Healthcare Enterprise — IT Architecture Building Blocks

Canonical Message Model for a HL7 Enterprise
Michael Czapski (michael@czapski.id.au), October 2010, Rel. 1.0.1

Table of Contents

A 0111 - (o1 PSSP 1
T (T [N T4 AT o SR SSSSN 2
Modelling the CanoNiCal MESSAGEcciiiiiiiieie et 5
BUIlING the CIMIM SEIUCTUIEeeiiiiieieiece ettt re et e reenaeeneenneenes 7
CUSLOMISE The CIMIM ...ttt e te et e s aa e ste et eetaenaeeneesneens 19
F N [0 MO8\ LY AV T - To - - OSSPSR 20
SUIMIMIBIY <.t h et s e b e bt e st e b e Rt et R e b e e bt e b e b et e b e bt e nnenne s 25
Abstract

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple
destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use
exactly the same HL7 message structures in terms of versions, optional/mandatory segments,
extension Z segments, and so on. A sensible approach to dealing with these kinds of issues, and a
key component of the HL7 Enterprise Architecture, is the so called Canonical (or Common)
Message Model (CMM). The CMM works hand-in-glove with the enterprise architecture in which
transformation to/from the CMM is performed at the edges of the integration domain. This article
discusses major considerations and works through the mechanics of deriving a Canonical Message
Model for a fictitious Healthcare Enterprise and implementing it using the Oracle SOA Suite 119
HLY7 tooling as an example. The article will also discuss and illustrate a mechanism for injecting
arbitrary metadata into the canonical message, generated by the B2B Document Editor, in such a
way that it is ignored by the Edge-dwelling B2B infrastructure but is significant to the SOA
infrastructure.

Page 1 of 25

mailto:michael@czapski.id.au

Introduction

pe ,<
- -

S o
A

[llustration 1: Point-to-point message transformation

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple
destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use
exactly the same HL7 message structures in terms of versions, optional/mandatory segments,
extension Z segments, and so on. These differences necessitate transformation of messages from/to
formats used by source/target systems, in extreme cases leading to the virtual point-to-point
integration model, negating most benefits of having a modern integration infrastructure.

A sensible approach to dealing with these kinds of issues, and a key component of the Enterprise
Architecture, is the so called Common (or Canonical) Message Model (CMM).

The Canonical Message Model works hand-in-glove with the enterprise architecture in which
transformation to/from the CMM is performed at the edges of the integration domain. This
ultimately leads to the reduction in the number of transformations to the number of external touch
points. This also tightly couples endpoints and their transformations, localising change domains and
insulating the rest of the enterprise integration infrastructure from the changes in endpoints.

Page 2 of 25

Illustration 2: Using Canonical Message Model

As a consequence of this design the integration solutions need only be concerned with message
routing.

To accommodate all possible data of interest to the enterprise the CMM will have to be constructed
in such a way that it is inclusive of all data.

It is likely that an enterprise will have multiple business domains, for example Patient
Administration, Patient Billing, Catering, and so on, which while dealing with patient information
in some manner are so different in nature that it is impractical to attempt to derive a canonical
message model that would include data from all. This may lead to multiple canonical message
models, one for each business domain. This is a valid approach and likely to be more robust then
attempting to derive a single model for all business domains in the enterprise.

No enterprise remains unchanged over time. It is inevitable that any canonical model will need to
evolve to accommodate changes. This evolution will need to be managed. The best approach to
managing change will be to design the CMM in such a way that it can be extended and that
extensions can be identified.

Managing changes to the model over time will require design of the model data structures so that
they can only be extended “at the end of the structure”. This is the kind of policy the HL7 v2.x
standard uses. Just what “at the end of the structure” means depends on the message structures in
question. In the case of HL7 v2.x, for example, this would be at the end of message segments, at the
end of components, etc..

A correctly designed transformation will not break if it has more data in the message then it has
been designed to deal with. This statement must be qualified. Depending on the choice of
technologies that are used to represent message structure, validate message structure and implement
transformation support, there my arise an issue of tight coupling between technologies which
eliminates flexibility.

Technologies that require implicit or explicit validation of the message structure, by for example

parsing messages into a build-time fixed representation, will break when presented a non-compliant
message, as a new variant of the canonical message will be. This kind of issue will arise for

Page 3 of 25

example when using Java CAPS Object Type Definitions or any XML-based technologies with
Schema validation enabled. In the former case one could add “step-down” transformation proxies to
transform new common message variants to old common message formats at the endpoints which
are not upgraded to deal with new variants. In the later case XML schema validation might have to
be disabled until transformations are upgraded to deal with, and validate, new message variants.

Implicit in support for evolution of canonical message model is the notion of versioning and,
consequential identification of structure versions. A version system, recognised by the
transformation infrastructure, would address the issue of identification of different versions if
version identifiers were an integral part of the model and if each message carried meta data
identifying structure version. This in turn leads to the consideration of the enveloped message
pattern as the means of adding appropriate meta data or to adoption of messaging technologies
which are transparently extensible, for example XML, or both.

For the remainder of this article let's assume that the following architectural decisions were made:
1. Acanonical message model will be developed to support all HL7-capable clinical message
sources and destinations in the enterprise
2. The canonical message model will be based on the HL7 version 2.3.1 standard
3. The canonical message model will include all HL7 v2.3.1 segments that occur in any of the
messages provided by source systems or required by destination systems
The canonical message model will use the XML representation for HL7 v2.3.1 messages
The XML Schema for the canonical message model will use an attribute with the name
“CMM Version” on the root node of the structure to identify the version canonical message
model to the message uses.
6. Transformation between endpoint-specific HL7 messages and canonical messages will take
place at the edge of the integration domain (at the endpoint)

o~

For the remainder of this article let's assume that the following major technical decisions were
made:

1. Oracle SOA Suite 11g will be used to implement the canonical message model and the
enterprise integration infrastructure

2. Oracle SOA Suite B2B HL7 functionality will be used to integrated source and destination
systems and transform HL7 v2.x delimited messages into their XML equivalents

3. Mediator components will be used to transform HL7 v2.x XML messages into canonical
message model messages, enriching each with the CMM\Version attribute and its value

Implied technical decisions, exploiting capabilities of the SOA Suite, are:

1. Oracle SOA Suite B2B Document Editor will be used to develop and maintain the common
message model artefacts
2. Oracle SOA Suite B2B runtime will be configured to:

i. Perform transparent transformation between HL7 v2.x delimited and their

corresponding HL7 v2.x XML formats

ii. Handle functional acknowledgements

iii. Handle payload persistence and message tracking

iv. Handle KPI collection and display for all HL7 endpoints

v. Handle multiplexing of multiple senders to a single listener

vi. Handle broadcast of a single message to multiple receivers

Page 4 of 25

Modelling the Canonical Message
Let's assume that two systems in the enterprise use the following HL7 messages:

Type and Trigger HL7 Version Description

ADT A01 V2.3.1 Admin/Visit Notification
ADT A03 V2.3.1 Discharge/End Visit

ADT A08 V2.3.1 Update Patient Information
ADT Al17 V2.3.1 Swap Patients

Table 1 HL7 v2.x Delimited messages in the Enterprise

There might be (and very likely will be) many more systems and many more messages. This
example illustrates a method which will hold for any number of systems and messages.

With the objective of deriving a single message structure that will include all segments in the
corresponding HL7 v2.3.1 messages let's prepare a table with Message and Event Types as columns
and HL7 v 2.3.1 segments as rows, with assistive symbology where "?" Means 0 or 1 (optional), "*"
means 0 or more (optional repeating) and "-" means no such segment in this event type. No special
symbol means required.

A01 A03 I Al7

1 MSH MSH MSH MSH
2 EVN EVN EVN EVN
3 PID PID PID PID
4 PD1? PD1? PD1? PD1?
5 NK1* - NK1* -
6 PV1 PV1 PV1 PV1
7 PV2? PV2? PV2? PV2?
8 DB1* DB1* DB1* DB1*
9 OBX* - OBX* OBX*
10 ALL1* - ALL* -
11 DG1* DG1* DG1* -
12 DRG? DRG? DRG? -
Group PROCEDURE*

13A PR1 PR1 PR1 -

13B |ROL* ROL* ROL* -

13C |GT1* - GT1* -

Group INSURANCE*

14A |IN1 - IN1 -

14B |IN2? - IN2? -

14C [IN3* - IN3* -
15 IACC? - ACC? -
16 UB1? - UB1? -
17 UB2? - uB2? -
18 - OBX* - -
19 - - - PID
20 - - - PD1?
21 - - - PV1
22 - - - PV2?
23 - - - DB1*
24 - - - OBX*
25 - Z01? Z01? -

Table 2: Segment-level comparison

Inspection of columns A01 and A08 reveals that the same segments are used in both and that they
are a large superset of the segments used in other event types. To construct a structure that would

cater for AO1, A08 and A03 requires addition of an optional, repeating OBX segment (row 18). To
construct a structure that would also cater for A17 would require addition of PID, PD1, PV1, PV2,
DB1 and OBX segments. The PID ad PV1 segments, which in A17 are required, would have to be

Page 5 of 25

made optional to allow A01, A03 and A08 to be correctly parsed. This would mean that a
malformed A17 with a missing PID or PV1 segment would be accepted as valid. We are prepared to
live with that for the sake of the benefits of a canonical message model.

One of our systems sends messages with a custom Z01 segment. This segment's structure is shown

in Table 3.
Sequence ength Data Type Element Name

1 IS Original Gender
2 1 IS Current Gender
3 26 TS Date of Change
4 1 IS Legal Gender

Table 3: Z01 Segment composition

The segment is optional, since not very many people change their gender, but all components are
required, since when they do all the required pieces of information are known.

Knowledge of our systems tells us that no system ever sends segments other then MSH, EVN, PID
and PV1, and Z01. This is a grossly simplifying statement. It is unlikely that this will be the case in
real systems but for the sake of brevity in this article it is a reasonable simplification. The method
will hold no matter which and how many segments are included. It is likely, in fact, that an
enterprise would include all optional segments in the canonical message model if for no other
reason then to ensure that a system that one day gets upgraded, and starts including one of the
optional segments, does not break the model.

With this simplification, however, our message will consist of HL7 segments listed in Table 3.

MSH
EVN
PID

PV1

PID?
PV1?
Z01?

Table 4: Canonical Message Model HL7 Segments

Analysis aimed at deriving a canonical message model would then proceed deeper to inspect
components, subcomponents and fields, and determine whether and what might need to be done to
restrict, relax or modify rules that might apply to them, and include or exclude any in/from the
model. We will stop at the segment level for the purpose of this article.

Page 6 of 25

Building the CMM Structure

Since the tooling we decided to use is the Oracle SOA Suite 11g we will use the Oracle B2B
Document Editor to build the CMM structure and produce the external forms of it for use in our
integration work.

In our example AO1 and A08 both have the same set of segments, rows 1 through 17 in Table 2. We
will need to add an optional repeating OBX segment to account for the requirements of A03 (row
18 in Table 2). This will address standard structures for AO1, A03 and A08. To account for the
requirement of the A17 we need to add PID, PD1, PV1, PV2, DB1 and OBX segments, shown in
rows 19 through 24 in Table 2. Finally, we will add the custom Z01 segment.

Let's start the B2B Document Editor: Start — Programs — Oracle — Oracle B2B.

Click New Document. Expand HL7 — 2.3.1 — Event AO1: ADT/ACK and select ADT: ADT
message node.

v Oracle B2B

File Tools ‘Window Help
Cracle B2B

ORACLE B2B Document Editor

B} New Document Wizard

Mew document creation

Please select a guideline

E“ Delimited Flat File | s_lank HL7
=N emplates
| e EDI g aeln_n:ples
b s 2 ¢
E HL?v3 E:l 251
Fi B 25

HNEF'DF' .{524 K"
— EHE 231

== ParserSchema -
E @ Event AD1: ADT/ACK - Admit / visit notification

EF’ositiunal Flat File g
- B ACK: General ackni.gledgment message

l—‘ Flosstatlet @ {a Evert AD2: ADT/ACK - Transfer a patient
IIIustratlon 3: Choose standard ADT AO1 message to modify

The Spec / Guideline has all the segments needed for AO1 (because this is A01) and A08 (because
both have the same structure).

Page 7 of 25

| Ek Specl - Oracle B2B - [HL7-2.3.1]

JJ File Edit Wiew Tools Window Help

o e ||stae|s xGE AR &2

Guideline + |« =» | Message Prope
) HL7 Guideline

B [o7] HL7 Data Types El General

1ADT - ADT mes event AD1) ID: E
001 M5H - message header segment

EVN 002 EVN -event type segment Name: E
PID 03 PID - patient identification segment Event: E

PO 004 PD1 - patient additional demographit
f({E NK1 005 NK1 -next of kin / associated partie Event Name: [
- PW1 006 PV1 - patient vist segment- Standard: |]

HE PVZ 007 PV2 - patient vist - additional informz

#(E] DB1 008 DB1 - Disability segment El Notes

005 OBX - observation/result segment
010 ALT - patient allergy infomation segr
_ 011 DG1 - diagnosis segment & meszzage
- DRG 012 DRG - diagnosis related group segm
B3 Group 013 PROCEDURE m—
- PR1 014 PRI - procedures segment

- F@EROL 015 Role

(@ GT1 016 GT1 - guarantor segment

E% Group 017 INSURAMNCE

 E{E N 012 IN1 - insurance segment

- IMN2 013 INZ -insurance additional informez
© m{EINZ 020 IN3-insurance additional informe
F{El ACC 021 ACC -accident segment

- UB1 022 UB1 - UEBEEZ data segment

F{El UBZ 023 UB2- UBS2 data segment

Illustration 4: Standard AO1 structure

Let's now add an optional, repeating OBX segment to the end of the structure (append) to
accommodate the requirement of the A03 structure.

Right-click an OBX segment in the AO1 message and choose Copy.

Page 8 of 25

Guideline Segment Properties
B HL7 Guideline
HL7 Data Types El General -
= V2.3.1 ADT - ADT message (gvert AD1)
I CBX
MEH 001 MSH - message header segment
EVN 002 EVN -event type seament Mame: OBX - obs:
PID 003 FID - patient identification segment Requirement: Im
FD1 004 PD1 - patient additional demographic]
MK1 D05 MNK1 -next of kin / associated partie User Cption: | Used
PV D0E PV - patient visit segment- =l Notes
PVZ 007 PVZ - patient visit - additional informz
DB1 008 DBE1 - Disabilty segment Purp
(oms O ervation/result segmert I (R m—
AL 010 AL1 - patient allergy infformation se. Select parent node L
= DG1 011 DG1 - diagnosis segmernt 1
: DRG 012 DRG - diagnosis related group seg R e r
48 Group 013 PROCEDURE Forstard el
FR1 014 PR1 - procedures segment Move node up Ctrl-Up
ROL 015 Fole Move node down Ctrl-Down
F{E GT1 016 GT1 - guarantor segment
[—]-@ Group 017 INSURANCE Include by /41
(2 INT 018 INT -insurance segmert Exclude Cirl4E
INZ 019 IN2 -insurance addtional infon
IN3 020 IN3 -insurance addtional infon L Ctrl 4+
(@ ACC 021 ACC - acoident segment ML
B{E UB1 022 UBT- UBE2 data segment Faste (bl
#{E UBZ 023 UBZ- UB32 data segment Raste As Ciild

Illustration 5: Copy OBX segment
Right-click on the last node of the structure (UB2) and choose “Paste”.

Guideline = Segment Properties

%] HL7 Guideline
&/ [s1) HL7 Data Types Bl General
454 W2.3.1 ADT - ADT message (event AQ1)

001 MSH - message header segment Ib: — Position: 023
002 EVN - event type segmert MName: |U82 - UB92 data segment

003 PID - patient identification segment Requirement: I Optional ;I Repeats: E
004 PD1 - patient additional demographic

005 NK1 -next of kin / associated partie User Option: I Used ;I

006 PV1 - patient vist segment- 5 Notes

007 PV2 - patient visit - additional informz
008 DB1 - Disabilty ssgment Purpose 5
005 OBX - observation/result segment

The UBZ segment contains data necessary to
010 ALT - patient allergy information segr m complete UBS2 bills. Only UBS2 fields that do
011 DG1 - diagnosis segment not exist in other HL7 defined segments appear
012 DRG - diagnosis related group segm in this segment. Just as with the UBS2 billing,
013 PROCEDURE Patient Name and Date of Birth are required;

they are included in the PID segment and

PR1 014 PR1 -procedures segment therefore do not appear here. When the field
ROL 015 Role locators are different on the UB92, as compared
[]- GT1 016 GT1 - guarantor segment to the UBS2, the element is listed with its new
E14gg Group 017 INSURANCE location inI parentheses (J.hThe us codes listed
N1 018 IN1 -insurance segment as examples are not an exhaustive or current

list; refer to a UB specification for additional
IN2 015 IN2 - insurance additional informe information.

IN3 020 IN3 -insurance additional informsz
@@ ACC 021 ACC - accident segment
(= UEB 022 UB1- UBS2 data segment

= UB2 - UB92 data segment

Select parent node
Back Ctrl-B
Fatiard Chrl-F
Move node up Ctrl-Up
Mave node down Chrl-Davn
Iniclude CErlHT

4| | Exclude Ctrl+E

| " - [
@5 Dictiona =
" Guideline |35 g i crl+x | / User Notes), Rules , Children }, Analyzer/Data /

Copy Ctrl+C

= m
_’I
| Name WValie Ptz fi5 Nl

Ilustration 6: Append OBX to the end of the structure

Now the message reflects the requirements of the standard A01, A03 and A08 messages. Using the
same copy/paste process let's append PID, PD1, PV1, PV2, DB1 and OBX segments.

Page 9 of 25

Guideline

%) HL7 Guideline

[[o7] HL7 Data Types

El@ V231 ADT - ADT message (event ADT)

001 M5SH - message header segment

002 EWM - event type segment

003 PID - patient identification segment

004 PD1 - patient additional demographi

005 MK - next of kin / associated partie

006 PV - patient visit segment-

007 PWZ - patient wistt - additional irformez

008 DB1 - Disabilty segment

009 OBX - observation/mesult seament

010 AL1 - patient allergy information segr

011 DG1 - diagnosis segment

l - DRG 012 DRG - diagnosis related group segm

El @ Group 013 PROCEDURE

== PR1 014 PR - procedures segment

@ ROL 015 Role

=& GT1 016 GT1 - guarantor segment

El @ Group 017 INSLURANCE

C (= == N1 018 IN1 -insurance segment

=1 N2 019 INZ -insurance additional informz

== IN3 020 IN3 -insurance additional informz

ACC 031 ACC - accident segment

LIB1 022 UB1 - UB82Z data segment

- B2 023 UBZ- UBSZ data segment

-E-iﬂ&:ﬂ—wmau&-mgmd—
== - PID 003 PID - patient identification segment

004 PD1 - patient additional demographi

006 PV - patient visit segment-

007 PWZ - patient wistt - additional irformez

008 DB1 - Disabilty segment

)3 OBX - observation/result segment

[llustration 7: Additional segments for A17

The new segments only occur in A17s so let's make sure all are optional. The copied PID and PV1
are required. Select PID segment and change Required to Optional and Must Use to Used.

Page 10 of 25

lllustration 8: Make the second PID Optional and Used
Repeat the process for the second PV1.
Let's now create the Z01 segment.

Right-click the last segment in the structure (second OBX). Choose Insert Node — Insert —

Segment.

Page 11 of 25

. HL7 Data Types El General
ey V2.3.1 ADT - ADT message (svert AD1) . L "
MSH 001 M5H - message header segment 10 Position: o
002 EVN - event type segment Mame: |PID - patient identification segment
003 PID - patient identification segment ;] : .
004 PD1 - patient additional demographit Requirement: |D|:ltltl|'|3| i\% Repeats:
D05 MK -next of kin / associated partie User Option: I Used b
D06 PV - patient visit segment- Bl Notes
D07 PV2 - patient visit - additional informz
008 DE1 - Disability segment Purpose ¥
003 OBX - cbservation.fesult segment The PID segment is used by all applications as =
010 AL - patient allergy information segr M the |:|rir|'|an.-EI means of cnmny'rlunical:;:lijng patient
011 D@G1 - dizgnosis segment identification information. This segment contains
012 DRG - diagnesis related group segm permanent patient identifying and dgmugraphic
[@g Group 013 PROCEDURE information that, for the most part, is not likely
- FR1 014 PRI - procedures segment to change frequently.
B ROL 015 Role
=@ GT1 016 GT1-guarantor segment
=148 Group 017 INSURANCE
- IN1 018 IN1 -insurance segment
H@E IN2 019 IN2-insurance additional informe
- IN3 020 IN3 -insurance additional informz =
=@ ACC 021 ACC - accident segment
== UB1 022 UB1- UBS2 data segmert
== UB2 023 UB2- UBS2 data segmert
#[E OBX 009 OBX - observation/result segmert
== D03 PID - patient identification segment
=& PO 004 PD1 - patient additional demographic
HIE PVl 006 PV1 - patient visit seament-

- PO (04 PD - patient additional demographi [
- PV1 D06 PV -patient visit segment-
- PvZ 007 PVZ - patient visit - additional informz
- DB1 008 DB1 - Disability segment
F SO MG BY - nhesnatinn domc il
Select parent node
Back ctrl-B ‘\
Forward Zhrl-F
Move node up Ctrl-Up
Maye node down ZEr|-Eratwm
4 3
-_I_ Include e _I
LG Exdude Crl+E DED|
| Cut Ctrl+%
H = Copy Ctrl+C
Mame Paste ZEE[Y
ID Faste &s Child
Narme rezult 2egment
v Delete Del
User User Node Dictionary »
Pozit
Repe Print Mode. ..
Purps Print Preview Node E documented in itz enti
- Insert Node Insert Group
.1 Insert Child MNode Ctrl-Insert »
)

Illustration 9: Insert Segment

Choose “Create a new node” and click Next.

i new Node Wizard

X
Welcome to the New Node Wizard
' Create a new node
{7 Select an existing node
T Create from the uzer dictionarny
< Back I NEHD& I Cancel Help
A

Illustration 10: Create a new node
Enter ID: Z01, Name: Z01 and Purpose and click Finish.

Page 12 of 25

| new Node Wizard

FProperties :
Enter properties of the new node L
Seqment Properties By Mame j
Mame Walue
0 Z01
MWame £
Purpose Z01 extension Segment

¢ Back Einizh & I Cancel Help

Illustration 11: Configure segment details

Change Requirement and User Option to Optional and Used. This makes the segment optional.

Segment Properties

Bl General
1D: Position: o
MName: |ZIZIL |
Reguirement: IDptiDnaI ;I Repeats:
User Option: |U5Ed =

El Notes

Purpose "\B}'

E"Segment 701 extension Segment -

[llustration 12: Make this segment optional
Recall the structure of the Z01 segment.

Sequence Length Data Type Element Name

1 1 IS Original Gender
2 1 IS Current Gender
3 26 TS Date of Change
4 1 IS Legal Gender

We will add these components one at a time.
Right-click on the name of the segment and choose Insert Child Node — Field.

Page 13 of 25

- OB1 0028 DEN - Disability segment
; QOBX 009 OBX - observation/result segment
.= EhY 010 Z01

Select parent node
Back CtrlB
Fariard (Zhrl-F
Maove node up Ctrl-Up
_1 I Mave node down Zhrl-Eramn
- @
25 Di i
"G Guideline 2 Include ZhE T }I: I*. Properties ,.ﬁ I
o Exclude Ctrl+E
e Copy Cirl+C
o Pasts Chrl
Hame Paste 4s Child
Requirement
User Option Delets Del
Fositicn IUser Mode Dictionary r
Repeatz
Purpose Print Mode...
Print Preview Mode
"
1) Dataiznotmodi Insert Node Insert 2
[[[Quick i

Illustration 13: Insert field as a child of the segment

Accept “create a new node” and click Next.

il new Child Node Wizard x|

Welcome to the New Child Node
Wizard

¥ Create a new node
™ Select an existing node

{7 Create from the user dictionary

< Back et = Cancel | Help |
% A

Illustration 14: Create a new node

Provide values for Name, Purpose, Data Type (from a drop down menu), ID and Length and click
Finish.

Page 14 of 25

§il Mew Child Node Wizard

Properties
Enter properties of the new node

Field Properties By Mame =]
MHame Walue

Name Original Gender

Purpose Original Gender

Data Type 1% coded value for user-defined tables

D OriginalGender

Length 1

¢ Back | Einizh Dg Cancel Help

[llustration 15: Defined Original Gender field
Right-click on the name of the new field and choose Insert Node — Field.

- OBX 005 OBX - cbservation/result segment
=& 201 010 Z0
=@

El Application Field

Field Name:

COriginalGender 1 Original Gender

Select parent node
Back Ctrl-B
Farimard CEtl-F

| | [ove node up L]

PR @y [Move node dawn Chrl-Diovn
@5 Dictiona

B Guideline I] ry I @
Include Che|+T ——

Name Value Cut Crl+¥

Hame Original Gender Copy Ctrl4C

Purpose Original Gender Paste (Thr |-,

Data Type IS coded value ft. paste fs child

ID OriginalGender

Length 1 Delete Del

Key Type MNone User Mode Dictionary 3

Dnaitinn 1 Print Mode, ..

. _ . Print Preview Mode
1) Data ig not modified yet
: i Insert Mode Insert
M[4T> M Quick View AFiNd&Rep [ncertchidNode Cirl-insert b

Illustration 16: Add another field

Provide values for Name: Current Gender, Purpose: Current Gender, Data Type: IS (from drop
down menu), ID: CurrentGender and Length: 1. Click Finish.

Page 15 of 25

Properties

Enter properties of the new node

Field Properties

MName

By Hame

Value

Mame
Purpose
Data Type
o]

Length

Current Gender
Current Gender

15 coded value for user-
CurrentGender
1

Hep |

¢ Back Finizh Cancel |
lf\!‘: 4

Illustration 17: Configure Current Gender field
Repeat the process for the remaining two fields — Date of Change and Legal Gender.

Guideline
; GT1

008 DE1 - Disabilty segment

016 GT1 - guarantor segment
017 INSURANCE

021 ACC - accident segment
UB1 0Z2 UE1 - UB82Z data segment

(= UB2 023 UBEZ- UB92 data seament
- OBX 009 OBX - observation/result segmer
@ PID 003 PID - patient identification segme
(& PD1 004 PD1-patient additional demogra
- PV 006 PV - patient visit segment-
- PV2 007 PV2 - patient visit - additional infc
(& DB

T e e e

=&a701 010 ZN
- OriginalGender
BHEE CumentGender
DateCfChangs

1 Orniginal Gender
2 Current Gender
3 Date of Change
4 Legal Gender

=

LegalGender

4 |

B Guideline |°3Dicti0nary I

Field Properties

El General
10 Position:]
Name: |Lega| Gender |
Data Type: |IS coded value for user-defined tables ||::| [AType Def.
Requirement: |Required ;I Repeats:®
User Opticn: IMust use ;I
Length:*
= Notes
Purpose]
EFiald Legal Gender -

[4[4 » ¢, Properties £ User Notes 3 Rules A Children A, Analyzer /Data J

Illustration 18: Completed structure
Note that by default new fields are Required and Must Use. Modify as needed for your fields.

Save the structure.

This structure/guideline/spec is a customisation of the ADT A01 structure. The B2B Document
Editor and associated tooling can be used to test how sample data fits this structure and validate

data against it.

Page 16 of 25

| Ek CMM_v1.0.ecs - Oracle B2B - [HL7-2.3.1]

“ File Edit View Toolz Window Help

pragae |teels xHkE: 4B

2 G M

Guideline Segment Propertizs

ts] HL7 Guideline

& (o0 HL7 Data Types & General

=z V2.3.1 ADT - ADT message (evert AD1) . P "
F{B MSH 001 MSH - message header segment Ib: Position: -
- EVN 002 EVN - event type segment MName: [zot |
(S PID 003 PID - patient identification segment : , : - ,
- P 004 PD1 - patient additional demographic Requirement: |D|:|t|or|a| _I Repeats:
@ NK1 005 NKI-nex of kin / associated partie User Option: |Used =l
- PV1 006 PV - patient vist segment- =l Notes
H{E PY2 007 PV2-patiert visit - additional informz
(= DB1 008 DB1 - Disabiity segment Purpose v
. OBX 005 OBX - observation/result segment = Z01 extension Segment n
H{E AL1 010 ALT - patient allergy information segr &Segment
- DG1 011 DG1 - disgnosis segment

- DRG 012 DRG - diagnosis related group segm
1 _Groun 013 PROCEDURE
[llustration 19: Launch Analyzer

We can use a sample ADT AO01 to see whether the data is valid according to the guideline. If data is
not valid we can either modify data until it is valid or modify the guideline until the data is valid.

Since we create the custom structure starting with the ADT AO1 other message types (trigger
events) will fail trigger event validation even if all other spects of message validation succeed.
Whether this is likely to be an issue depends on matters which are not related to the structure itself.

Once the structure is ready we can save the ECS file and export the XSD file. The former is used in
Oracle SOA Suite B2B for message validation (optional) and conversion between HL7 v2
Delimited and XML (in either direction). The later is used for integration between the Oracle SOA
Suite B2B and other parts of the SOA Suite.

Pull down the File menu and choose Export.

I Bk CMM_vl.0.ecs - Oracle B2B - [HL7-2.3.1]

H File Edit View Tools Window Help
[[new... Ctrl+n —
[D M EN IR T N EY:
4 £ Open... Ctrl+0
= Message Properties
A
H szv= Cirl4s
fad save 4s... = General
Save As Template...
Remove Template... Eoment 1D: ADT
g MName: |ADT MESsage
Close
Import. .. Emographic . .
: Standard:
Publish to » [nal informz
= El Motes
&5 print... TP kegment Purpose
[Print Preyiew ation segr :
) = An ADL event is
&4 Print Setup... o seam ZMessage patients only. &
. Peed patient undergo
Document Options... assigns the pati

Illustration 20: Trigger Export Wizard
Choose Oracle B2B 2.0 and click Next.

Page 17 of 25

Export Wizard |
Welcome to Export Wizard

This wizard helps you convert a SpecBuilder guideline into
extemal formats for use with other applications.

Choose an export to perform:

Comma Separated Values format {C5V)
ML v1.0

Description:

This export routine will convert the guideling from the ;I

intemal format to one that can be used with the Oracle

B2B runtime software 2.0. _I
-

¢ Back Next > Cancel | Hep |

Illustration 21: Coose to export to Oracle format
Check “Save guideline before exporting”, change the name to an appropriate name and click Next.

Export Wizard

Export
Export destination

Save exported File as:

¥ Save guideline before exporting
[Show advanced options

<Back | Mm}il Cancel | Hep |

Illustration 22: Name the file and choose to save guideline

Two new files will appear in the file system — CMM_v1.0.ecs (EDIFECS Guideline) and
CMM _v1.0xsd (XML Schema Document).

Page 18 of 25

Customise the CMM

The canonical message model structure which we created includes all segments from the A01/A08
message and all extra segments from 17 and the Z segment. We stated earlier that our messages will
only ever use MSH, EVN, PID, PV1 and Z01 segments. Let's delete all other segments and
save/export the structure as CMM_v1.1.

Open the CMM _v1.0.ecs file and delete all segments except the ones mentioned, by right-clicking
the segment and choosing Delete. Once done save and export the modified files as CMM_v1.1.

While at it, click the root node of the structure and clear the Event field to eliminate Event Type

dependency.

Guideline

2| HL7 Guideline
B+ z1] HL7 Data Types
Sl4zg) V2.3.1 ADT - ADT message {gvert)

- MSH 001 MSH - message header segment
- EVN 002 EVN - event type segment

- FID 003 PID - patient identification segment
- PV 006 PV - patient visit segment-

E{E PID 003 PID - patient idertification segmert
- PVl 006 PW1 -patient visit segment-

{E 201 010 Z01

Ilustration 23: Minimalist CMM

Page 19 of 25

Message Properties

=l General

I

Mame:

ADT

|ADT message

Ewvent:

|

Event Name:

Standard:

=l Notes

|ADT/ACK - Admit / visit notification

Wersion:

Purpose

Add CMM Metadata

We discussed the need to version the canonical message model and include metadata which will
allow integration components to deal with changes over time.

An Enveloped Message EAI Pattern would call for a new message structure in which the original
message would be a payload node. All other nodes would be used for metadata of various uses.

An Enveloping Message Pattern, which | just invented for this article :-), would inject metadata into
the original message.

Of the two external forms of the canonical message structure, ecs and xsd, which we created, the
ecs file is used by the edge infrastructure to convert from HL7 v2 Delimited to XML or the other
way around, depending on whether the messages are inbound or outbound. This may make the ecs
form of the structure tightly bound to the specific endpoint. The endpoint can only ever use one
version of the canonical message at a time. The version, if embedded in the name of the ecs file, is
reflected in the configuration of the endpoint.

The xml schema version of the ecs file is generated during the export from the B2B Document
Editor.

On the inbound side, messages conforming to this schema are handed by the inbound B2B channel
to the appropriate SOA Suite composite for further processing. This structure includes both the
XML version of the HL7 v2 Delimited message, for example ADT A01, and B2B-generated
metadata. The sample, abbreviated XML message for the canonical message model we were
developing so far, is shown below.

<ADT

- xmlns="NS 6E95A90E4BAF43ABOFOA3CBB863278FC20070423183755"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
XDataVersion="2.0"
Standard="HL7"
Version="2.3.1"
CreatedDate="2010-10-08T14:11:53"
CreatedBy="XEngine 2114"
GUID="{DBFA5449-DC41-4969-8833-089882691395}">

<Internal-Properties>
<Data-Structure Name="Message">

<Lookup Name="InternatCodeAlternateID"/>

<Lookup Name="MessageCode">ADT</Lookup>
<Lookup Name="MessageReceivingApp">PI</Lookup>

<Lookup Name="MessageReceivingFacility">MDM</Lookup>
<Lookup Name="MessageSendingApp">SystemA</Lookup>

<Lookup Name="MessageSendingFacility">HosA</Lookup>
<Lookup Name="MessageSendingFacilityUniversalID"/>
<Lookup Name="MessageSendingFacilityUniversalIDType"/>
<Lookup Name="MessageVersion">2.3.1</Lookup>

<Lookup Name="Standard">HL7</Lookup>

<Lookup Name="TriggerEvent">A01</Lookup>

<Property Name="AcceptAckType">AL</Property>

<Property Name="AlternateCharacterSetSchema"/>
<Property Name="AppAckType">NE</Property>

<Property Name="MessageCode">ADT</Property>

<Property Name="MessageControlID">000000 CTLID 2008090801529</Property>
<Property Name="MessageDate">2008090801529</Property>

<Property Name="MessageDateTimePrecision"/>

<Property Name="MessageEncodingCharacters">"~\g&</Property>

<Property Name="MessageVersion">2.3.1</Property>
<Property Name="ProcessingID">P</Property>

Page 20 of 25

<Property Name="ReleaseCharacter">0x5c</Property>
<Property Name="RepeatingSeparator">0x7e</Property>
<Property Name="SegmentDelimiter">0x0d</Property>

<Property Name="Standard">HL7</Property>
<Property Name="SubcomponentDelimiter">0x26</Property>
<Property Name="SubelementDelimiter">0x5e</Property>
<Property Name="TriggerEvent">A0l</Property>
</Data-Structure>
</Internal-Properties>
<MSH>
<MSH.1>|</MSH.1>
<MSH.2>"~\& </MSH.2>
<MSH.3>
<HD.1>SystemA</HD.1>
</MSH.3>
<MSH. 4>

</ADT >

The Internal-Properties structure, populated by the B2B infrastructure, carries information gleaned
from the inbound message, including selected fields from the MSH segment and from the MLLP
configuration. Values of these properties can be used in message processing, if needed, though the
MSH segment is available as part of the message anyway and the MLLP configuration seems
unlikely to be of use in message processing. Be it as it may, these properties are there.

Please note the attribute “Standard”, highlighted in bold in the sample, with the value of “HL7”.
This attribute is mandatory in an outbound message to B2B.

If the XML Schema document was modified by addition of optional elements outside the actual
HL7 structure the B2B-generated XML instance document, which would not contain these element,
would still be valid.

On the outbound side, messages conforming to this schema may be handed over by the SOA Suite
composite to the B2B infrastructure for conversion to HL7 v2 Delimited format and sending on to
the partner. It should be pointed out that the structure to be handed over to B2B does not have to
have the Internal-Properties tree. The message may well be a standard XML version of a HL7 v2
message, conforming to the generally available HL7 v2 XML Schemas. Whether the
Internal_Properties structure is present or absent the B2B processes the message the same way and
requires certain B2B-related properties to be configured. This was discussed in earlier blog articles,
for example the “Oracle SOA Suite 11g HL7 Outbound Example”, at
http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example.

The one departure from this is the mandatory attribute “Standard”, which must be present, valued
and containing the literal string “HL7”, as noted a couple of paragraphs ago. If one uses the Oracle
B2B Document Editor-generated XSD this attribute is present and can be populated. If one uses
standard HL7 v2 XML Schemas the specific schema document must be modifed through addition
of this attribute and it must be populated at runtime before an MXL instance document is passed to
the B2B infrastructure.

This “insensitivity” of the Oracle B2B HL7 infrastructure the the presence or absence of optional
elements outside the HL7 structure makes it possible to construct an Enveloping Message, with
metadata injected into the message without invalidating it.

Let's consider a sample message shown below.

<?xml version="1.0" encoding="UTF-8" 2>
<nsl:ADT
xmlns:nsl="NS 6E95A90E4BAF43ABOFIA3CBB863278FC20070423183755"
Type=""
XDataVersion="2.0"
Standard="HL7"
Version="2.3.1"

Page 21 of 25

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example

GUID="{DBFA5449-DC41-4969-8833-089882691395}"

CreatedBy="XEngine 2114"

CreatedDate="2010-10-08T14:11:53"

p=""

Name=""

xmlns="NS 6E95A90E4BAF43ABOF9A3CBB863278FC20070423183755">
<nsl:CMMMetaData

CMMVersion="1.2"
CreatedDate="2010-10-08T14:11:53+11:00"
ID="33353037373937393733313635333635">
<nsl:RouteDelimiter>,</nsl:RouteDelimiter>
<nsl:RouteHops>CMM 02 Mediator,</nsl:RouteHops>
<nsl:RouteArrivals>2010-10-08T14:11:53+411:00,</nsl:RouteArrivals>
</nsl:CMMMetaData>

<Internal-Properties xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Data-Structure Name="Message">
<Lookup Name="InternatCodeAlternateID"/>

<Lookup Name="TriggerEvent">A01l</Lookup>
<Property Name="AcceptAckType">AL</Property>

<Property Name="TriggerEvent">A01l</Property>
</Data-Structure>
</Internal-Properties>
<MSH xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<MSH.1>|</MSH.1>
<MSH.2>"~\& </MSH.2>
<MSH.3>
<HD.1>SystemA</HD.1>
</MSH.3>
<MSH. 4>
<HD.1>HosA</HD.1>
</MSH.4>

</PV1.44>

</PV1>
</nsl:ADT >

This sample message carried a structure, CMMMetaData, which is not generated by the B2B
infrastructure for inbound messages and which is ignored by the B2B infrastructure for the
outbound messages. The name and the structure of CMMMetaData is completely arbitrary.

Fragment of the original XSD, generated by the B2B Document Editor is shown below.

Page 22 of 25

<?7xml version="1.0" encoding="UTF-8"2>
2 <!-- Automa lly generated by EDIFECS SpecBuilder (http://www.edifecs.com)
3 [Fl<xsd:schema xmlns=' 'N5_6ES5A90E4BAF43ABIF9A3CBBE63278FC20070423183755" targetNamespace=

"NS 6E95A90E4BAF43ABIF9A3CBBE63278FC20070423183755" xmlns:xad="http://www.w3.0rg/2001/XMLSchema" -
"gualified">

4 H <xsd:annotation>

<xsd:element name="ADT " type="ADT_.CONTENT"/>

= <xsd:complexIype name="ADT .CONTENT">

|t
]

[T =t

[+ <xsd:annotaticn>
16 [H <xsd: sequence>
7 <xsd:element name="Internal-Properties" type="Internal-Properties" minCccura="0"/>
<xsad: " type="MSH.CONTENT" maxCccu
19 <xsd:element name="EVN" type="EVN.CONTENT" maxCc
20 <xsd: " type="PID.CONTENT" max
1 <xsd:element name=" " type="PV1.CONTENT" maxCc
22 <xsd:element name="PID 1"
3 <xsd:element name="PV1i_1" t

<xsd:element name="Z01" type=
5 r </x=d:sequence>
<xsd:attribute name="Type" fixed="Message" type

ype="xsd:string"/>
<xsd:attribute name="XDataVersion" fixed="2.0" type="xsd:string"/>
Ty

<xsd:attribute n "Standard" fixed="HL7" use="re¢uired" type="xsd:string"/>
"Version" fixed="2.3.1"
"GUID" type="GUID"/>

"CreatedBy" type="xsd:string"/>

<xsd:attribute r ype="xsd:string"/>
<xsd:attribute

<xsd:attribute n

AR R RN NN
T ¥ P

u oW N B O W o

<xsd:attribute r "CreatedDate" type="xsd:string"/>

<xsd:attribute "ID" type="xsd:string"/>

<xsd:attribute name="Name" fixed="ADT/ACK - Admit / visit notification" type="xsd:string"/>
</xsd:complexType>

IIIustratlon 24: B2B DOcument Editor-generated XSD - fragment

One can easily add an arbitrarily structured element to carry the Canonical Message Model-related
metadata. One can also exploit this to add other arbitrary metadata structures, for example capturing
the route which the message follows through the SOA infrastructure, capturing timings and
performance collection-related data, and whatever else the architecture calls for, and what is not a
part of the message.

An XSD fragment, with CMMMetaData structure corresponding to the data shown earlier, might
look like that in the figure below.

Page 23 of 25

<?xml version="1.0" encoding="UTF-8"?2>

2 <!-- Automatically generated by EDIFECS SpecBuilder (http://www.edifecs.com) -->
3 [H<xsd:schema xmlns="NS 6E95A90E4BAF43ABIF9A3CBB863278FC20070423183755" targetNamespace=
"NS_6E95A90E4BAF43ABIF9A3CBB863278FC20070423183755" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" vers
"gqualified">
4 <xsd:annotation>
10 <xsd:element name="ADT " type="ADT_.CONTENT"/>
11 <xsd:complexType name="ADT .CONTENT">
12 <xsd:annotation>
16 <xsd:seqguence>
17 <xsd:element name="CMMMetaData" minCccurs="0">
i8 <xsd:complexType>
19 <xsd:sequence>
20 <xsd:element name="RouteDelimiter" type="xsd:string"/>
21 <xsd:element name="RouteHops" type="xsd:string"/>
22 <xsd:element name="RouteArrivals" type="xsd:string"/>
23 B </xsd:sequence>
24 <xsd:attribute name="CMMVersion" fixed="1.2" use="required" type="xsd:string"/>
25 <xsd:attribute name="CreatedDate" type="xsd:string"/>
26 <xsd:attribute name="ID" type="xsd:string"/>
27 B </xsd:complexType>
28 5 </xsd:element>
29 <xsd:element name="Internal-Properties" type="Internal-Properties”" minOccurs="0"/>
30 <xsd:element name="MSH" type="MSH.CONTENT" maxOccurs="2"/>
31 <xsd:element name="EVN" type="EVN.CONTENT" maxOccurs="2"/>
32 <xsd:element name="PID" type="PID.CONTENT" maxOccurs="2"/>
33 <xsd:element name="PV1" type="PV1.CONTENT" maxOccurs="2"/>
34 <xsd:element name="PID 1" type="PID.CONTENT" minOccurs="0" maxOccurs="2"/>
35 <xsd:element name="PV1 1" type="PV1.CONTENT" minOccurs="0" maxOccurs="2"/>
36 <xsd:element name="Z01" type="Z01l.CONTENT" minOccurs="0" maxCccurs="2"/>
37 u </xsd:sequence>
8 <xsd:attribute name="Type" fixed="Message" type="xsd:string"/>
39 <xsd:attribute name="XDataVersion" fixed="2.0" type="xsd:string"/>
40 <xsd:attribute name="Standard" fixed="HL7" use="required" type="xsd:string"/>
41 <xsd:attribute name="Version" fixed="2.3.1" type="xsd:string"/>
42 <xsd:attribute name="GUID" type="GUID"/>
43 <xsd:attribute name="CreatedBy" type="xsd:string"/>
44 <xsd:attribute name="CreatedDate" type="xsd:string"/>
45 <xsd:attribute name="ID" type="xsd:string"/>
46 <xsd:attribute name="Name" fixed="ADT/ACK - Admit / visit notification" type="xsd:string"/>
47 I </xsd:complexType>
|

Illustration 25: CMMMetaData structure added to the XSD

As mentioned, the B2B inbound and outbound don't care whether this structure is present or absent.
Because of this we can use it to carry arbitrary metadata as part of the Enveloping Message and use
it for CMM tracking and any other purposes required by the enterprise architecture.

Page 24 of 25

Summary

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple
destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use
exactly the same HL7 message structures in terms of versions, optional/mandatory segments,
extension Z segments, and so on. A sensible approach to dealing with these kinds of issues, and a
key component of the HL7 Enterprise Architecture, is the so called Canonical (or Common)
Message Model (CMM). The CMM works hand-in-glove with the enterprise architecture in which
transformation to/from the CMM is performed at the edges of the integration domain.

This article discussed major considerations and worked through the mechanics of deriving a
Canonical Message Model for a fictitious Healthcare Enterprise and implementing it using the
Oracle SOA Suite 11g HL7 tooling as an example.

The article also discussed and illustrated a mechanism for injecting arbitrary metadata into the
canonical message, generated by the B2B Document Editor, in such a way that it is ignored by the
Edge-dwelling B2B infrastructure but is significant to the SOA infrastructure.

The externalised Canonical Message Model forms, the ECS and the XSD flies are now available for
use in the Oracle SOA Suite B2B HL7-based solutions.

Page 25 of 25

