 Generic ACK” checkbox, check the

“Map ACK Control ID” checkbox and click “OK” to complete the dialogue

 Expand the “2.3.1.” node, right click the “ACK” Node and choose “Create”

 Name the new document definition “ACK_2.3.1”

 Click “Update” button alongside the “Definition” label, locate the new ACK_2.3.1.xsd

file and choose it

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 29

 Click the “Browse” button alongside the “Transaction Set ecs File”, locate the

“ACK_2.3.1.ecs” file, choose the file and click “OK” to close the dialogue box

 Close the document-related TABs in the right hand side of the Healthcare Integration

Console to reduce resource consumption

Configure Translation and Functional Acknowledgement

The ACK document is now available so we can proceed to re-configure the endpoint.

 In the Healthcare Integration Console expand the DesignerConfigurationEndpoint

hierarchy and double-click the name of the endpoint “HosA_SystemA_In” to open the

configurator pane

 Click the “Transport Details” button, select the “Advanced” Tab in the “Transport

Protocol Parameters” dialogue, change “Immediate ACK” to “”none” and click “OK”

 In the “Document To Receive” section of the “HosA_SystemA_In” Tab check the

“Functional ACK” checkbox, check the “Translation” checkbox, choose “YES” for the “FA

handled automatically” dropdown

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 30

 Click the and click “Add” button in the “Document To Send” section to add the ACLK

document as the document which this endpoint will send

 Choose the “ACK_2.3.1” document, click “OK” to dismiss the dialogue box and click

“Apply” – this re-configures the endpoint to perform delimited to XML translation and

return functional acknowledgements once the message is parsed –applying these

changes alters the behavior of the HL7 receiver

Re-configure and re-deploy the FileWriter project

 Start JDeveloper Studio, if not already running, locate and double-click the

composite.xml to open the composite graphical editor, the double-click the

HCI_CMM_In adapter to start its configuration wizard

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 31

 Click “Next” until you get to the “Document Definition Handling” dialogue panel, click

the “Document Definition Schema” to select it and deselect the “Opaque”, which was

the previous configuration option, then click “Next”

 Select the “CMM_v1.0” document from the “”, then click “Next” and “Finish”

 Double-click the “File_CMM_Out” adapter to start its configuration wizard, click “Next”

until you see the “Message” dialogue panel, uncheck the “Native format translation is

not required …” checkbox, then click the “Browse for schema file” button

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 32

 Expand the “Project Schema Files””CMM_v1.0” hierarch, select the “ADT” node and

click “OK” to complete and dismiss the dialogue

 Click “Next” and “Finish” to complete and dismiss the adapter configuration wizard

 Double-click the “HCI2FileMediator” mediator to open its configuration panel, then click

the “Assign Values” button

 Double-click the only line in the “Assign Values” dialogue to open the “Assign Value”

dialogue

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 33

 Click the “Invoke Expression Builder” button on the “To” side

 Select the “$out.opaque” text in the “Expression” box and delete it, expand the “out”

tree in the “Variables” pane, double-click the “body” node to add the expression

“$out.body” to the “Expression” box replacing the “$out.opaque” expression, then clikc

“OK’, “OK” and “OK” to complete the process

 Click the “Save All” button in JDeveloper toolbar, then deploy the project

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 34

 Close JDeveloper

Process ADT messages

We will use the CMDHL7Sender command line client to read a file containing a single HL7 ADT A01

message and submit it to the ADT Receiver endpoint. We will then look at the output in our

configured output directory – for me c:\hl7\received - and review message tracking information in

the Healthcare Integration Console.

Please note that in this solution the receiver endpoint returns a Functional ACK as when it gets and

parses the message.

 Check that your configured output directory is empty and delete any files it contains if

it is not empty

 Locate the input file containing a single HL7 message - for me this will be

C:\hl7\adt\sources\ADT_A01_output_1.hl7

The content of my file, where each segment starting with the 3 character segment ID in bold text is a

single line up to the next 3 character segment ID, looks like this:

MSH|^~\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|000000_CTLID_2008

090801529|P|2.3.1|||AL|NE

EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS

PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||7

South 3rd Circle^^Downham Market^England -

Norfolk^30828^UK||||||||A2008090801529

PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V200809080

1529^^^^VISIT|||||||||||||||||||||||||2008090801529

 In a command / terminal window execute the following command

java -jar c:\tools\CMDHL7\CMDHL7Sender_v0.7.jar -a SystemA -b HosA -c ID_

-n 1 -d \r\r\n -p 22222 -h localhost -t 60000 -f

c:\hl7\adt\sources\ADT_A01_output_1.hl7

 Locate the output file in the received directory and inspect it to confirm that a) it has

been written and b) that is has the same content as the input file

Part of the content of my output file (where I removed some of the content for brevity of display)

looks like this:

<?xml version="1.0" encoding="UTF-8" ?><ADT

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" XDataVersion="2.0"

Standard="HL7" Version="2.3.1" CreatedDate="2012-11-11T14:54:33"

CreatedBy="XEngine_2992" GUID="{5EF84DB8-E35E-47B5-B134-EA02092AB49E}"

xmlns="http://www.edifecs.com/xdata/200">

 <Internal-Properties>

 <Data-Structure Name="Message">

 <Lookup Name="InternatCodeAlternateID"/>

 <Lookup Name="InternatCodeAlternateSystem"/>

 <Lookup Name="InternatCodeAlternateText"/>

...

 <Lookup Name="MessageVersion">2.3.1</Lookup>

 <Lookup Name="Standard">HL7</Lookup>

 <Lookup Name="TriggerEvent">A01</Lookup>

 <Property Name="AcceptAckType">AL</Property>

 <Property Name="AlternateCharacterSetSchema"/>

 <Property Name="AppAckType">NE</Property>

...

 <Property Name="Standard">HL7</Property>

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 35

 <Property Name="SubcomponentDelimiter">0x26</Property>

 <Property Name="SubelementDelimiter">0x5e</Property>

 <Property Name="TriggerEvent">A01</Property>

 </Data-Structure>

 </Internal-Properties>

 <MSH>

 <MSH.1>|</MSH.1>

 <MSH.2>^~\&</MSH.2>

 <MSH.3>

 <HD.1>SystemA</HD.1>

 </MSH.3>

 <MSH.4>

 <HD.1>HosA</HD.1>

 </MSH.4>

 <MSH.5>

 <HD.1>PI</HD.1>

 </MSH.5>

 <MSH.6>

 <HD.1>MDM</HD.1>

 </MSH.6>

 <MSH.7>2008090801529</MSH.7>

The content of the file is the XML “equivalent” of the message which was sent. Note the

“Internal-Properties” XML structure. The property values are derived from the message structure,

messaging environment (endpoint and document configuration) and message content itself, and are

carried with the message to the SOA Composite, where they can be accessed and used as might be

required.

 Submit the ADT A03 file, ADT_A03_output_1.hl7, and inspect the output.

Our solution works to the extent of receiving HL7 v2.3.1 messages, and acknowledging them and

writing them to files in the file system.

Explore Message Tracking

Let’s explore message tracking.

 Start the Healthcare Integration Console – http://localhost:7001/healthcare

 Log in with your credentials – mine are weblogic/welcome1

 Click the “Reports” Tab

 Select the second-from-last message with the “Direction” of “INBOUND” in the list,

review the State, Endpoint and other attributes, and review “Identification” and

“Communication and Protocol” attribute sections – you should recall most of these from

the endpoint configuration steps – note the “Native Message Size” and “Translated

Message Size” information

http://localhost:7001/healthcare

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 36

 Scroll down the “Business Message Details” pane, expand the “Payload” node and

inspect the HL7 message payload, noting the “Download as XML” button, which allows

the payload to be “externalized”, i.e. saved into a file in the file system – the “Business

Message” is the translated message in the XML format

 Click the “Wire Message” Icon or link, inspect the wire message-related attribute values

and the message content – the “Wire Message” payload is the original HL7 v2 Delimited

format

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 37

 Click the “Application Message” icon/link, inspect attribute values (paying particular

attention to “Key” and “Value” columns in “Message Properties”) , expand the “Payload”

node and inspect the HL7 message

Note that both the Application Message and the Business Message payloads are HL7 v2 XML

messages. This is because we enabled HL7 v2 delimited to HL7 v2 XML translation at the time we

configured this endpoint.

 Click the “Composite” link, log into the Enterprise Manager Console with your credential

(my credentials are weblogic/welcome1) and review the message processing “Trace”,

noting component hierarchy, component names, types, state and so on

 Click the “HCI2FileMediator” link and inspect the instance details, expanding nodes as

you go along to see what can be seen – this display shows the SOA Composite and the

message and message properties as they are at different stages of processing

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 38

 Explicitly open the Enterprise Manager Console - http://localhost:7001/em - and click

 Close the Enterprise Manager Console windows

 Switch back to Healthcare integration Console

 Select one of the “OUTBOUND” ACK Messages and inspect the Wire and Business

message forms – note that the “Application Message” icon is inaccessible because the

ACK has been generated by the Healthcare Integration infrastructure rather than being

provided by the SOA Composite

HL7 v2 Inbound to file with explicit name
In the previous section we received a HL7 v2 delimited message and wrote it as-is to a file in the file

system with translation to XML. The name of the file was set in the File Adapter to a name which

was generated to be unique using a timestamp pattern. In this section we will re-configure the SOA

Composite to cause the file name to be constructed using message content, messaging environment

and endpoint properties. This has nothing to do with HL7 recept to XML transformation but

illustrates that the message content and messaging properties can be used inside the SOA

Composite for whatever processing might be required.

We will construct the file name using the following elements, with literal ‘_’ between elements,

concatenating elements to form a name of the file, for example HL7_2.3.1_ADT_....xml.

Document environment properties:

hc.documentProtocolName

hc.documentProtocolVersion

hc.documentTypeName

Document Content values

MSH.10

MSH.9

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 39

Literal string

'.xml'

Where the document content values are selectable graphically in the Expression Builder, the

property expressions and literal strings must be manually entered. In the Expression Builder, a

reference to a property associated with the incoming document will have the form of

“$in.property.propertyName”, where propertyName will be the name shown in the list of properties

in the “Assign Value” dialogue, for example hc.documentProtocolName, as shown in the illustration

below.

The complete property reference will be “$in.property.hc.documentProtocolName”.

 Open JDeveloper Studio, if not already running, double-click the composite.xml in the

FileWritrerPrj hierarch to open the composite editor and double-click the

HCI2FileMediator to open mediator editor

 Click the “Assign Values” button to open the “Assign Values” dialogue

 Click the “Add new value assignment” button to open the “Assign Value” dialogue

 In the “To” side select the “jca.file.FileName” property – we want to explicitly set the

name of the file the file adapter will use, overriding its static configuration

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 40

 In the “From” side choose the “expression” in the “Type” dropdown, then clock the

“Involve Expression Builder” button

 In the “Functions” dropdown scroll to “String Functions” and double-click the “concat”

function to add it to the Expression box

 Place the cursor between the parenthesis in the “Expression” box – we will be adding

expression components inside the “concat” function

 Select or type expression elements to construct the file name value like:

concat

 ($in.property.hc.documentProtocolName,

 '_',

 $in.property.hc.documentProtocolVersion,

 '_',

 $in.property.hc.documentTypeName,

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 41

 '_',

 $in.body/ns1:ADT/ns1:MSH/ns1:MSH.10,

 '_',

 $in.body/ns1:ADT/ns1:MSH/ns1:MSH.9,

 '.xml')

 Click “OK” to dismiss the Expression Builder, click “OK” to dismiss the “Assign Value”

dialogue, click “OK” to dismiss the “Assign Values” dialogue

 Click “Save All” JDeveloper toolbar button and deploy the application

 Close JDeveloper

 In a command / terminal window execute the following command

java -jar c:\tools\CMDHL7\CMDHL7Sender_v0.7.jar -a SystemA -b HosA -c ID_

-n 1 -d \r\r\n -p 22222 -h localhost -t 60000 -f

c:\hl7\adt\sources\ADT_A01_output_1.hl7

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 42

 Locate the output file in the received directory, inspect the file name and inspect file

content

Clearly, the properties and message content can be used in the SOA Composite as might be required,

perhaps affecting routing or transformation decisions.

Undeploy the FileWriter Project
In our future projects we will re-use the HL7 receiver but rather than writing messages to files we

will transform, route and send them out using outbound HL7 endpoints. We will now undeploy the

File Writer project using JDeveloper.

 Start JDeveloper Studio if not already running

 Pull down the “View” menu and choose “Application Server Navigator”

 Expand the “Application Server””your app server connection name””SOA””your

server name””default” hierarchy

 Right-click the name of the project – “FileWriterPrj” and choose “Undeploy”

SOA Suite for healthcare integration – HL7 v2 Inbound to File Solution Page 43

 Pull down the “Application” menu and choose “Close” to close the FileWriterApp

application

We are done with the inbound HL7 v2 delimited to file example. Future examples will explore

outbound adapter, routing and transformation.

Summary
This article worked through the mechanics of configuring the “SOA Suite for healthcare integration”

to receive a HL7 v2.3.1 ADT message as a Canonical Message and configuring the SOA Suite to write

each message to a file in the file system – a quintessential “Hello World” solution in a HL7 messaging

environment.

Both pass-through with no translation and delimited to XML translation solutions were

implemented, extending functionality to use messaging environment and message content

properties in naming files.

