
Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 1

Using Rhapsody 4.01 with WebLogic JMS for 10.3
Michael.W.Czapski@gmail.com

December 2011

Table of Contents

Introduction ... 1

On the WebLogic Side ... 1
Create JMS Server .. 2
Create JMS Module ... 3
Create JMS Connection Factory .. 5
Create JMS Topic.. 6

On the Rhapsody Side ... 8

Summary .. 11

Introduction
I had an occasion, recently, to work on an integration project which required the Rhapsody 4.01-based

integration solution to receive messages from a WebLogic-based JMS Topic. Product documentation and

Internet searches did not offer assistance in terms of how the Rhapsody JMS Adapter needs to be

configured to support this. While there are a number of articles which discuss the topic of configuring

JMS Client to interact with WebLogic JMS Server, none of the solutions described in these articles

worked for me. A degree of experimentation and creative adaptation resulted in a working

configuration. This article discusses this solution for the benefit of these who will be faced with this

problem and for my own benefit if I need to do this again in the future.

On the WebLogic Side
In the olden days one would need to collect a specific set of WebLogic JAR archives, needed to support

JMS integration, and make them available to the client application. My article on configuring the

QBrowser JMS Browser for interaction with WebLogic JMS, “Using QBrowser v2

with WebLogic JMS for 10.3”, at http://blogs.czapski.id.au/2011/05/using-qbrowser-v2-with-weblogic-j

ms-for-10-3, is an example of how this would have been done in the olden days. The method seems to

have changed between then and now. The new method involves explicit creation of a client JAR,

wlfullclient.jar, discussed amongst others in “Using the

WebLogic JarBuilder Tool”, http://docs.oracle.com/cd/E12840_01/wls/docs103/client/jarbuilder.html.

To summarise:

On WebLogic host, change directory to the WebLogic Server’s server/lib directory.

cd $WL_HOME/server/lib # or cd %WL_HOME%¥server¥lib or some such

Use the following command to create wlfullclient.jar in the server/lib directory:

java -jar wljarbuilder.jar

http://blogs.czapski.id.au/2011/05/using-qbrowser-v2-with-weblogic-jms-for-10-3
http://blogs.czapski.id.au/2011/05/using-qbrowser-v2-with-weblogic-jms-for-10-3
http://docs.oracle.com/cd/E12840_01/wls/docs103/client/jarbuilder.html

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 2

Copy the resulting wlfullclient.jar to the client application development area and

bundle it with the client application, however these need be done for a particular client

application. Add the wlfullclient.jar to the client application’s classpath, however that needs be

done for the particular client application. (Notes on how to do this for the Rhapsody JMS Adapter

are provided later in this document).

The above gives you the Java Archive containing all Java classes necessary to support JMS interaction

between the client application and the WebLogic Server JMS.

To make the discussion more concrete, let’s assume that we have a JMS Topic Connection Factory, with

a JNDI reference of “jms/MyTopicCF” and a JMS topic with a JNDI reference of “jms/MyTopic”.

The following steps walk through the process of creating these objects using the WebLogic Admin

Console.

 Log into the WebLogic Admin Console, http://{WLJMSHost}:{WLJMSPort}

Create JMS Server

 Navigate the hierarchy “Services””Messaging” and click the “JMS Server” node

 Click “New” (This is not really necessary if there is an existing JMS Server which can be

used. I don’t know what your environment looks like so I am assuming you don’t have

a convenient JSM Serve to use)

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 3

 Enter “MyJMSServer” as new server name and click “Next”

 Choose the target from the target list and click “Finish”

Create JMS Module

 Navigate the hierarchy “Services””Messaging” and click the “JMS Modules” node

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 4

 Click “New” (strictly speaking creation of a JMS Module may not be necessary if you

have one, for example the “SOAJMSModule” created by the installation of the SOA

Suite. I don’t know what your environment has so I have to assume that it does not

have a JMS Module which can be used)

 Name the module “MyJMSModule” and click “Next”

 Check the “AdminServer” target and click “Next”

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 5

 Click “Finish” accepting the default configuration

Create JMS Connection Factory

 Click the link “MyJMSModule”

 Click “New”

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 6

 Select the “Connection Factory” radio button and click “Next”

 Name the connection factory “MyTopicCF”, set the JNDI Name to “jms/MyTopicCF” and

click “Next”

 Accept default target by clicking “Finish”

Create JMS Topic

 Click the link “MyJMSModule”

 Click “New”

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 7

 Check the “Topic” radio button and click “Next”

 Name the Topic “MyTopic”, set the JNDI Name to “jms/MyTopic and click “Next”

 Click the “Create a New Subdeployment” button

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 8

 Enter “MyTopicSubdeployment” as subdeployment name and click “OK”

 Check the radio button next to the “MyJMSServer” JMS Server name and click “Finish”

 Inspect the list of objects under our JMS Module then close the web browser – we are

done here

On the Rhapsody Side
If the JMS Client Application which needs to communicate with the WebLogic JMS is the Rhapsody 4.01

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 9

then its JMS Adapter must be correctly configured to support this communication, including making the

wlfullclient.jar available to the JMS Adapter. The following discuss the process.

Unlike what is shown in a number of articles which deal with configuring a JMS Client for integration

with the WebLogic JMS, the protocol to use is not the “t3” protocol, but the “iiop” protocol. This is what

works for Rhapsody. In summary, here are the key configuration options for Rhapsody 4.01 and their

settings. Some settings, like the WebLogic JMS Host and JMS Destination name and type, will vary.

Property Name Property Value

InitialContextFactory weblogic.jndi.WLInitialContextFactory

ProviderURL iiop://{WLJMSHost}:{WLJMSPort}

Topic Connection Factory jms/{JMSTopicCopnnectionFactory}

Queue Connection Factory jms/{JMSQueueConnectoinFactory}

Connection Username {WLUsername}

Connection Password {WLPassword}

Input Destination jms/{MyTopicOrQueueName}

Input Destination Type Topic (or Queue, depending on what you use)

Receiving Mode Listening

In the table above values in {}, including {} themselves, must be replaced with the actual names from

your configuration. For example, as shown in the picture below, my {WLJMSHost} would be replaced

with localhost or some more appropriate host name or IP Address. My {WLJMSPort} would be replaced

with 7001.

Rhapsody JMS Adapter configuration panel has an annoying idiosyncrasy where one must specify a

Queue Connection Factory even if one uses a JMS topic. This does not have to be a Queue Connection

Factory, as long as it is a connection factory. Without this the configuration cannot be saved.

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 10

The creation of a wlfullclient.jar results in a JAR which if around 58Mb in size. The Communication Point

wizard seems unable to deal with a JAR this size, when adding it through the “Auxiliary Files” tab. To get

around this issue, copy the wlfullclient.jar renaming the copy and the original so that you have two JARs

– wlfullclient_p1of2.jar and wlfullclient_p2of2.jar. From the former delete the "weblogic" hierarchy,

using 7-zip or some other archiver which can cope with JAR archives. From the later delete everything

except the “weblogic” hierarch. Add both archives to Auxiliary Files for the JMS Communication Point.

Using Rhapsody 4.01 with WebLogic JMS for 10.3 Page 11

Now create a route with whatever additional communication points you might need and start the lot.

Expect, if all is configured correctly, to receive messages from the topic hosted by the WebLogic JMS.

For the JMS objects, whose creation on the WebLogic Server side was discussed earlier, the settings

would be:

Property Name Property Value

InitialContextFactory weblogic.jndi.WLInitialContextFactory

ProviderURL iiop://localhost:7001

Topic Connection Factory jms/MyTopicCF

Queue Connection Factory jms/MyTopicCF

Connection Username Weblogic

Connection Password weclome1

Input Destination jms/MyTopic

Input Destination Type Topic

Receiving Mode Listening

Summary
In this article I walked through the process of setting up JMS Topic and its dependencies on WebLogic

10.3 platform and configuring Rhapsody 4.01 JMS Communication Point to receive messages from the

JMS Topic hosted by the WebLogic 10.3 Server. Perhaps this will save you the time I spent figuring out

how to do this.

