
Page 1 of 25

Healthcare Enterprise – IT Architecture Building Blocks

Canonical Message Model for a HL7 Enterprise
Michael Czapski (michael@czapski.id.au), October 2010, Rel. 1.0.1

Table of Contents

Abstract .. 1

Introduction .. 2

Modelling the Canonical Message ... 5

Building the CMM Structure ... 7

Customise the CMM .. 19

Add CMM Metadata .. 20

Summary .. 25

Abstract

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple

destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use

exactly the same HL7 message structures in terms of versions, optional/mandatory segments,

extension Z segments, and so on. A sensible approach to dealing with these kinds of issues, and a

key component of the HL7 Enterprise Architecture, is the so called Canonical (or Common)

Message Model (CMM). The CMM works hand-in-glove with the enterprise architecture in which

transformation to/from the CMM is performed at the edges of the integration domain. This article

discusses major considerations and works through the mechanics of deriving a Canonical Message

Model for a fictitious Healthcare Enterprise and implementing it using the Oracle SOA Suite 11g

HL7 tooling as an example. The article will also discuss and illustrate a mechanism for injecting

arbitrary metadata into the canonical message, generated by the B2B Document Editor, in such a

way that it is ignored by the Edge-dwelling B2B infrastructure but is significant to the SOA

infrastructure.

mailto:michael@czapski.id.au

Page 2 of 25

Introduction

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple

destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use

exactly the same HL7 message structures in terms of versions, optional/mandatory segments,

extension Z segments, and so on. These differences necessitate transformation of messages from/to

formats used by source/target systems, in extreme cases leading to the virtual point-to-point

integration model, negating most benefits of having a modern integration infrastructure.

A sensible approach to dealing with these kinds of issues, and a key component of the Enterprise

Architecture, is the so called Common (or Canonical) Message Model (CMM).

The Canonical Message Model works hand-in-glove with the enterprise architecture in which

transformation to/from the CMM is performed at the edges of the integration domain. This

ultimately leads to the reduction in the number of transformations to the number of external touch

points. This also tightly couples endpoints and their transformations, localising change domains and

insulating the rest of the enterprise integration infrastructure from the changes in endpoints.

Illustration 1: Point-to-point message transformation

Page 3 of 25

As a consequence of this design the integration solutions need only be concerned with message

routing.

To accommodate all possible data of interest to the enterprise the CMM will have to be constructed

in such a way that it is inclusive of all data.

It is likely that an enterprise will have multiple business domains, for example Patient

Administration, Patient Billing, Catering, and so on, which while dealing with patient information

in some manner are so different in nature that it is impractical to attempt to derive a canonical

message model that would include data from all. This may lead to multiple canonical message

models, one for each business domain. This is a valid approach and likely to be more robust then

attempting to derive a single model for all business domains in the enterprise.

No enterprise remains unchanged over time. It is inevitable that any canonical model will need to

evolve to accommodate changes. This evolution will need to be managed. The best approach to

managing change will be to design the CMM in such a way that it can be extended and that

extensions can be identified.

Managing changes to the model over time will require design of the model data structures so that

they can only be extended “at the end of the structure”. This is the kind of policy the HL7 v2.x

standard uses. Just what “at the end of the structure” means depends on the message structures in

question. In the case of HL7 v2.x, for example, this would be at the end of message segments, at the

end of components, etc..

A correctly designed transformation will not break if it has more data in the message then it has

been designed to deal with. This statement must be qualified. Depending on the choice of

technologies that are used to represent message structure, validate message structure and implement

transformation support, there my arise an issue of tight coupling between technologies which

eliminates flexibility.

Technologies that require implicit or explicit validation of the message structure, by for example

parsing messages into a build-time fixed representation, will break when presented a non-compliant

message, as a new variant of the canonical message will be. This kind of issue will arise for

Illustration 2: Using Canonical Message Model

Page 4 of 25

example when using Java CAPS Object Type Definitions or any XML-based technologies with

Schema validation enabled. In the former case one could add “step-down” transformation proxies to

transform new common message variants to old common message formats at the endpoints which

are not upgraded to deal with new variants. In the later case XML schema validation might have to

be disabled until transformations are upgraded to deal with, and validate, new message variants.

Implicit in support for evolution of canonical message model is the notion of versioning and,

consequential identification of structure versions. A version system, recognised by the

transformation infrastructure, would address the issue of identification of different versions if

version identifiers were an integral part of the model and if each message carried meta data

identifying structure version. This in turn leads to the consideration of the enveloped message

pattern as the means of adding appropriate meta data or to adoption of messaging technologies

which are transparently extensible, for example XML, or both.

For the remainder of this article let's assume that the following architectural decisions were made:

1. A canonical message model will be developed to support all HL7-capable clinical message

sources and destinations in the enterprise

2. The canonical message model will be based on the HL7 version 2.3.1 standard

3. The canonical message model will include all HL7 v2.3.1 segments that occur in any of the

messages provided by source systems or required by destination systems

4. The canonical message model will use the XML representation for HL7 v2.3.1 messages

5. The XML Schema for the canonical message model will use an attribute with the name

“CMMVersion” on the root node of the structure to identify the version canonical message

model to the message uses.

6. Transformation between endpoint-specific HL7 messages and canonical messages will take

place at the edge of the integration domain (at the endpoint)

For the remainder of this article let's assume that the following major technical decisions were

made:

1. Oracle SOA Suite 11g will be used to implement the canonical message model and the

enterprise integration infrastructure

2. Oracle SOA Suite B2B HL7 functionality will be used to integrated source and destination

systems and transform HL7 v2.x delimited messages into their XML equivalents

3. Mediator components will be used to transform HL7 v2.x XML messages into canonical

message model messages, enriching each with the CMMVersion attribute and its value

Implied technical decisions, exploiting capabilities of the SOA Suite, are:

1. Oracle SOA Suite B2B Document Editor will be used to develop and maintain the common

message model artefacts

2. Oracle SOA Suite B2B runtime will be configured to:

i. Perform transparent transformation between HL7 v2.x delimited and their

corresponding HL7 v2.x XML formats

ii. Handle functional acknowledgements

iii. Handle payload persistence and message tracking

iv. Handle KPI collection and display for all HL7 endpoints

v. Handle multiplexing of multiple senders to a single listener

vi. Handle broadcast of a single message to multiple receivers

Page 5 of 25

Modelling the Canonical Message

Let's assume that two systems in the enterprise use the following HL7 messages:

Type and Trigger HL7 Version Description

ADT A01 V2.3.1 Admin/Visit Notification

ADT A03 V2.3.1 Discharge/End Visit

ADT A08 V2.3.1 Update Patient Information

ADT A17 V2.3.1 Swap Patients

Table 1 HL7 v2.x Delimited messages in the Enterprise

There might be (and very likely will be) many more systems and many more messages. This

example illustrates a method which will hold for any number of systems and messages.

With the objective of deriving a single message structure that will include all segments in the

corresponding HL7 v2.3.1 messages let's prepare a table with Message and Event Types as columns

and HL7 v 2.3.1 segments as rows, with assistive symbology where "?" Means 0 or 1 (optional), "*"

means 0 or more (optional repeating) and "-" means no such segment in this event type. No special

symbol means required.

 A01 A03 A08 A17

1 MSH MSH MSH MSH

2 EVN EVN EVN EVN

3 PID PID PID PID

4 PD1? PD1? PD1? PD1?

5 NK1* - NK1* -

6 PV1 PV1 PV1 PV1

7 PV2? PV2? PV2? PV2?

8 DB1* DB1* DB1* DB1*

9 OBX* - OBX* OBX*

10 AL1* - AL1* -

11 DG1* DG1* DG1* -

12 DRG? DRG? DRG? -

Group PROCEDURE*

13A PR1 PR1 PR1 -

13B ROL* ROL* ROL* -

13C GT1* - GT1* -

Group INSURANCE*

14A IN1 - IN1 -

14B IN2? - IN2? -

14C IN3* - IN3* -

15 ACC? - ACC? -

16 UB1? - UB1? -

17 UB2? - UB2? -

18 - OBX* - -

19 - - - PID

20 - - - PD1?

21 - - - PV1

22 - - - PV2?

23 - - - DB1*

24 - - - OBX*

25 - Z01? Z01? -

Table 2: Segment-level comparison

Inspection of columns A01 and A08 reveals that the same segments are used in both and that they

are a large superset of the segments used in other event types. To construct a structure that would

cater for A01, A08 and A03 requires addition of an optional, repeating OBX segment (row 18). To

construct a structure that would also cater for A17 would require addition of PID, PD1, PV1, PV2,

DB1 and OBX segments. The PID ad PV1 segments, which in A17 are required, would have to be

Page 6 of 25

made optional to allow A01, A03 and A08 to be correctly parsed. This would mean that a

malformed A17 with a missing PID or PV1 segment would be accepted as valid. We are prepared to

live with that for the sake of the benefits of a canonical message model.

One of our systems sends messages with a custom Z01 segment. This segment's structure is shown

in Table 3.

Sequence Length Data Type Element Name

1 1 IS Original Gender

2 1 IS Current Gender

3 26 TS Date of Change

4 1 IS Legal Gender

Table 3: Z01 Segment composition

The segment is optional, since not very many people change their gender, but all components are

required, since when they do all the required pieces of information are known.

Knowledge of our systems tells us that no system ever sends segments other then MSH, EVN, PID

and PV1, and Z01. This is a grossly simplifying statement. It is unlikely that this will be the case in

real systems but for the sake of brevity in this article it is a reasonable simplification. The method

will hold no matter which and how many segments are included. It is likely, in fact, that an

enterprise would include all optional segments in the canonical message model if for no other

reason then to ensure that a system that one day gets upgraded, and starts including one of the

optional segments, does not break the model.

With this simplification, however, our message will consist of HL7 segments listed in Table 3.

CMM

MSH

EVN

PID

PV1

PID?

PV1?

Z01?

Table 4: Canonical Message Model HL7 Segments

Analysis aimed at deriving a canonical message model would then proceed deeper to inspect

components, subcomponents and fields, and determine whether and what might need to be done to

restrict, relax or modify rules that might apply to them, and include or exclude any in/from the

model. We will stop at the segment level for the purpose of this article.

Page 7 of 25

Building the CMM Structure

Since the tooling we decided to use is the Oracle SOA Suite 11g we will use the Oracle B2B

Document Editor to build the CMM structure and produce the external forms of it for use in our

integration work.

In our example A01 and A08 both have the same set of segments, rows 1 through 17 in Table 2. We

will need to add an optional repeating OBX segment to account for the requirements of A03 (row

18 in Table 2). This will address standard structures for A01, A03 and A08. To account for the

requirement of the A17 we need to add PID, PD1, PV1, PV2, DB1 and OBX segments, shown in

rows 19 through 24 in Table 2. Finally, we will add the custom Z01 segment.

Let's start the B2B Document Editor: Start → Programs → Oracle → Oracle B2B.

Click New Document. Expand HL7 → 2.3.1 → Event A01: ADT/ACK and select ADT: ADT

message node.

The Spec / Guideline has all the segments needed for A01 (because this is A01) and A08 (because

both have the same structure).

Illustration 3: Choose standard ADT A01 message to modify

Page 8 of 25

Let's now add an optional, repeating OBX segment to the end of the structure (append) to

accommodate the requirement of the A03 structure.

Right-click an OBX segment in the A01 message and choose Copy.

Illustration 4: Standard A01 structure

Page 9 of 25

Right-click on the last node of the structure (UB2) and choose “Paste”.

Now the message reflects the requirements of the standard A01, A03 and A08 messages. Using the

same copy/paste process let's append PID, PD1, PV1, PV2, DB1 and OBX segments.

Illustration 5: Copy OBX segment

Illustration 6: Append OBX to the end of the structure

Page 10 of 25

The new segments only occur in A17s so let's make sure all are optional. The copied PID and PV1

are required. Select PID segment and change Required to Optional and Must Use to Used.

Illustration 7: Additional segments for A17

Page 11 of 25

Repeat the process for the second PV1.

Let's now create the Z01 segment.

Right-click the last segment in the structure (second OBX). Choose Insert Node → Insert →

Segment.

Illustration 8: Make the second PID Optional and Used

Page 12 of 25

Choose “Create a new node” and click Next.

Enter ID: Z01, Name: Z01 and Purpose and click Finish.

Illustration 9: Insert Segment

Illustration 10: Create a new node

Page 13 of 25

Change Requirement and User Option to Optional and Used. This makes the segment optional.

Recall the structure of the Z01 segment.

Sequence Length Data Type Element Name

1 1 IS Original Gender

2 1 IS Current Gender

3 26 TS Date of Change

4 1 IS Legal Gender

We will add these components one at a time.

Right-click on the name of the segment and choose Insert Child Node → Field.

Illustration 11: Configure segment details

Illustration 12: Make this segment optional

Page 14 of 25

Accept “create a new node” and click Next.

Provide values for Name, Purpose, Data Type (from a drop down menu), ID and Length and click

Finish.

Illustration 13: Insert field as a child of the segment

Illustration 14: Create a new node

Page 15 of 25

Right-click on the name of the new field and choose Insert Node → Field.

Provide values for Name: Current Gender, Purpose: Current Gender, Data Type: IS (from drop

down menu), ID: CurrentGender and Length: 1. Click Finish.

Illustration 15: Defined Original Gender field

Illustration 16: Add another field

Page 16 of 25

Repeat the process for the remaining two fields – Date of Change and Legal Gender.

Note that by default new fields are Required and Must Use. Modify as needed for your fields.

Save the structure.

This structure/guideline/spec is a customisation of the ADT A01 structure. The B2B Document

Editor and associated tooling can be used to test how sample data fits this structure and validate

data against it.

Illustration 17: Configure Current Gender field

Illustration 18: Completed structure

Page 17 of 25

We can use a sample ADT A01 to see whether the data is valid according to the guideline. If data is

not valid we can either modify data until it is valid or modify the guideline until the data is valid.

Since we create the custom structure starting with the ADT A01 other message types (trigger

events) will fail trigger event validation even if all other spects of message validation succeed.

Whether this is likely to be an issue depends on matters which are not related to the structure itself.

Once the structure is ready we can save the ECS file and export the XSD file. The former is used in

Oracle SOA Suite B2B for message validation (optional) and conversion between HL7 v2

Delimited and XML (in either direction). The later is used for integration between the Oracle SOA

Suite B2B and other parts of the SOA Suite.

Pull down the File menu and choose Export.

Choose Oracle B2B 2.0 and click Next.

Illustration 19: Launch Analyzer

Illustration 20: Trigger Export Wizard

Page 18 of 25

Check “Save guideline before exporting”, change the name to an appropriate name and click Next.

Two new files will appear in the file system – CMM_v1.0.ecs (EDIFECS Guideline) and

CMM_v1.0xsd (XML Schema Document).

Illustration 21: Coose to export to Oracle format

Illustration 22: Name the file and choose to save guideline

Page 19 of 25

Customise the CMM

The canonical message model structure which we created includes all segments from the A01/A08

message and all extra segments from 17 and the Z segment. We stated earlier that our messages will

only ever use MSH, EVN, PID, PV1 and Z01 segments. Let's delete all other segments and

save/export the structure as CMM_v1.1.

Open the CMM_v1.0.ecs file and delete all segments except the ones mentioned, by right-clicking

the segment and choosing Delete. Once done save and export the modified files as CMM_v1.1.

While at it, click the root node of the structure and clear the Event field to eliminate Event Type

dependency.

Illustration 23: Minimalist CMM

Page 20 of 25

Add CMM Metadata

We discussed the need to version the canonical message model and include metadata which will

allow integration components to deal with changes over time.

An Enveloped Message EAI Pattern would call for a new message structure in which the original

message would be a payload node. All other nodes would be used for metadata of various uses.

An Enveloping Message Pattern, which I just invented for this article :-), would inject metadata into

the original message.

Of the two external forms of the canonical message structure, ecs and xsd, which we created, the

ecs file is used by the edge infrastructure to convert from HL7 v2 Delimited to XML or the other

way around, depending on whether the messages are inbound or outbound. This may make the ecs

form of the structure tightly bound to the specific endpoint. The endpoint can only ever use one

version of the canonical message at a time. The version, if embedded in the name of the ecs file, is

reflected in the configuration of the endpoint.

The xml schema version of the ecs file is generated during the export from the B2B Document

Editor.

On the inbound side, messages conforming to this schema are handed by the inbound B2B channel

to the appropriate SOA Suite composite for further processing. This structure includes both the

XML version of the HL7 v2 Delimited message, for example ADT A01, and B2B-generated

metadata. The sample, abbreviated XML message for the canonical message model we were

developing so far, is shown below.

<ADT_

 xmlns="NS_6E95A90E4BAF43AB9F9A3CBB863278FC20070423183755"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 XDataVersion="2.0"

 Standard="HL7"

 Version="2.3.1"

 CreatedDate="2010-10-08T14:11:53"

 CreatedBy="XEngine_2114"

 GUID="{DBFA5449-DC41-4969-8833-089882691395}">

 <Internal-Properties>

 <Data-Structure Name="Message">

 <Lookup Name="InternatCodeAlternateID"/>

...

 <Lookup Name="MessageCode">ADT</Lookup>

 <Lookup Name="MessageReceivingApp">PI</Lookup>

...

 <Lookup Name="MessageReceivingFacility">MDM</Lookup>

...

 <Lookup Name="MessageSendingApp">SystemA</Lookup>

...

 <Lookup Name="MessageSendingFacility">HosA</Lookup>

 <Lookup Name="MessageSendingFacilityUniversalID"/>

 <Lookup Name="MessageSendingFacilityUniversalIDType"/>

 <Lookup Name="MessageVersion">2.3.1</Lookup>

 <Lookup Name="Standard">HL7</Lookup>

 <Lookup Name="TriggerEvent">A01</Lookup>

 <Property Name="AcceptAckType">AL</Property>

 <Property Name="AlternateCharacterSetSchema"/>

 <Property Name="AppAckType">NE</Property>

...

 <Property Name="MessageCode">ADT</Property>

 <Property Name="MessageControlID">000000_CTLID_2008090801529</Property>

 <Property Name="MessageDate">2008090801529</Property>

 <Property Name="MessageDateTimePrecision"/>

 <Property Name="MessageEncodingCharacters">^~\&</Property>

...

 <Property Name="MessageVersion">2.3.1</Property>

 <Property Name="ProcessingID">P</Property>

...

Page 21 of 25

 <Property Name="ReleaseCharacter">0x5c</Property>

 <Property Name="RepeatingSeparator">0x7e</Property>

 <Property Name="SegmentDelimiter">0x0d</Property>

...

 <Property Name="Standard">HL7</Property>

 <Property Name="SubcomponentDelimiter">0x26</Property>

 <Property Name="SubelementDelimiter">0x5e</Property>

 <Property Name="TriggerEvent">A01</Property>

 </Data-Structure>

 </Internal-Properties>

 <MSH>

 <MSH.1>|</MSH.1>

 <MSH.2>^~\&</MSH.2>

 <MSH.3>

 <HD.1>SystemA</HD.1>

 </MSH.3>

 <MSH.4>

...

</ADT_>

The Internal-Properties structure, populated by the B2B infrastructure, carries information gleaned

from the inbound message, including selected fields from the MSH segment and from the MLLP

configuration. Values of these properties can be used in message processing, if needed, though the

MSH segment is available as part of the message anyway and the MLLP configuration seems

unlikely to be of use in message processing. Be it as it may, these properties are there.

Please note the attribute “Standard”, highlighted in bold in the sample, with the value of “HL7”.

This attribute is mandatory in an outbound message to B2B.

If the XML Schema document was modified by addition of optional elements outside the actual

HL7 structure the B2B-generated XML instance document, which would not contain these element,

would still be valid.

On the outbound side, messages conforming to this schema may be handed over by the SOA Suite

composite to the B2B infrastructure for conversion to HL7 v2 Delimited format and sending on to

the partner. It should be pointed out that the structure to be handed over to B2B does not have to

have the Internal-Properties tree. The message may well be a standard XML version of a HL7 v2

message, conforming to the generally available HL7 v2 XML Schemas. Whether the

Internal_Properties structure is present or absent the B2B processes the message the same way and

requires certain B2B-related properties to be configured. This was discussed in earlier blog articles,

for example the “Oracle SOA Suite 11g HL7 Outbound Example”, at

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example.

The one departure from this is the mandatory attribute “Standard”, which must be present, valued

and containing the literal string “HL7”, as noted a couple of paragraphs ago. If one uses the Oracle

B2B Document Editor-generated XSD this attribute is present and can be populated. If one uses

standard HL7 v2 XML Schemas the specific schema document must be modifed through addition

of this attribute and it must be populated at runtime before an MXL instance document is passed to

the B2B infrastructure.

This “insensitivity” of the Oracle B2B HL7 infrastructure the the presence or absence of optional

elements outside the HL7 structure makes it possible to construct an Enveloping Message, with

metadata injected into the message without invalidating it.

Let's consider a sample message shown below.

<?xml version="1.0" encoding="UTF-8" ?>

<ns1:ADT_

 xmlns:ns1="NS_6E95A90E4BAF43AB9F9A3CBB863278FC20070423183755"

 Type=""

 XDataVersion="2.0"

 Standard="HL7"

 Version="2.3.1"

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example

Page 22 of 25

 GUID="{DBFA5449-DC41-4969-8833-089882691395}"

 CreatedBy="XEngine_2114"

 CreatedDate="2010-10-08T14:11:53"

 ID=""

 Name=""

 xmlns="NS_6E95A90E4BAF43AB9F9A3CBB863278FC20070423183755">

 <ns1:CMMMetaData

 CMMVersion="1.2"

 CreatedDate="2010-10-08T14:11:53+11:00"

 ID="33353037373937393733313635333635">

 <ns1:RouteDelimiter>,</ns1:RouteDelimiter>

 <ns1:RouteHops>CMM_02_Mediator,</ns1:RouteHops>

 <ns1:RouteArrivals>2010-10-08T14:11:53+11:00,</ns1:RouteArrivals>

 </ns1:CMMMetaData>
 <Internal-Properties xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Data-Structure Name="Message">

 <Lookup Name="InternatCodeAlternateID"/>

...

 <Lookup Name="TriggerEvent">A01</Lookup>

 <Property Name="AcceptAckType">AL</Property>

...

 <Property Name="TriggerEvent">A01</Property>

 </Data-Structure>

 </Internal-Properties>

 <MSH xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <MSH.1>|</MSH.1>

 <MSH.2>^~\&</MSH.2>

 <MSH.3>

 <HD.1>SystemA</HD.1>

 </MSH.3>

 <MSH.4>

 <HD.1>HosA</HD.1>

 </MSH.4>

...

 </PV1.44>

 </PV1>

</ns1:ADT_>

This sample message carried a structure, CMMMetaData, which is not generated by the B2B

infrastructure for inbound messages and which is ignored by the B2B infrastructure for the

outbound messages. The name and the structure of CMMMetaData is completely arbitrary.

Fragment of the original XSD, generated by the B2B Document Editor is shown below.

Page 23 of 25

One can easily add an arbitrarily structured element to carry the Canonical Message Model-related

metadata. One can also exploit this to add other arbitrary metadata structures, for example capturing

the route which the message follows through the SOA infrastructure, capturing timings and

performance collection-related data, and whatever else the architecture calls for, and what is not a

part of the message.

An XSD fragment, with CMMMetaData structure corresponding to the data shown earlier, might

look like that in the figure below.

Illustration 24: B2B DOcument Editor-generated XSD - fragment

Page 24 of 25

As mentioned, the B2B inbound and outbound don't care whether this structure is present or absent.

Because of this we can use it to carry arbitrary metadata as part of the Enveloping Message and use

it for CMM tracking and any other purposes required by the enterprise architecture.

Illustration 25: CMMMetaData structure added to the XSD

Page 25 of 25

Summary

In any but the simplest of HL7 messaging environments there will be multiple sources and multiple

destinations of HL7 messages. It is very unlikely that all, or even a majority of these, will use

exactly the same HL7 message structures in terms of versions, optional/mandatory segments,

extension Z segments, and so on. A sensible approach to dealing with these kinds of issues, and a

key component of the HL7 Enterprise Architecture, is the so called Canonical (or Common)

Message Model (CMM). The CMM works hand-in-glove with the enterprise architecture in which

transformation to/from the CMM is performed at the edges of the integration domain.

This article discussed major considerations and worked through the mechanics of deriving a

Canonical Message Model for a fictitious Healthcare Enterprise and implementing it using the

Oracle SOA Suite 11g HL7 tooling as an example.

The article also discussed and illustrated a mechanism for injecting arbitrary metadata into the

canonical message, generated by the B2B Document Editor, in such a way that it is ignored by the

Edge-dwelling B2B infrastructure but is significant to the SOA infrastructure.

The externalised Canonical Message Model forms, the ECS and the XSD flies are now available for

use in the Oracle SOA Suite B2B HL7-based solutions.

