
SOA Suite for healthcare integration – Series Overview Page 1

Oracle SOA Suite 11g R1 PS5

SOA Suite for healthcare integration Series

Creating a Canonical HL7 v2 Message Model
michael@czapski.id.au

September 2012

Table of Contents
Introduction .. 1

Brief Rationale... 2

Modelling the Canonical Message .. 4

Building the CMM Structure ... 6

Remove unused Segments .. 16

Analyse and Customize the Structure ... 16

Analyze using an A01 Message ... 16

Analyze using the A03 sample .. 18

Modify Message Structure to fix A03 sample message errors 19

Analyze again using the A03 Sample Message.. 25

Export CMM in ECS and XSD forms ... 26

Generate Message Structure Documentation .. 27
Summary ... 29

Introduction
Each different domain, covered by HL7 v2 standard, has a set of message definitions which support

message exchanges for a particular domain. Most of the message definitions for a domain share

certain segments. Many of the segments are optional and perhaps not used in a particular

messaging environment.

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple

destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use exactly

the same HL7 message structures in terms of versions, optional/mandatory segments, extension Z

segments, and so on.

It is common for integrating specialists, if the tooling which they use permits, to develop one or few

generalised message structures which can be used to represent more than one distinct message

from a domain they work with. These are typically called canonical models. The overriding purpose is

to standardise the message payload being passed around between integration components,

enabling reuse and reducing complexity. The Canonical Message model (CMM) works hand-in-glove

with the enterprise architecture in which transformation to/from the CMM is performed at the

SOA Suite for healthcare integration – Series Overview Page 2

edges of the integration domain, standardizing as much as possible, payload structure within the

integration domain.

This article works through the mechanics of deriving a Canonical Message Model for the series of

articles on SOA Suite for healthcare integration using the “Oracle SOA Suite for healthcare

integration” tooling. It contains an abridged version of the article “Healthcare Enterprise – IT

Architecture Building Blocks – Canonical Message Model for a HL7 Enterprise”, available at

http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-block

s-canonical-message-model-for-a-hl7-enterprise, but adds new material related to testing the

canonical structure against sample data and modifying the structure to accommodate data

idiosyncrasies.

Brief Rationale
In any but the simplest of HL7 messaging environments there will be multiple sources and multiple

destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use exactly

the same HL7 message structures in terms of versions, optional/mandatory segments, extension Z

segments, and so on. These differences necessitate transformation of messages from/to formats

used by source/target systems, in extreme cases leading to the virtual point-to-point integration

model, negating most benefits of having a modern integration infrastructure.

A sensible approach to dealing with these kinds of issues, and a key component of the Enterprise

Architecture, is Canonical Message Model (CMM).

The Canonical Message Model works hand-in-glove with the enterprise architecture in which

transformation to/from the CMM is performed at the edges of the integration domain. This

ultimately leads to the reduction in the number of transformations to the number of external touch

points. This also tightly couples endpoints and their transformations, localising change domains and

insulating the rest of the enterprise integration infrastructure from the changes in endpoints.

Illustration 1: Point-to-point message transformation

http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-blocks-canonical-message-model-for-a-hl7-enterprise
http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-blocks-canonical-message-model-for-a-hl7-enterprise

SOA Suite for healthcare integration – Series Overview Page 3

As a consequence of this design integration solutions need only be concerned with message routing.

To accommodate all possible data of interest to the enterprise the CMM will have to be constructed

in such a way that it is inclusive of all data.

It is likely that an enterprise will have multiple business domains, for example Patient

Administration, Patient Billing, Catering, and so on, which while dealing with patient information in

some manner are so different in nature that it is impractical to attempt to derive a canonical

message model that would include data from all. This may lead to multiple canonical message

models, one for each business domain. This is a valid approach and likely to be more robust then

attempting to derive a single model for all business domains in the enterprise.

For the remainder of this article let's assume that the following architectural decisions were made:

1. A canonical message model will be developed to support all HL7-capable clinical message

sources and destinations in the enterprise

2. The canonical message model will be based on the HL7 version 2.3.1 standard

3. The canonical message model will include all HL7 v2.3.1 segments that occur in any of the

messages provided by source systems or required by destination systems

4. The canonical message model will use the XML representation for HL7 v2.3.1 messages

5. Transformation between endpoint-specific HL7 messages and canonical messages will take

place at the edge of the integration domain (at the endpoint)

For the remainder of this article let's assume that the following major technical decisions were

made:

1. Oracle “SOA Suite for healthcare integration” will be used to implement the canonical

message model and the enterprise integration infrastructure which will use it

2. Oracle “SOA Suite for healthcare integration” functionality will be used to integrated source

and destination systems and transform HL7 v2.x delimited messages into their XML

equivalents

3. Mediator components will be used to transform HL7 v2.x XML messages into canonical

message model messages

Illustration 2: Using Canonical Message Model

SOA Suite for healthcare integration – Series Overview Page 4

Implied technical decisions are:

1. Oracle Document Editor will be used to develop and maintain the common message model

artefacts

2. Oracle “SOA Suite for healthcare integration” runtime will be configured to:

3. Perform transparent transformation between HL7 v2.x delimited and their corresponding

HL7 v2.x XML formats

4. Handle functional acknowledgements

5. Handle payload persistence and message tracking

6. Handle KPI collection and display for all HL7 endpoints

7. Handle broadcast of a single message to multiple receivers

Modelling the Canonical Message
Let's assume that two systems in the enterprise use the following HL7 messages:

Type and Trigger HL7 Version Description
ADT A01 V2.3.1 Admin/Visit Notification

ADT A03 V2.3.1 Discharge/End Visit

ADT A08 V2.3.1 Update Patient Information

ADT A17 V2.3.1 Swap Patients

Table 1 HL7 v2.x Delimited messages in the Enterprise

There might be (and very likely will be) many more systems and many more messages. This example

illustrates a method which will hold for any number of systems and messages.

With the objective of deriving a single message structure that will include all segments in the

corresponding HL7 v2.3.1 messages let's prepare a table with Message and Event Types as columns

and HL7 v 2.3.1 segments as rows, with assistive symbology where "?" means 0 or 1 (optional), "*"

means 0 or more (optional repeating) and "-" means no such segment in this event type. No special

symbol means “required”.

 A01 A03 A08 A17

1 MSH MSH MSH MSH

2 EVN EVN EVN EVN

3 PID PID PID PID

4 PD1? PD1? PD1? PD1?

5 NK1* - NK1* -

6 PV1 PV1 PV1 PV1

7 PV2? PV2? PV2? PV2?

8 DB1* DB1* DB1* DB1*

9 OBX* - OBX* OBX*

10 AL1* - AL1* -

11 DG1* DG1* DG1* -

12 DRG? DRG? DRG? -

Group PROCEDURE*

13A PR1 PR1 PR1 -

13B ROL* ROL* ROL* -

13C GT1* - GT1* -

Group INSURANCE*

14A IN1 - IN1 -

SOA Suite for healthcare integration – Series Overview Page 5

14B IN2? - IN2? -

14C IN3* - IN3* -

15 ACC? - ACC? -

16 UB1? - UB1? -

17 UB2? - UB2? -

18 - OBX* - -

19 - - - PID

20 - - - PD1?

21 - - - PV1

22 - - - PV2?

23 - - - DB1*

24 - - - OBX*

25 - Z01? Z01? -

Table 2: Segment-level comparison

Inspection of columns A01 and A08 reveals that the same segments are used in both and that they

are a large superset of the segments used in other event types. To construct a structure that would

cater for A01, A08 and A03 requires addition of an optional, repeating OBX segment (row 18). To

construct a structure that would also cater for A17 would require addition of PID, PD1, PV1, PV2,

DB1 and OBX segments. The PID and PV1 segments, which in A17 are required, would have to be

made optional to allow A01, A03 and A08 to be correctly parsed. This would mean that a malformed

A17 with a missing PID or PV1 segment would be accepted as valid. We are prepared to live with

that for the sake of the benefits of a canonical message model.

One of our systems sends messages with a custom Z01 segment. This segment's structure is shown

in Table 3.

Sequence Length Data Type Element Name

1 1 IS Original Gender

2 1 IS Current Gender

3 26 TS Date of Change

4 1 IS Legal Gender

Table 3: Z01 Segment composition

The segment is optional, since not very many people change their gender, but all components are

required, since when they do all the required pieces of information are known.

Knowledge of our systems tells us that no system ever sends segments other than MSH, EVN, PID

and PV1, and Z01. This is a grossly simplifying statement. It is unlikely that this will be the case in real

systems but for the sake of brevity in this article it is a reasonable simplification. The method will

hold no matter which and how many segments are included. It is likely, in fact, that an enterprise

would include all optional segments in the canonical message model if for no other reason than to

ensure that a system that one day gets upgraded, and starts including one of the optional segments,

does not break the model.

With this simplification, however, our message will consist of HL7 segments listed in Table 3.

CMM

MSH

EVN

SOA Suite for healthcare integration – Series Overview Page 6

PID

PV1

PID?

PV1?

Z01?

Table 4: Canonical Message Model HL7 Segments

Analysis aimed at deriving a canonical message model would then proceed deeper to inspect fields,

components and subcomponents, and determine whether and what might need to be done to

restrict, relax or modify rules that might apply to them, and include or exclude any in/from the

model. We will stop at the segment level for the purpose of this article.

Building the CMM Structure
We will use the Oracle Document Editor to build the CMM structure and produce the external forms

of it for use in our integration work.

In our example A01 and A08 both have the same set of segments, rows 1 through 17 in Table 2. We

will need to add an optional repeating OBX segment to account for the requirements of A03 (row 18

in Table 2). This will address standard structures for A01, A03 and A08. To account for the

requirement of the A17 we need to add PID, PD1, PV1, PV2, DB1 and OBX segments, shown in rows

19 through 24 in Table 2. Finally, we will add the custom Z01 segment.

 Start the Oracle Document Editor.

 Click New Document. Expand HL7 → 2.3.1 → Event A01: ADT/ACK and select ADT:

ADT message node.

The Spec / Guideline has all the segments needed for A01 (because this is A01) and A08 (because

both have the same structure).

Illustration 3: Choose standard ADT A01 message to modify

SOA Suite for healthcare integration – Series Overview Page 7

Let's now add an optional, repeating OBX segment to the end of the structure (append) to

accommodate the requirement of the A03 structure.

 Right-click an OBX segment in the A01 message and choose Copy.

 Right-click on the last node of the structure (UB2) and choose “Paste”.

Illustration 4: Standard A01 structure

Illustration 5: Copy OBX segment

SOA Suite for healthcare integration – Series Overview Page 8

Now the message reflects the requirements of the standard A01, A03 and A08 messages.

 Using the same copy/paste process let's append PID, PD1, PV1, PV2, DB1 and OBX

segments.

 The new segments only occur in A17s so let's make sure all are optional. The copied

Illustration 6: Append OBX to the end of the structure

Illustration 7: Additional segments for A17

SOA Suite for healthcare integration – Series Overview Page 9

PID and PV1 are required. Select PID segment and change Required to Optional and

Must Use to Used.

 Repeat the process for the second PV1.

Let's now create the Z01 segment.

 Right-click the last segment in the structure (second OBX). Choose Insert Node →

Insert → Segment.

 Choose “Create a new node” and click Next.

Illustration 8: Make the second PID Optional and Used

Illustration 9: Insert Segment

SOA Suite for healthcare integration – Series Overview Page 10

 Enter ID: Z01, Name: Z01 and Purpose and click Finish.

 Change Requirement and User Option to Optional and Used. This makes the

segment optional.

Illustration 10: Create a new node

Illustration 11: Configure segment details

SOA Suite for healthcare integration – Series Overview Page 11

Recall the structure of the Z01 segment.

Sequence Length Data Type Element Name
1 1 IS Original Gender
2 1 IS Current Gender
3 26 TS Date of Change
4 1 IS Legal Gender

We will add these components one at a time.

 Right-click on the name of the segment and choose Insert Child Node → Field.

 Accept “create a new node” and click Next.

Illustration 12: Make this segment optional

Illustration 13: Insert field as a child of the segment

SOA Suite for healthcare integration – Series Overview Page 12

 Provide values for Name, Purpose, Data Type (from a drop down menu), ID and

Length and click Finish.

 Right-click on the name of the new field and choose Insert Node → Field.

Illustration 14: Create a new node

Illustration 15: Defined Original Gender field

SOA Suite for healthcare integration – Series Overview Page 13

 Provide values for Name: Current Gender, Purpose: Current Gender, Data Type: IS

(from drop down menu), ID: CurrentGender and Length: 1. Click Finish.

 Repeat the process for the remaining two fields – Date of Change and Legal Gender.

Illustration 16: Add another field

Illustration 17: Configure Current Gender field

SOA Suite for healthcare integration – Series Overview Page 14

 Note that by default new fields are Required and Must Use. Modify as needed for

your fields.

 Save the structure.

This structure/guideline/spec is a customisation of the ADT A01 structure.

Once the structure is ready we can save the ECS file and export the XSD file. The former is used in

Oracle SOA Suite B2B for message validation (optional) and conversion between HL7 v2 Delimited

and XML (in either direction). The latter is used for integration between the Oracle SOA Suite B2B

and other parts of the SOA Suite.

 Pull down the File menu and choose Export.

 Choose Oracle B2B 2.0 and click Next.

Illustration 18: Completed structure

Illustration 20: Trigger Export Wizard

SOA Suite for healthcare integration – Series Overview Page 15

 Check “Save guideline before exporting”, change the name to an appropriate name

and click Next.

Two new files will appear in the file system – CMM_v1.0.ecs (EDIFECS Guideline) and CMM_v1.0xsd

(XML Schema Document).

Illustration 21: Coose to export to Oracle format

Illustration 22: Name the file and choose to save guideline

SOA Suite for healthcare integration – Series Overview Page 16

Remove unused Segments

The canonical message model structure which we created includes all segments from the A01/A08
message and all extra segments from 17 and the Z segment. We stated earlier that our messages will
only ever use MSH, EVN, PID, PV1 and Z01 segments. Let's delete all other segments and save/export
the structure.

 Open the CMM_v1.0.ecs file and delete all segments except the ones mentioned, by
right-clicking the segment and choosing Delete. Once done save and export the modified
files.

 While at it, click the root node of the structure and clear the Event field to eliminate Event
Type dependency.

Analyse and Customize the Structure
The canonical message model must accommodate sample data in such a way that a sample message

can be validated using the structure. To ensure this we will use data analysis functionality of the

Oracle Document Editor to validate sample A01 and A03 messages, and review and correct errors.

Analyze using an A01 Message

We will use a sample A01 message to see whether the message structure accommodates the

message without errors. In short, we will attempt to validate the sample message using the message

structure as the template. The steps are discussed in detail below.

 Start the Oracle Document Editor. Click on the Analyzer button to start the Data

Analyzer

Illustration 23: Minimalist CMM

SOA Suite for healthcare integration – Series Overview Page 17

 Select sample file named ADT_A01_output_1.hl7

 Change Data File Type to HL7 and click Next

 Check the “From a guideline file” radio button

 Choose the CMM_v1.0.ecs guideline file and click Next.

 Inspect error messages to see what kinds of issues the analyzer is reporting for the

A01 sample message.

SOA Suite for healthcare integration – Series Overview Page 18

The issues fall into the following categories:

1. Data format errors – for date/ time fields in which data does not agree with expected format

– MSH-7.1, EVN-2.1, PV1-44.1

2. Compound field length errors – the total length allowed for a compound field is insufficient

to accommodate the combined lengths of constituent component – MSH-10, PID-3, PV1-19

3. Field value not in a list of values – the code is not in the code set defined for the field –

PV1-4, PV1-7.14, PV1-19.5

 Click on the New Data button to analyze the A03 sample

Analyze using the A03 sample

 Select sample file named ADT_A03_output_1.hl7 and click Next

 Inspect error messages to see what kinds of issues the analyzer is reporting for the

A03 sample message.

SOA Suite for healthcare integration – Series Overview Page 19

As before, the issues fall into the following categories:

 Data format errors – for date/ time fields in which data does not agree with

expected format – MSH-7.1, EVN-2.1, PV1-44.1

 Compound field length errors – the total length allowed for a compound field is

insufficient to accommodate the combined lengths of constituent component –

MSH-10, PID-3, PV1-19, PV1-36

 Field value not in a list of values – the code is not in the code set defined for the field

– PV1-4, PV1-7.14, PV1-19.5, PV1-36

In addition, we have an issue with the Event ID, which does not match the Event ID in the guideline.

We will ignore this particular issue for the present.

Modify Message Structure to fix A03 sample message errors

We know that the sample A01 and A03 messages are not valid according to the canonical message

structure which we developed so far. We will modify the canonical message structure to

accommodate sample messages and will validate them again. The steps are discussed in detail

below.

Leave Error relating to “Event ID Mismatch” alone – we will not deal with it at present

Fix Error “The length of Field MSH10 (Message Control ID) is '27'. The maximum allowed length is

'20'. Segment MSH is defined in the guideline at position 001.”

 Click corresponding Error line in the Data Error View pane

 Click MSH-10 field in the Guideline pane

 Click the Properties Tab in the Field Properties pane and change Length property

from 20 to a value equal to or greater than 27 – say 40

SOA Suite for healthcare integration – Series Overview Page 20

 Fix Error “The length of Field PID3 (Patient Identifier List) is '22'. The maximum

allowed length is '20'. Segment PID is defined in the guideline at position 003”

 Click corresponding Error line in the Data Error Pane

 Click PID-3 field in the Guideline pane

 Click the Properties Tab in the Field Properties pane and change Length property

from 20 to a value equal to or greater than 27 – say 40

Fix Error “Field PV14 (Admission Type) does not contain a valid identification code: 'I' is not allowed.

Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Expand PV1-4 structure

 Select 0007 Admission Type

 Click “New Code” button in the Codelist Properties pane

 Enter Code value of “I” and Name value of “Inpatient” and click the Save button

SOA Suite for healthcare integration – Series Overview Page 21

Fix Error “Component PV17-14 (identifier type code) does not contain a valid identification code:

'MAIN' is not allowed. Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Expand XCN structure

 Select 0203 Identifier Type

 Click “New Code” button in the Codelist Properties pane

 Enter Code value of “MAIN” and Name value of “Main” and click the Save button

Fix Error “The length of Field PV119 (Visit Number) is '23'. The maximum allowed length is '20'.

Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Click PV1-19 field in the Guideline pane

SOA Suite for healthcare integration – Series Overview Page 22

 Click the Properties Tab in the Field Properties pane and change Length property

from 20 to a value equal to or greater than 23 – say 40

Fix Error “Component PV119-5 (identifier type code) does not contain a valid identification code:

'VISIT' is not allowed. Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Expand CX structure

 Select 0203 Identifier Type

 Click “New Code” button in the Codelist Properties pane

 Enter Code value of “VISIT” and Name value of “Visit” and click the Save button

Fix Error “The length of Field PV136 (Discharge Disposition) is '9'. The maximum allowed length is '3'.

Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Click PV1-36 field in the Guideline pane

 Click the Properties Tab in the Field Properties pane and change Length property

from 20 to a value equal to or greater than 3 – say 20

SOA Suite for healthcare integration – Series Overview Page 23

Fix Error “Field PV136 (Discharge Disposition) does not contain a valid identification code: 'DISH

DISP' is not allowed. Segment PV1 is defined in the guideline at position 006.”

 Click corresponding Error line in the Data Error Pane

 Expand PV1-36 field in the Guideline pane

 Select 0112 Discharge Disposition

 Click “New Code” button in the Codelist Properties pane

 Enter Code value of “DISH DISP” and Name value of “Discharge Disposition” and

click the Save button

Fix Error “Component PV1-44.1 (time of an event) has a data type of 'string data' (ST). The expected

format was YYYY[MM[DD[HHMM[SS[.S[S[S[S]]]]]]]][+/-ZZZZ]. Segment PV1 is defined in the guideline

at position 006.”

Observe that the alleged date/time string is “2008090801529”, which is 13 characters in length. The

date/time string is not valid. Rather than fixing the data we will change the data type from TS –

Timestamp to ST – String

Note that there are 2 PV1 segments in the canonical message structure – PV1-14 field will have to be

fixed in both so the procedure needs to be followed for both

SOA Suite for healthcare integration – Series Overview Page 24

 Click corresponding Error line in the Data Error View pane

 Select Field PV1-44 in the Guideline pane

 Click Properties Tab in Data pane

 Click “Select data type” button (ellipsis button)

 Choose ST – String Data from the Data Types list and click OK

 Save the modified guideline

SOA Suite for healthcare integration – Series Overview Page 25

Analyze again using the A03 Sample Message

 Click on the “Analyzer / Data” Tab then on the “New Data” button to re-start the

Data Analyzer

 Select ADT_A03_output_1.hl7 sample file and click Next

Inspect error messages to see what kinds of issues the analyzer is reporting for the A03 sample

message. The only issue reported should be “Event ID mismatch. Event ID from data: A03. Guideline

Event ID: A01.”. We will ignore this.

Analyze again using the A01 Sample Message and Fix Errors

 Click on the “New Data” button in the Data pane to re-start the Data Analyzer

 Select ADT_A01_output_1.hl7 sample file and click Next

Inspect error messages. The analyzer is reporting Timestamp-related errors for the A01 sample

message fields MSH-7.1 and EVN-2.1.

Fix these errors by changing data type for these fields from TS (Timestamp) to String (ST) as

discussed above.

Analyze again to make sure all errors are fixed

SOA Suite for healthcare integration – Series Overview Page 26

 Save guideline file

Export CMM in ECS and XSD forms

 Pull down the File menu and chose “Export”

 Choose “Oracle B2B” and click Next

 Accept the default name and location, which will be the same location as the ECS file

and the same name but with the .xsd extension, by licking Next.

SOA Suite for healthcare integration – Series Overview Page 27

 Click Finish

 Close all Oracle Document Editor windows, saving ECS file if necessary

We are done modifying our message structure. The canonical message model is ready and available

for use in ECS and XSD forms. This message structure can be used to work with our sample A01 and

A03 messages.

Generate Message Structure Documentation

Oracle Document Editor allows message structure to be extensively documented, with notes on

segments, fields, components and subcomponents, which we saw but ignored as we worked through

the steps in the previous section. We can now use the Oracle Document Editor functionality to

produce message structure reports which we can provide to interface developers and other whoi

have a need to know the details of message structures they might be using.

 With the CMM_v1.0.ecs open in the Oracle Document Editor pull down the “File”

menu, select “Export to” and click “PDF…”

SOA Suite for healthcare integration – Series Overview Page 28

 Navigate to the location where you want the PDF file to be stored, give it a name, for

example “CMM_v1.0.pdf” and click “Save”

 Inspect the PDF file to see what it contains, noting that the Z segment section is

pretty sparsely populated, compared to other sections, because we did not provide

documentation of the segment and its component fields as we developed it. We
hopefully will be more conscientious next time 

 Publish the CMM_v1.0 to “HTML…” and “Excel XML…” and inspect the results if you

have the tools to do so

SOA Suite for healthcare integration – Series Overview Page 29

 Close all Oracle Document Editor windows – we are done

Summary
This article worked through the mechanics of deriving a Canonical Message Model for the series of

articles on SOA Suite for healthcare integration using the “Oracle SOA Suite for healthcare

integration” tooling. It contains an abridged version of the article “Healthcare Enterprise – IT

Architecture Building Blocks – Canonical Message Model for a HL7 Enterprise”, available at

http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-block

s-canonical-message-model-for-a-hl7-enterprise, but added new material related to testing the

canonical structure against sample data and modifying the structure to accommodate data

idiosyncrasies.

http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-blocks-canonical-message-model-for-a-hl7-enterprise
http://blogs.czapski.id.au/2010/10/healthcare-enterprise-%e2%80%93-it-architecture-building-blocks-canonical-message-model-for-a-hl7-enterprise

