
 

Page 1 

Migrating Java CAPS 5/6 Assets to Oracle SOA Suite 11g 

HL7 JCD to Spring Component Migration 
michal@czapski.id.au, October 2010, Rev 1.3 

Table of Contents 
Introduction .......................................................................................................................................... 1 

Prerequisites and Assumptions............................................................................................................. 2 

Migration Process ................................................................................................................................ 2 

Anatomy of a Java CAPS HL7 Solution .............................................................................................. 3 

Analysing HL7 JCD Solution .......................................................................................................... 4 

Analysing HL7 processing JCD ....................................................................................................... 5 

Analysing Enterprise Archive .......................................................................................................... 6 

Building and exercising a Stand-alone Java Application ............................................................... 10 

Dependency Issues ......................................................................................................................... 22 

Basic SOA Suite Solution with Spring Component ........................................................................... 22 

Stage I: Basic File to File Mediator project ................................................................................... 23 

Stage II: Adding Spring Component with JCD code ..................................................................... 34 

SOA Suite Solution with B2B and Spring Component...................................................................... 47 

Configure Inbound HL7 Partnership Agreement ........................................................................... 48 

Configure Outbound HL7 Partnership Agreement ........................................................................ 49 

Add B2B HL7 Support to the Mediator Solution .......................................................................... 52 

Summary ............................................................................................................................................ 62 

Appendix - HL702Transformer JCD Source ..................................................................................... 64 

 

Introduction 

This article is of potential interest to these Sun/SeeBeyond customers who have an investment in 

moderate and large Java Collaboration Definition-based transformation and mapping rules, and who 

are looking for ways to reuse as much as possible of the Java code involved, when migrating to the 

Oracle SOA Suite. The example developed in this article comes from the healthcare domain and 

uses the HL7 OTDs (Object Type Definitions). This is a deliberate choice because all but the most 

trivial HL7 transformations will involve hundreds of lines of Java code, therefore are a good 

candidates for migrating to the SOA Suite Spring Component as means of preserving the code and 

the effort invested in developing it. This does not make the method domain-specific. On the 

contrary, the method is applicable to all other domains where JCDs with significant transformation 

and mapping rules content are used. 

Discussion in this article addresses a subset of technologies available in the Java CAPS and in the 

SOA Suite. Specifically, the Java Collaboration Definitions supported in Java CAPS 5.x and in Java 

CAPS 6/Repository, and the Spring Component supported in the SOA Suite 11g R1 PS2. Both use 

the Java programming language and related runtime environment to implement processing logic.  

There is no discussion pertaining to JBI-based technologies or Java CAPS BPEL-based 

technologies. There is no discussion about other ways in which Java logic can be deployed as part 

mailto:michal@czapski.id.au


 

Page 2 

of a Oracle SOA Suite solution. 

The HL7 eWay and JCD based Java CAPS solution will be ported to the Oracle SOA Suite 11g 

B2B and Mediator-based environment. HL7 Adapters will be replaced with the Oracle “Healthcare 

Adapters”, provided by the SOA Suite B2B HL7 support infrastructure. Routing will be provided 

by the Mediator component and transformation logic will be ported to the Spring Component. 

This article walks through the process of “extracting” JCD source and related archives from Java 

CAPS, developing a stand-alone Java application which uses the JCD source, encapsulating JCD 

source in a Spring component and finally reproducing Java CAPS HL7 solution functionality in an 

equivalent SOA Suite solution. 

Prerequisites and Assumptions 

It is assumed that the reader is thoroughly familiar with Java CAPS and somewhat familiar with 

HL7 support in Java CAPS. This knowledge is assumed. 

It is assumed that the reader has access to the JCD source and the built EAR file. If not, a Java 

CAPS 6/Repository installation with appropriate libraries is available for building the HL7 project. 

It is assumed that the reader has the SOA Suite 11g R1 PS2 installation with the requisite software, 

perhaps as a result of following instructions documented in the article “Installing Oracle SOA Suite 

11g for HL7 Exploration” at http://blogs.czapski.id.au/2010/06/installing-oracle-soa-suite-11g-for-

hl7-exploration. 

It is also assumed that the reader has at least a modest familiarity with the SOA Suite B2B HL7 

support, perhaps as a result of following a series of articles on the topic I published on my blog: 

http://blogs.czapski.id.au/?s=soa+suite+hl7. 

This is reasonably advanced material so other implicit assumptions may have crept in. 

The project export of the Java CAPS 6/Repository project discussed in this article, containing the 

Java CAPS Environment I used in the example, is available at http://blogs.czapski.id.au/wp-

content/uploads/2010/09/HL7Transformer_jcaps6_project_export.zip. 

I am not in a position to provide the built EAR file so you will need a Java CAPS 6.2 environment 

to import this project and build your own EAR file, or you will need to have a Java CAPS 5 

environment and re-create the project from scratch, perhaps using the JCD source available in the 

archive at http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip. 

It is assumed that the Spring technology is available in JDevloper. If it is not, as will become 

obvious when we try to create a Spring Context and cannot, it is necessary to update JDeveloper. 

Pull down the Help menu, choose check for updates, locate Spring technology update and add it. I 

strongly suggest that you back up your entire SOA Suite installation before you do this. 

Migration Process 

At the end of this article we will have migrated a Java CAPS 6/Repository-based HL7 

transformation project to the Oracle SOA Suite 11g, using the Spring Component to preserve HL7 

mapping and transformation rules and using the Oracle SOA Suite B2B HL7 infrastructure to 

replicate the HL7 eWay functionality. To add structure to the discussion let's outline what steps will 

be followed to accomplish the objective. The specifics of the steps will follow. 

1. Develop, build and test the Java CAPS 6/Repository HL7 solution (this will have been done by 

the time we get around to looking at migration) 

2. Analyse components of the solution to determine if JCDs are good candidates for migration to 

Spring Components (here I assume that the answer is yes and that the JCD to migrate has been 

identified – in fact I provide the JCD and use it in the process) 

http://blogs.czapski.id.au/2010/06/installing-oracle-soa-suite-11g-for-hl7-exploration
http://blogs.czapski.id.au/2010/06/installing-oracle-soa-suite-11g-for-hl7-exploration
http://blogs.czapski.id.au/?s=soa+suite+hl7
http://blogs.czapski.id.au/wp-content/uploads/2010/09/HL7Transformer_jcaps6_project_export.zip
http://blogs.czapski.id.au/wp-content/uploads/2010/09/HL7Transformer_jcaps6_project_export.zip
http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip


 

Page 3 

3. Obtain and unpack the Enterprise Archive containing the compiled JCD and related JAR files 

4. Obtain the JCD Java source 

5. Create a Java Project 

6. Add JARs to the Java project 

7. Create, build and exercise the Stand-alone Java application 

8. Crate a SOA Suite Mediator project 

9. Identify and copy to SOA Suite project Java CAPS JARs needed by the JCD code which will 

be migrated 

10. Create a Java Interface corresponding to the Java Class which will contain the JCD code 

11. Create the Java Class that implements the interface and migrate JCD code to it 

12. Create Spring Context that exposes the Java class 

13. Create a SOA Composite and a Mediator that uses the Spring Component 

14. Deploy the SOA project 

15. Configure B2B trading partnership agreements for inbound and outbound messaging 

16. Test/Exercise the solution 

There are quite a few steps but then there would be an equal or similar number of steps if we were 

to enumerate steps involved in developing an equivalent Java CAPS HL7 solution. It is also worth 

mentioning that most of these steps a simple and short in duration. 

Anatomy of a Java CAPS HL7 Solution 

No Java Collaboration Definition stands alone. Each is triggered to process a message and each, in 

turn, may trigger other components, typically causing delivery of a message to/through one or more 

outbound connectors/adapters. Functionality provided by the set of Java CAPS connectors/adapters 

(in Java CAPS 5 and Java CAPS 6/Repository called eWays or eWay Adapters) overlaps to a 

significant degree with the functionality offered by Oracle and Oracle-certified third-party adapters. 

Having said that I must immediately point out that to my knowledge no Java CAPS adapters/eWays 

are either certified or supported for use with the Oracle SOA Suite 11g R1 PS2. This means that the 

adapter-specific code in JCDs will have to be rewritten or remove as part of the migration effort. 

This also means that JCDs in which adapter code is a significant part of the JCD my not be good 

candidates for migration since the effort involved in rewriting adapter-specific code will likely 

exceed the saving arising from migrating the transformation and mapping code. Good candidates 

are JCDs involved in transforming standards-based message structures, such as HL7, X12, 

EDIFACT, and similar. This is one of the reasons I chose HL7 as the messaging standard for the 

example in this article. 

 

A HL7 processing solution in Java CAPS will typically receive HL7 v2 Delimited messages 

through the HL7 eWay, transform them in some way, and potentially send them on to HL7 receivers 

through a HL7 eWay. Standard HL7 processing, acknowledgements, message header validation, 

sequence number processing, are handed by pre-built Java CAPS projects, which are available as 

part of the installation and must be imported and potentially modified for use in a solution. The 

inbound project, prjHL7Inbound, receives HL7 messages and deposits them in a JMS Queue for a 

downstream solution to process further. The outbound project, prjHL7Outbound, receives HL7 

messages from a JMS Queue and sends them on to the receivers. The site specific transformations 

and message processing happens in one or more components, the initial of which receives messages 

from the JMS Queue to which the HL7 Inbound sent them, and the final of which ultimately 

deposits messages in a JMS Queue for the HL7 outbound to send. The complexity involved in 



 

Page 4 

transformational of messages, access to various enterprise resources and message manipulation will 

vary from solution to solution. 

Analysing HL7 JCD Solution 

The schematic below shows major components involved in a typical Java CAPS HL7 solution 

described above. 

 

If we construct a Java CAPS solution in such a way that the HL7 Inbound, the HL7 Transform and 

the HL7 Outbound are implemented as separate Java CAPS projects we might get a project 

hierarchy like the one shown below. 

 

The HL7 Inbound Connectivity Map for the HL701Inbound, which is derived from 

prjHL7Imbound, is shown below. 

 

The HL7 eWay receives messages and deposits them in the JMS Queue called qHL7DataIn. The 

JCD itself is the unmodified JCD imported with the project prjHL7Inbound. It handles all HL7-

related communication functionality including ACKs. 

The Connectivity Map for the HL703Outbound is shown below. 

 

Illustration 1: HL7 Trasformer Project Heirarchy 

Illustration 2: HL7 Inbound Connectivity Map 

Drawing 1: Simplest JCD-based HL7 Solution 



 

Page 5 

 

The HL7 eWay sends messages it reads from the JMS Queue called qHL7OutData. The JCD itself 

is the unmodified JCD imported with the project prjHL7Outbound. It handles all HL7-related 

communication functionality including ACKs. 

The connectivity map for the HL702Transformer project is simplicity itself and requires no 

elaboration. 

 

The collaboration receives a message from qHL7DataIn, transforms it in some manner and deposits 

the resulting message in qHL7OutData. 

To anticipate what will follow let's say upfront that the HL701Inbound and the HL703Outbound 

projects will be replaced, in their entirety, by the Oracle SOA Suite B2B HL7 infrastructure with 

correctly configured Trading Partners and Trading Partnership Agreements, therefore there will be 

no further discussion of these projects.  The HL702Transformer project's JCD, 

jcdHL702Transformer, will be migrated to the Oracle SOA Suite Spring Component therefore it 

will be analysed in detail. 

Analysing HL7 processing JCD 

Let's now analyse what the JCD does and how it goes about doing it. 

The structure of the JCD, omitting the actual HL7 transformation rules for the moment, is shown 

below. 

Illustration 3: HL7 Outbound Connectivity Map 

Illustration 4: HL7 Transformer Connectivity Map 



 

Page 6 

This JCD is a Plain Old Java Object (POJO). It is invoked by the Java CAPS-generated wrapper 

Stateless Session Bean, which sets up all the adapter connectivity infrastructure and object 

instances, and invokes the JCD with objects instantiated and input structure (in this case the JMS 

OTD object) populated. 

It is, hopefully, obvious that the JCD extracts the HL7 v2 Delimited message from the JMS input 

object and unmarshals it into the HL7 v2.3 ADT A01 structure. Once the manipulation, omitted in 

Text 1, is completed, the HL7 v2.4 ADT A04 is marshalled to String and send as a Text Message. 

OTDs input (Message object), output (JMS object), vA01_23 (ADT_A01 object) and vA04_24 

(ADT_A04 object) are instantiated on entry into this JCD. The 300+ lines on Java, omitted in Text 

1, copy data from various fields on the vA01_23 structure to appropriate fields in the vA04_24 

structure. 

Analysing Enterprise Archive 

Building this project using eDesigner/NetBeans produces an Enterprise Archive (EAR) file which 

contains all the runtime artefacts necessary to execute the solution. Typically the EAR file is stored 

in a file system hierarchy parts of which are named according to the names of the projects and 

deployment profiles. Java CAPS 6/Repository would deposit the EAR file in a directory hierarchy 

like that shown below. 

package HL7TransformerHL702Transformer; 

 

 

public class jcdHL702Transformer 

{ 

 

    public com.stc.codegen.logger.Logger logger; 

    public com.stc.codegen.alerter.Alerter alerter; 

    public com.stc.codegen.util.CollaborationContext collabContext; 

    public com.stc.codegen.util.TypeConverter typeConverter; 

 

    public void receive 

            ( com.stc.connectors.jms.Message input 

            , com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 

            , com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24 

            , com.stc.connectors.jms.JMS vJMSOut ) 

        throws Throwable 

    { 

        vA01_23.unmarshalFromString( input.getTextMessage() ); 

 

  /* 

   HL7 v2.3 to HL7 v2.4 transformation rules here 

   ... 

  */ 

 

        String sA04Out = vA04_24.marshalToString(); 

 

        com.stc.connectors.jms.Message vJMSMsg = vJMSOut.createTextMessage(); 

        vJMSMsg.setTextMessage( sA04Out ); 

        vJMSOut.sendText( sA04Out ); 

    } 

 

} 

Text 1: Abbreviated jcdHL702Transformer JCD 



 

Page 7 

 

The outer directory, dpHL702Transformer, is named after the Deployment Profile name in the 

project. The names of the inner two directories correspond to the names of the corresponding 

objects in the Java CAPS Environment – HL7T_LH (Logical Host) and HL7T_AS (Application 

Server/Integration Server). This may be slightly different in Java CAPS 5.x. For comparison the 

Java CAPS Environment is reproduces below. 

 

Inspection of the content of the ./builds/dpHL702Transformer/HL7T_LH/HL7T_AS reveals the 

EAR file, dpHL702Transformer.ear. 

 

 

Using 7-zip, jar or another tools which opens JAR archives, inspect the content of this file.  In my 

case, and if you use and build the same project as I did you will see the same, the following files are 

present in the archive: 
 
CMHL702Transformer_jcdHL702Transformer1.jar 

CMHL702Transformer_jcdHL702Transformer1_507672842.jar 

CMHL702Transformer_jcdHL702Transformer1_507672842.rar 

com-stc-configuration.jar 

com-stc-dtapi.jar 

com-stc-einsightintegrationengineapi.jar 

com-stc-JMSOTD.jar 

com-stc-log4j.jar 

com-stc-otd-ud1impl.jar 

com-stc-util.jar 

com-sun-org-apache-commons-jxpath.jar 

Illustration 5: HL702Transformer EAR directory 

Illustration 6: Java CAPS Environment 

Illustration 7: EAR file, dpHL702Transformer.ear 



 

Page 8 

com.stc.codegen.alerterapi.jar 

com.stc.codegen.alerterimpl.jar 

com.stc.codegen.loggerapi.jar 

com.stc.codegen.loggerimpl.jar 

com.stc.codegen.utilapi.jar 

com.stc.codegen.utilimpl.jar 

com.stc.codegenapi.jar 

com.stc.codegenmbeans.jar 

com.stc.codegenmetadataimpl.jar 

com.stc.codegenrtimpl.jar 

com.stc.icu4j.jar 

com.stc.jcecodegenimpl.jar 

com.stc.jmscodegenimpl.jar 

com.stc.jmsjca.core.jar 

com.stc.jmsjca.rasunone.jar 

com.stc.jmsmx.core.jar 

com.stc.jmsmx.sjsmq.jar 

com.stc.otd.fwrunapi.jar 

com.stc.otdcodegenimpl.jar 

com.stc.util.encodingconverter.jar 

commons-beanutils-1.6.jar 

commons-logging-1.1.jar 

concurrent-1.3.1.jar 

em_config.jar 

META-INF/ 

META-INF/application.xml 

META-INF/MANIFEST.MF 

META-INF/sun-application.xml 

qHL7DataIn_CMHL702Transformer_jcdHL702Tr2000592805.jar 

qHL7DataIn_CMHL702Transformer_jcdHL702Tr2000592805.rar 

runtime_properties.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ACC.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ADT_A01.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_AL1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DB1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DG1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DRG.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_EVN.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_GT1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN2.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN3.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_MSH.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_NK1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_OBX.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PD1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PID.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PR1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PV1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PV2.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ROL.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_UB1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_UB2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ACC.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ADT_A04.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_AL1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DB1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DG1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DRG.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_EVN.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_GT1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN3.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_MSH.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_NK1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_OBX.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PD1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PDA.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PID.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PR1.jar 



 

Page 9 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PV1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PV2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ROL.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_UB1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_UB2.jar 

StartUpConnector.jar 

StartUpConnector.rar 

xerces-2.8.0.jar 

 

Broadly, there are 4 kinds of files in the archive. The project-specific code-generated files: 

 
CMHL702Transformer_jcdHL702Transformer1.jar 

CMHL702Transformer_jcdHL702Transformer1_507672842.jar 

CMHL702Transformer_jcdHL702Transformer1_507672842.rar 

qHL7DataIn_CMHL702Transformer_jcdHL702Tr2000592805.jar 

qHL7DataIn_CMHL702Transformer_jcdHL702Tr2000592805.rar 

 

The utility archives, provided by either Sun or third-parties: 

 
commons-beanutils-1.6.jar 

commons-logging-1.1.jar 

concurrent-1.3.1.jar 

xerces-2.8.0.jar 

 

The Sun/SeBeyond/STC Java CAPS-specific proprietary utility archives: 

 
com-stc-configuration.jar 

com-stc-dtapi.jar 

com-stc-einsightintegrationengineapi.jar 

com-stc-JMSOTD.jar 

com-stc-log4j.jar 

com-stc-otd-ud1impl.jar 

com-stc-util.jar 

com-sun-org-apache-commons-jxpath.jar 

com.stc.codegen.alerterapi.jar 

com.stc.codegen.alerterimpl.jar 

com.stc.codegen.loggerapi.jar 

com.stc.codegen.loggerimpl.jar 

com.stc.codegen.utilapi.jar 

com.stc.codegen.utilimpl.jar 

com.stc.codegenapi.jar 

com.stc.codegenmbeans.jar 

com.stc.codegenmetadataimpl.jar 

com.stc.codegenrtimpl.jar 

com.stc.icu4j.jar 

com.stc.jcecodegenimpl.jar 

com.stc.jmscodegenimpl.jar 

com.stc.jmsjca.core.jar 

com.stc.jmsjca.rasunone.jar 

com.stc.jmsmx.core.jar 

com.stc.jmsmx.sjsmq.jar 

com.stc.otd.fwrunapi.jar 

com.stc.otdcodegenimpl.jar 

com.stc.util.encodingconverter.jar 

em_config.jar 

StartUpConnector.jar 

StartUpConnector.rar 

runtime_properties.jar 

 

The HL7 OTD message structure-specific archives will vary in number and composition depending 

on the HL7 OTD libraries that the particular project uses. 

 
SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ACC.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ADT_A01.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_AL1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DB1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DG1.jar 



 

Page 10 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_DRG.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_EVN.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_GT1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN2.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_IN3.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_MSH.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_NK1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_OBX.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PD1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PID.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PR1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PV1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_PV2.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_ROL.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_UB1.jar 

SeeBeyond_OTD_Library_HL7_2.3_HL7_23_UB2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ACC.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ADT_A04.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_AL1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DB1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DG1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_DRG.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_EVN.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_GT1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_IN3.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_MSH.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_NK1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_OBX.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PD1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PDA.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PID.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PR1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PV1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_PV2.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_ROL.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_UB1.jar 

SeeBeyond_OTD_Library_HL7_2.4_HL7_24_UB2.jar 

 

People familiar with HL7 will instantly recognise parts of archive names like PID, UB2 and so on, 

which correspond to HL7 v2.x segment names. 

 

We will need selected JARs from the EAR for use in the stand-alone Java application and the 

migrated Spring Component. There are some obvious candidates, the 

SeeBeyond_OTD_Library_HL7*.jar are obvious for HL7 support. Others are not so obvious and 

may vary from project to project.  I happen to know that I also need com.stc.otd.fwrunapi.jar 

and  com-stc-otd-ud1impl.jar. 

Building and exercising a Stand-alone Java Application 

To determine what is needed at runtime, and to clean up the JCD code before we get around to 

working with the Spring Component, we can attempt to create a stand-alone Java application that 

will implement the transformation. If this task cannot be accomplished it is unlikely that the 

migration effort will succeed. This section walks through the process. 

 

Let's create a JDeveloper application, let's say HL7TransformApp, and a Java Project within it, let's 

call it HL7Transform. 

 



 

Page 11 

 

 

This will create a directory hierarchy that looks similar to that shown in the illustration. 

 

Illustration 8: Create a Generic Application 

Illustration 9: Create a Java Project 



 

Page 12 

 

To add JARs we need to support the stand-alone version of the JCD we need to create a lib 

directory. Let's do that in such a way that the lib directory appears under the HL7Transform 

directory. 

 

Let's now copy the SeeBeyond_OTD_HL7_Library*.jar, the com.stc.otd.fwrunapi.jar and the com-

stc-otd-ud1impl.jar JARs to this lib directory from wherever we extracted the EAR file to. 

 

 

Back in JDeveloper, right-click on the name of the project and choose Project Properties. Select 

“Libraries and Classpath”, click “Add JAR/Directory”, navigate to 

HL7TransformApp/HL7Transform/lib and select all JARs you copied to that lib directory. Click 

Select. 

Illustration 10: Empty Java project directory hierarchy 

Illustration 11: New lib directory 

Illustration 12: Populated lib directory 



 

Page 13 

 

Click OK to dismiss the dialogue box.  

 

Right-click on the name of the project and choose New → General → Java → Java Class then click 

OK. 

 

Illustration 13: Select all JARs added to the project 



 

Page 14 

 

Name this new class HL7Transform and click OK. 

 

 

The following skeleton will be created. 

 
package hl7transform; 

Illustration 14: Create new Java Class 

Illustration 15: Name new Java Class 



 

Page 15 

 

public class HL7Transform { 

    public HL7Transform() { 

        super(); 

    } 

} 

 

Let's copy the entire receive method from the JCD and paste it into the new class source following 

the default constructor. The figure below abbreviates the transformation code. Note the problem 

areas, highlighted in the figure. 

 

 

We need to remove offending lines, which refer to the JMS adapter. We will have to populate the 

vA01_23 variable before invoking the “receive” method and will have to do something sensible 

with the content of the vA04_24 variable outside the “receive” method as well, including initial 

creation of these variables. 

 

The resulting Java source is shown below. 

 

Illustration 16: JCD "receive" method source pasted into JDeveloper Java Class 



 

Page 16 

 

As you undoubtedly realise I could have written the method signature differently. To maintain 

continuity and make it easier to follow I am keeping it as close as possible to the original JCD 

“receive” method signature. 

 

Note that so far I omitted the transformation code completely since the objective is to transcribe it 

verbatim to the new class. By doing this I am concentrating on essential modifications that must be 

done to make this Java application work outside the Java CAPS environment. 

 

Now we need to add code to create instances of the ADT_A01 and ADT_A04 classes and populate 

the instance of the ADT_A01 class with a HL7 message body so that our “receive” method has 

something to work on. Let's create a new method HL7Transform, which accepts a byte array, 

presumably containing the HL7 v2.3 ADT A01 message, and which returns a byte array containing 

the HL7 v2.4 ADT A04 message. 

 
public byte[] HL7Transform(byte[] baA01In) throws java.io.IOException, Throwable 

{ 

       

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01(); 

             

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04(); 

     

    vA01_23.unmarshalFromBytes(baA01In); 

     

    receive(vA01_23, vA04_24); 

     

    byte[] baA04Out = vA04_24.marshalToBytes(); 

 

    return baA04Out; 

 

} 

  

The “receive” method, with JMS dependencies removed, is similar to what the JCD wrapper bean 

Illustration 17: Java source after removal of JMS Adapter dependencies 



 

Page 17 

would have called in Java CAPS. 

 

I will now add the transformation code I kept out so far, back to the receive method, so it is ready to 

be invoked and do its work. 

 

The original JCD is available in the companion archive at http://blogs.czapski.id.au/wp-

content/uploads/2010/09/jcdHL702Transformer.zip. The entire Java class as it stands, with the 

mapping code, is also reproduced at the end of this document. 

 

Let's now create a “driver” class that will invoke the HL7Transformer with a HL7 message in a byte 

array and will display the transformed message received from the HL7Transformer. 

 

Right-click on the name of the package, choose New → Java Class. 

 

 

Name this new class HL7TransformerDriver, check Main Method checkbox and click OK. 

 

Illustration 18: Create a new Java class wizard 

http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip
http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip


 

Page 18 

 

The following skeleton appears in the JDeveloper window. 

 

 

To eliminate complexities involved in acquiring a HL7 message from somewhere we will hardcode 

a sample message as a byte[] constant in the driver class. Add the following code before the main 

method. 

 
private static byte[] baA01In = ("" 

  + "MSH|^~\\&|SystemA|HosA|PI|MDM|2008090801529||ADT^A01|200809080|P|2.3.1|||AL|NE\r" 

  + "EVN|A01|2008090801529|||JavaCAPS6^^^^^^^USERS\r" 

  + "PID|1||A000010^^^HosA^MR^HosA||Kessel^Abigail||19460101123045|M|||A Street^^Sydney^2000^AU\r" 

  + "PV1|1|I||I|||FUL^Fulde^Gordian^^^^^^^^^^MAIN|||EMR|||||||||V2008090801529^^^^VISIT\r") 

      .getBytes();     

 

Illustration 19: Complete class skeleton creation 

Illustration 20: Skeleton of the driver class 



 

Page 19 

Add the following code to the body of the main method: 

         
        System.out.println("\nA01:\n" + new String(baA01In)); 
 

        HL7Transform hl7t = new HL7Transform(); 

        byte[] baA04Out = new byte[0]; 

 

        try { 

            baA04Out = hl7t.HL7Transform(baA01In); 

        } catch (IOException e) { 

        } catch (Throwable e) { 

        } 

        System.out.println("\nA04:\n" + new String(baA04Out)); 

 

The result will look like in the following figure. 

 

 

Run this class, by right-clicking the name of the class and choosing Run. 

 

Illustration 21: Driver class 



 

Page 20 

 

The output windows should display the A01 message and the A04 message which the transformer 

produced. 

 

 

This works fine as a stand-alone Java application. To make it usable as a Spring component we need 

to roll the HL7Transform and receive methods into one. We simply take the body of the receive 

method and paste it over the top of the receive method invocation, deleting the invocation and the 

remaining receive method signature. 

 

The original skeleton looks like this: 

 
package hl7transform; 

 

public class HL7Transform { 

    public HL7Transform() { 

        super(); 

    } 

     

  public void receive 

          ( com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 

Illustration 22: Run the driver class 

Illustration 23: Execution trace 



 

Page 21 

          , com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24) 

      throws Throwable 

  { 

 

    vA04_24.getMSH().setMSH_segment_ID( vA01_23.getMSH().getMSH_segment_ID() ); 

    vA04_24.getMSH().setMsh1FieldSeparator( vA01_23.getMSH().getMsh1FieldSeparator() ); 

... 

    vA04_24.getPV1().setPv12PatientClass( vA01_23.getPV1().getPv12PatientClass() ); 

    ; 

 

  } 

   

  public byte[] HL7Transform(byte[] baA01In) throws java.io.IOException, Throwable { 

       

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01(); 

             

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04(); 

     

    vA01_23.unmarshalFromBytes(baA01In); 

     

    receive(vA01_23, vA04_24); 

     

    byte[] baA04Out = vA04_24.marshalToBytes(); 

 

    return baA04Out; 

  } 

   

} 

 

The reworked skeleton will look like this: 

 
package hl7transform; 

 

/* delete these lines     

public class HL7Transform { 

    public HL7Transform() { 

        super(); 

    } 

 

  public void receive 

          ( com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 

          , com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24) 

      throws Throwable 

  { 

 

  } 

*/ 

   

  public byte[] HL7Transform(byte[] baA01In) throws java.io.IOException, Throwable { 

       

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01(); 

             

    com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24 = 

        new com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04(); 

     

    vA01_23.unmarshalFromBytes(baA01In); 

     

    receive(vA01_23, vA04_24); 

 

    vA04_24.getMSH().setMSH_segment_ID( vA01_23.getMSH().getMSH_segment_ID() ); 

    vA04_24.getMSH().setMsh1FieldSeparator( vA01_23.getMSH().getMsh1FieldSeparator() ); 

... 

    vA04_24.getPV1().setPv12PatientClass( vA01_23.getPV1().getPv12PatientClass() ); 

    ; 

     

    byte[] baA04Out = vA04_24.marshalToBytes(); 

 



 

Page 22 

    return baA04Out; 

  } 

   

} 

 

Build and run the project to make sure it still works. 

Dependency Issues 

We now know that we have all the necessary JARs identified and included in the project and that 

we have a POJO class, which performs transformation. 

 

In reality this may not be as simple as that. The JCD was triggered by a JMS message and sent a 

message to JMS. The former happened at the beginning of the transformation code and the later at 

the end. Knowing that all the rest of the collaboration maps between the input structure and the 

output structure meant that I did not have to spend the time walking through the code to identify 

and eliminate or port any non-transformation code that may be there in a more complex / different 

collaboration. Any obvious issues will be identified by JDeveloper as soon as we paste the JCD's 

receive method into the new project, which we did early in the piece. The new class will not be able 

to be compiled until the issues are resolved. 

 

Note that the JCD has access to logger, alerter, collabContext and typeConverter functionality. The 

logger is used reasonably frequently at development time. Some people use alerter to send explicit 

alerts to the runtime environment in Java CAPS, including stopping an inbound HL7 collaboration 

to prevent the system from accepting new incoming messages. I used collabContext on occasion, 

typically to identify the collaboration instance if I reused collaboration code. The typceConverter 

functionality is occasionally useful as well. 

 

JCDs that make use of this functionality will have to be reviewed to see if it is critical to the 

transformation, how it is used and how it can be eliminated or modified if necessary. 

 

Oracle developed a series of classes and interfaces, packaged in a JAR called jcaps_interfaces.jar, to 

facilitate porting JCDs which make use of logger, alerter, collabContext and typeConverter. I have 

seen and used some of these classes but I am not aware, at this time, how a customer would go 

about getting hold of it. I got the collabContext and logger to work. I know that the alerter 

functionality is stubbed out and I was unable to make the typeConverter to work using the JAR I 

had access to. 

 

The long and the short is that if the JCD uses this kind of functionality, or uses adapter functionality 

(for example to access a database), or uses some other functionality provided by other libraries, the 

JCD code will have to be reviewed and any issues identified and addressed. There is no prescription 

for this kind of work. It will vary in size and complexity with the JCD to be reviewed. There may be 

a point where work involved in addressing dependencies may exceed the benefit to be had from 

porting JCD code for a particular JCD. 

 

Being able to externalise JCD code to a stand-alone Java class, as we have done in this section, will 

allow us to pick up and address these kinds of issues early, before we get into the complexity of the 

SOA Composite development. 

Basic SOA Suite Solution with Spring Component 

The Java CAPS HL7 solution, as discussed before, consists of the HL7 inbound and HL7 outbound 

projects, which take care of the HL7-compliant communication, and the HL7 transformation 

project. The schematic below illustrates the key components of this solution. 



 

Page 23 

 

The equivalent SOA Suite solution, which will reuse the JCD transformation code, will look very 

similar, as shown in the following figure. 

 

Expanding slightly, to more realistically represent the components involved in porting JCD code, 

we see the following: 

 

The Mediator Project consists of an inbound adapter, which receives HL7 v2 Delimited messages, a 

Mediator XSL transform, which invokes the Spring Component and passes transformed messages to 

the outbound adapter. The boundary between the Mediator Project and the inbound and outbound 

adapters is crossed by HL7 v2 Delimited messages. For the purpose of porting the JCD code to the 

Spring Component, and testing the port, we can use basic File Adapters as both the inbound and the 

outbound adapters. This will make this section of the article easier to follow and will again 

concentrate on the essentials. 

Stage I: Basic File to File Mediator project 

The solution to be built in this section is represented in Drawing 5. 

Drawing 2: Java CAPS HL7 Solution 

Drawing 3: SOA Suite "Equivalent" reusing JCD transformaiton code 

Drawing 4: Exanded Meiator Project 



 

Page 24 

 

Let's proceed to configure the inbound and outbound adapters, assuming the HL7 files to process 

will come from c:\hl7\adt\data and transformed messages will be written to files in c:\hl7\received. 

In JDeveloper's HL7TransformApp application create a new SOA Project called HL7TranformFF. 

 

Drag a File Adapter from the SOA Palette to the Composite canvas and drop it in the Exposed 

Services swim line. 

Drawing 5: Simplified solution 

Illustration 24: New SOA Project HL7TransformFF 



 

Page 25 

 

Configure: 

Service Name HL7TransformFFileIn 

Interface Define from operations and schema (defined later) – leave 

default 

Operation Type Read File 

Directory for Incoming Files c:\hl7\adt\data (or some other directory which does not contain 

HL7 files 

Process files recursively Unchecked 

Include files with name Pattern AT_A01_output_1.hl7 

Polling Frequency 5 seconds 

Native format translation is not 

required (Schema is Opaque) 

Checked – is is critical to check this checkbox – HL7 v2 

Delimited messages are not XML and must not be processed 

by the infrastructure before they are handed over to the Spring 

Component for transformation 

Table 1 Inbound File Adapter Configuration 

Drag a File Adapter from the SOA Palette to the Composite canvas and drop it in the External 

References swim line. 

Configure: 

Service Name HL7TrasformFFFileOut 

Interface Define from operations and schema (defined 

later) – leave default 

Operation Type Write File 

Directory for Outgoing Files C:\hl7\received 

Illustration 25: Add inbound File Adapter to the composite 



 

Page 26 

File Naming Convention ADT_A04_outbound_%SEQ%.hl7 

Native format translation is not required 

(Schema is Opaque) 

Checked – is is critical to check this checkbox – 

HL7 v2 Delimited messages are not XML and 

must not be processed by the infrastructure after 

they are produced by the Spring Component 

transformation 

Table 2 Outbound File Adapter Configuration 

At this stage the composite canvas looks like that shown below. 

 

Before we get into the Spring Component work let's add a simple mediator XSL transform, which 

copies input to output, deploy and test the project. This will ensure our file adapters are configured 

correctly and the project works so far. 

Drag Mediator from the SOA Palette to the canvas and drop it in the Components swim line. Name 

it HL7TransformFFMediator. 

 

Connect the inbound file adapter to the Mediator. 

Illustration 26: Composite canvas with inbound and outbound file adapters 

Illustration 27: Add Mediator component 



 

Page 27 

 

Connect the Mediator component to the outbound file adapter. 

 

Double-click the Mediator component to open the mplan. 

Click the Create New Mapper File button. 

 

Check the “Create New Mapper File” radio button and click OK. 

Illustration 28: Connect inbound file adapetr to the mediator component 

Illustration 29: Connect mediator component to teh outbound file adapter 

Illustration 30: Create a new mapper file 



 

Page 28 

 

Connect the two opaque:opaqueElement nodes by dragging from the left to the right. Select one of 

the modes and note the datatype: base64Binary. 

 

The datatype, base64Binary, will become significant when we start working with the Spring 

Component in a short while. 

Save and close the XSL. Save and close the mplan. Save the Composite. 

Right-click the name of the project and choose Deploy → HL7TransformFF... 

 

Illustration 31: Choose to create a new mapper file 

Illustration 32: Complete mapping and note the  datatype 

Illustration 33: Start the deployment wizard 



 

Page 29 

Accept the default: Deploy to application server. 

 

 

Check “Overwrite any existing composites with the same revision ID” and click Next. 

 

Choose the correct application server connection and click Finish. 

Illustration 34: Accept default deployment action 

Illustration 35: Overwrite existing revision 



 

Page 30 

 

In due course the log window will show deployment completion. 

 

We are about to exercise this solution. If you are interested in runtime feedback from the Mediator 

then use the Enterprise Manager to set selected logging categories to TRACE:32. 

Illustration 36: Choose appropriate application  server connection 

Illustration 37: Deployment feedback 



 

Page 31 

 

Click Log Levels Tab, expand oracle.soa, expand oracel.soa.mediator. 

 

 

Enable TRACE:32 logging for oracle.soa.adapter by pulling down the dropdown and choosing the 

correct logging level. 

Illustration 38: Getting to the  log configuration 

Illustration 39: Locating logging categories to change 



 

Page 32 

 

Do this also for oracle.soa.mediator. Experiment with including and excluding logging 

subcategories until you see what you need to see and no more (this is an iterative process). 

When you have all levels configured as desired check the “Persist log level state ...” checkbox and 

click Apply. 

Make sure that your output directory is empty (for me c:\hl7\received). 

Copy ADT_A01_output_1.hl7 from the source directory to the directory being polled by the 

inbound file adapter (for me c:\hl7\adt\data). Within 5 seconds the file will be picked up and its 

content copied to a file in the output directory. 

 

The file content was “translated” and written to the output. 

If you increased logging levels for the oracel.soa.adapter and oracle.soa.mediator categories you 

will be able to see “interesting” feedback in the AdminServer-diagnostic.log. For example: 

And more 

[2010-09-29T07:07:32.550+10:00] [AdminServer] [TRACE] [] [oracle.soa.adapter] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@5e4698f6] [userId: weblogic] [ecid: 

0000IhQ7nWE2zGWjLxmJOA1CcZM00001Fm,1:29241] [SRC_CLASS: 

oracle.integration.platform.blocks.adapter.fw.log.LogManagerImpl] [APP: soa-infra] [dcid: 

02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-00000000000001ca] [SRC_METHOD: log] File Adapter 

HL7TranformFF Poller enqueuing file for processing :C:\hl7\adt\data\ADT_A01_output_1.hl7 

[2010-09-29T07:07:32.566+10:00] [AdminServer] [TRACE] [] [oracle.soa.adapter] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQ7nWE2zGWjLxmJOA1CcZM00001Fm,1:29243] [SRC_CLASS: 

oracle.integration.platform.blocks.adapter.fw.log.LogManagerImpl] [APP: soa-infra] [dcid: 

02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-00000000000001ca] [SRC_METHOD: log] File Adapter 

HL7TranformFF File : C:\hl7\adt\data\ADT_A01_output_1.hl7 is ready to be processed. 

... 

[2010-09-29T07:07:32.660+10:00] [AdminServer] [TRACE] [] [oracle.soa.adapter] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQ7nWE2zGWjLxmJOA1CcZM00001Fm,1:29243] [SRC_CLASS: 

oracle.integration.platform.blocks.adapter.fw.log.LogManagerImpl] [APP: soa-infra] [dcid: 

Illustration 40: Enable TACE:32 logging for oracle.soa.adapter 

Illustration 41: Output file was produced 



 

Page 33 

02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-00000000000001ca] [SRC_METHOD: log] File Adapter 

HL7TranformFF Sending message to Adapter Framework for posting to BPEL engine: {[[ 

  file=C:\hl7\adt\data\ADT_A01_output_1.hl7 

} 

]] 

... 

[2010-09-29T07:07:33.081+10:00] [AdminServer] [TRACE] [] [oracle.soa.mediator.serviceEngine] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQAzZ32zGWjLxmJOA1CcZM00001OR,0] [SRC_CLASS: 

oracle.tip.mediator.serviceEngine.MediatorServiceEngine] [APP: soa-infra] [dcid: 02d1ff4621073810:-

598e0369:12b59a0c1f8:-8000-00000000000001ca] [SRC_METHOD: printMessage] method=post  key=opaque 

payload [[ 

 <opaqueElement 

xmlns="http://xmlns.oracle.com/pcbpel/adapter/opaque/">TVNIfF5+XCZ8U3lzdGVtQXxIb3NBfFBJfE1ETXwyMDA4M

DkwODAxNTI5fHxBRFReQTAxfDAwMDAw 

MF9DVExJRF8yMDA4MDkwODAxNTI5fFB8Mi4zLjF8fHxBTHxORQ1FVk58QTAxfDIwMDgwOTA4MDE1 

Mjl8fHxKYXZhQ0FQUzZeXl5eXl5eVVNFUlMNUElEfDF8fEEwMDAwMTBeXl5Ib3NBXk1SXkhvc0F8 

fEtlc3NlbF5BYmlnYWlsfHwxOTQ2MDEwMTEyMzA0NXxNfHx8NyBTb3V0aCAzcmQgQ2lyY2xlXl5E 

b3duaGFtIE1hcmtldF5FbmdsYW5kIC0gTm9yZm9sa14zMDgyOF5VS3x8fHx8fHx8QTIwMDgwOTA4 

MDE1MjkNUFYxfDF8SXx8SXx8fEZVTF5GdWxkZV5Hb3JkaWFuXl5eXl5eXl5eXk1BSU58fHxFTVJ8 

fHx8fHx8fHxWMjAwODA5MDgwMTUyOV5eXl5WSVNJVHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwy 

MDA4MDkwODAxNTI5DQ0K</opaqueElement> 

]] 

… 

[2010-09-29T07:07:33.753+10:00] [AdminServer] [TRACE] [] 

[oracle.soa.mediator.service.transformation] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQAzZ32zGWjLxmJOA1CcZM00001OR,0] [SRC_CLASS: 

oracle.tip.mediator.service.transformation.MediatorTransformationHandler] [APP: soa-infra] 

[composite_name: HL7TranformFF] [component_name: HL7TransformFFMediator] [component_instance_id: 

69647490CB4411DFBFA6C5760DD892B3] [dcid: 02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-

00000000000001ca] [SRC_METHOD: log] [composite_instance_id: 160001] Source message payload :[[ 

<opaqueElement 

xmlns="http://xmlns.oracle.com/pcbpel/adapter/opaque/">TVNIfF5+XCZ8U3lzdGVtQXxIb3NBfFBJfE1ETXwyMDA4M

DkwODAxNTI5fHxBRFReQTAxfDAwMDAw 

MF9DVExJRF8yMDA4MDkwODAxNTI5fFB8Mi4zLjF8fHxBTHxORQ1FVk58QTAxfDIwMDgwOTA4MDE1 

Mjl8fHxKYXZhQ0FQUzZeXl5eXl5eVVNFUlMNUElEfDF8fEEwMDAwMTBeXl5Ib3NBXk1SXkhvc0F8 

fEtlc3NlbF5BYmlnYWlsfHwxOTQ2MDEwMTEyMzA0NXxNfHx8NyBTb3V0aCAzcmQgQ2lyY2xlXl5E 

b3duaGFtIE1hcmtldF5FbmdsYW5kIC0gTm9yZm9sa14zMDgyOF5VS3x8fHx8fHx8QTIwMDgwOTA4 

MDE1MjkNUFYxfDF8SXx8SXx8fEZVTF5GdWxkZV5Hb3JkaWFuXl5eXl5eXl5eXk1BSU58fHxFTVJ8 

fHx8fHx8fHxWMjAwODA5MDgwMTUyOV5eXl5WSVNJVHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHwy 

MDA4MDkwODAxNTI5DQ0K</opaqueElement> 

]] 

... 

[2010-09-29T07:07:33.769+10:00] [AdminServer] [TRACE] [] 

[oracle.soa.mediator.service.transformation] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQAzZ32zGWjLxmJOA1CcZM00001OR,0] [SRC_CLASS: 

oracle.tip.mediator.service.transformation.XSLTransformer] [APP: soa-infra] [composite_name: 

HL7TranformFF] [component_name: HL7TransformFFMediator] [component_instance_id: 

69647490CB4411DFBFA6C5760DD892B3] [dcid: 02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-

00000000000001ca] [SRC_METHOD: getXSLTTransformer] [composite_instance_id: 160001] Creating XSL 

Template for xsl :xsl/opaqueElement_To_opaqueElement.xsl 

... 

[2010-09-29T07:07:34.441+10:00] [AdminServer] [TRACE] [] [oracle.soa.adapter] [tid: 

weblogic.work.j2ee.J2EEWorkManager$WorkWithListener@1e7b5db4] [userId: weblogic] [ecid: 

0000IhQAzZ32zGWjLxmJOA1CcZM00001OR,0] [SRC_CLASS: 

oracle.integration.platform.blocks.adapter.fw.log.LogManagerImpl] [APP: soa-infra] [dcid: 

02d1ff4621073810:-598e0369:12b59a0c1f8:-8000-00000000000001ca] [SRC_METHOD: log] File Adapter 

HL7TranformFF Sucessfully sent message : C:\hl7\adt\data\ADT_A01_output_1.hl7 to Adapter Framework. 

... 

Note that the file adapter encodes the content of the file to Bas64 encoding, before embedding it in 

a XML message and handing it to the Mediator component. This is the result of configuring the 

inbound file adapter with “Native format translation is not required (Schema is Opaque)” selected. 

Our basic XSL transform copies input to output, both base64Binary datatypes. The outbound 

http://xmlns.oracle.com/pcbpel/adapter/opaque/
http://xmlns.oracle.com/pcbpel/adapter/opaque/


 

Page 34 

adapter decodes the Base64 encoded data and writes it to the file. 

Stage II: Adding Spring Component with JCD code 

Now we will create a Spring Component to host out JCD code, which we will reuse from the stand-

alone Java application we created earlier. We will add this component to the Mediator solution and 

will exercise the project. 

Right-click the name of the project, HL7TransformFF. Choose New. Click the “All Technologies” 

Tab. Select Java and Java Interface, and then click OK. 

 

Name the interface HL7TransformInterface, change package name to hl7tranform and click OK. 

Changing package name will eliminate the need for change of package name when we copy the 

class source from the HL7Transform project. 

 

Illustration 42: Start the New Java Interface wizard 

Illustration 43: Name the interface and package 



 

Page 35 

Choose to save the artefacts to SCA-INF/src directory and click OK. 

 

Java interface skeleton will be generated. 

 

Switch to the OS directory explorer, locate the directory in which the Java CAPS JAR files used in 

the HL7Transformer stand-alone Java application are located, and copy them to the SCA-INF/lib 

director of the HL7TransformFF project. 

 

Switch back to JDeveloper. Right-click the name of the project, HL7TransformerFF, choose project 

properties and add the JARs to the project “Libraries and Classpath”. 

Illustration 44: Choose the target directory 

Illustration 45: Interface skeleton 

Illustration 46: Lib directories from and to 



 

Page 36 

 

Open the Java class, HL7Transform.java, created in earlier in project HL7Transform. Locate the 

method HL7Transform. Copy the method signature: 

public byte[] HL7Transform(byte[] baA01In) throws java.io.IOException, Throwable { 

and paste it into the new interface as shown below. Take care to replace the trailing curly brace with 

a semicolon. 

 

Right-click on the package name in the HL7TransformFF project's Application Sources folder and 

choose New → Java → Java Class. Name the new class HL7TransformImpl and select the 

HL7TransformInterface as the interface to implement. 

Illustration 48: Define the interface 

Illustration 47: Add libraries 



 

Page 37 

 

Copy the body of the class from HL7Tranform/HL7Transform.java and paste it into this new class 

replacing its body completely. Remove constructor. The final sources, with implementation code 

omitted for brevity, will have this structure: 

package hl7tranform; 

import java.io.IOException; 

public class HL7TransformImpl implements HL7TransformInterface { 

    public byte[] HL7Transform(byte[] baA01In) throws java.io.IOException, 

                                                      Throwable { 

... 

        return baA04Out; 

    } 

} 

“Make” the class to ensure it is error-free. 

Let's now create a Spring Context. 

If the Spring technology is not available in your JDeveloper installation you will need to add it 

before proceeding, as mentioned in Prerequisites and Assumptions. I will proceed on the basis of 

this matter having been taken care of. 

Right-click the name of the project, HL7TransformFF, choose New → Business Tier → Spring → 

Spring Bean Configuration. 

Illustration 49: New class implement the interface defined earlier 



 

Page 38 

 

Change file name to HL7Transform-beans.xml and directory to where the composite.xml lives. 

 

Drag a bean component from the components palette onto the configuration source in the place 

indicated. 

Illustration 50: Start the Spring Bean Configuration wizard 

Illustration 51: Name the configuration file 



 

Page 39 

 

Place the cursor inside the <bean/> tag to show bean properties in the property inspector. Set bean 

name property to HL7TransformBean and class to hl7transform.HL7TransformImpl. 

 

Now drag the SCA Service component (WebLogic SCA) to the canvas immediately after the 

closing “/>” markup of the bean tag as shown. 

 

Illustration 52: Add a bean definiton to the configuration 

Illustration 53: Set bean properties 



 

Page 40 

Set properties of the service to name: HL7TransformService, target: HL7TransformBean and type: 

hl7transform.HL7TransformImpl. 

The target property value of the SCA Service must be the same as the name property of the Bean. 

The configured bean markup is shown below. 

Switch back to composite canvas and drag the Spring Context component from the component 

palette to the canvas, dropping it in the Components swim line. 

Illustration 54: Add SCA Service configuration 

Illustration 55: Configure SCA Service 

Illustration 56: Spring component configuration 



 

Page 41 

 

Name the spring context HL7TransformSpring and locate the existing context we created before. 

 

Select and delete connectors between the adapters and the mediator component. 

 

Connect the HL7TransformMediator component to the HL7TransformSpring component. 

Illustration 57: Add Spring Context to the canvas 

Illustration 58: Name the component and locate existing context 

Illustration 59: After connectors are deleted 



 

Page 42 

 

You should see a feedback dialogue saying that a WSDL was generated. 

 

Connect the inbound adapter to the Mediator component. 

 

Double-click he mediator component to open its mplan. 

Select, by clicking at it, single static routing rules with no targets. Delete by clicking the cross 

button. 

Illustration 60: Connect mediator and spring components 

Illustration 

61: WSDL was generated 

Illustration 62: Connect inbound adapter to the mediator 



 

Page 43 

 

Repeat for all such rules until only the single request/reply rule with a target remains. 

 

Click on the mapper button on the request part of the rule to create a mapper file. 

Illustration 63: Delete target-less static routing rules 

Illustration 64: Request/Reply rule invoking the  Spring component 



 

Page 44 

 

Map the opaque:opaqueElement, of base64Binary datatype, to HL7Transform → arg0 of the 

HL7Transform class, which is also a base64Binary datatype. Note that the underlying infrastructure 

transparently encodes and decodes data as needed, in this case, that the byte array which the Java 

method is given is not base64 encoded. 

 

This assignment could have also been done using Assign Values functionality rather than transform 

functionality.   

Save and close the mapper file. The request is mapped. 

Let’s configure the target service so that the result value from the Spring component is handed over 

to the next component in the composite. 

Click the Target Service button. 

Illustration 65: Craete a mapper file for the request 

Illustration 66: Map input to output 



 

Page 45 

 

Click the Service button then locate the HL7TransformFFFileOut service, select the Write operation 

of the HL7TransformFFFileOut service and click OK. 

 

Now create a new mapper file. 

Illustration 67: Click the Target Service button 

Illustration 68: Select target service operation 



 

Page 46 

 

Map HL7TransportResponse → Return to the opaque:opaqueElement of the FileOut adapter. 

 

Close the mapper file. 

The composite will now look like that shown below. 

 

Deploy the project and submit the test file. 

If all went well the input file containing a single HL7 v2.3.1 ADT A01 message should have gotten 

transformed into a file containing a single HL7 v2.4 ADT A04 message. 

Illustration 69: Create mapper file for the reply 

Illustration 70: Map return to reply 

Illustration 71: Finished composite 



 

Page 47 

 

 

When working with this sort of projects I noted that sometimes the deployment process does not 

succeed in undeploying the running version of the composite. In such a case the composite must be 

undeployed explicitly through the Enterprise Manager or the JDeveloper. Once undeployed, the 

new incarnation can be deployed again. 

To summarise, we took the transformation code and utility JARs from the Java CAPS HL7 JCD-

based solution and re-implemented the transformation code in a SOA Suite Spring Component, 

simply pasting the code into a skeleton Java class. We exercise this solution by feeding it a HL7 

v2.3.1 ADT A01 message through a file and writing transformed message to a file. 

SOA Suite Solution with B2B and Spring Component 

At this point we will add HL7 communication facilities on the inbound and outbound side of the 

transformation to replicate what the complete Java CAPS solution does. 

The Java CAPS HL7 solution, as discussed before, consists of the HL7 inbound and HL7 outbound 

projects, which take care of the HL7-compliant communication, and the HL7 transformation 

project. The schematic below illustrates key components of this solution. 

 

The equivalent SOA Suite solution, which will reuse the JCD transformation code, will look very 

similar, as shown in the following figure. 

Drawing 6: Java CAPS HL7 Solution 

Illustration 73: Output ADT A04 

Illustration 72: Input ADT A01 



 

Page 48 

 

Rather than using pre-built HL7 inbound and outbound projects, the SOA Suite-based solution uses 

the SOA Suite B2B HL7 functionality, with appropriately configured “trading partners” and 

“trading partnership agreements”. I discuss configuration of inbound and outbound B2B HL7 

partnership agreements in various articles at http://blogs.czapski.id.au/?s=oracle+hl7. 

Configure Inbound HL7 Partnership Agreement 

The B2B HL7 Inbound trading partnership agreement is used to configure the infrastructure to 

receive and acknowledge HL7 messages. The article “Oracle SOA Suite 11g HL7 Inbound 

Example” at http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example, 

discusses configuration of the inbound HL7 partnership agreement and a Mediator solution that 

receives messages from it. Please review the article and refer to it as needed. For this article I will 

assume that you have done so and can perform the necessary configuration work based on the brief 

discussion given here. I will be referring to specific section on the “Oracle SOA Suite 11g HL7 

Inbound Example” by page number. 

Page 1, Prepare HL7 Data: Get the archive which contains HL7 A01 messages and extract them as 

suggested. You should already have done that to test the solutions we have been working with so 

far. 

Page 2, Obtain and Explore the HL7 Browser: Get the browser and get familiar with it. 

Page 7, Extract HL7 Message Structure: Follow the steps to export a HL7 ADT A01 message 

structure and save it as ADT_A01.ecs and ADT_A01.xsd. 

Page 12, Configure B2B Partnership: Follow instructions through to page 14 until the document is 

defined in B2B Administration → Document Tab. 

If you don't have a partner for the local side then follow instructions on page 14 and rename 

MyCompany to HL7LocalReceiver partner. If you already have a local partner then use that name. 

If needs be, add identifiers for HL7 Message Application ID of PI and HL7 Message Facility ID of 

MDM, as instructed. 

Continue working through page 14 and add HL7 v2.3.1 ADT A01 document to the list of 

documents that the local trading partner is willing to deal with, if not already there. 

Follow instructions from page 15 through page 20 to set up the HL7RemoteSender partner, if you 

don't already have one, or to confirm that it is set up as indicated, if you do. 

Make sure that the Translate checkbox is not checked in the trading partner agreement. If it is the 

HL7 message will get translated to XML and the project will fail at runtime because the Spring 

component is expecting a HL7 v2.x delimited message, not XML. 

Stop at the end of the section. Do not continue with next section, “Develop Writer Solution”. 

Drawing 7: SOA Suite "Equivalent" reusing JCD transformaiton code 

http://blogs.czapski.id.au/?s=oracle+hl7
http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example


 

Page 49 

Configure Outbound HL7 Partnership Agreement 

The B2B HL7 Outbound trading partnership agreement is used to configure the infrastructure to 

send HL7 messages to external parties and process ACKs. 

As you realise we will be sending out HL7 v2.4 ADT A04 messages, which the Mediator and 

Spring composite produce using the JCD Java transformation code. To support HL7 v2.4 ADT A04 

messages we need to create and export appropriate B2B Specs.. Follow instructions in section 

“Extract HL7 Message Structure” on pages 7 through 11 of the “Oracle SOA Suite 11g HL7 

Inbound Example” at http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example, 

choosing HL7 v 2.4 and ADT A04 instead of the version and event message discussed in the article. 

I assume that by now we have the v24_ADT_A04.ecs and v24_ADT_A04.xsd in 

c:\hl7\ADT_Specs. 

 

Start the B2B Web Console and add the document hierarchy and definition. Administration → 

Document Tab, pages 12-14, choosing HL7 v 2.4 and ADT A04 instead of the version and event 

message discussed in the article. 

 

Now we need to add the ACK document type. Follow the same procedure in B2B Web Console but 

rather than using an externalised ACK document, which we did not prepare, we will use the default 

ACK document. Crate a document type ACK under Protocol Version 2.4. Create a document type 

definition ACK_DocDef, using pre-populated XSD and ECS files. 

Illustration 74: A01 and A04 guidelines 

Illustration 75: ADT A04 added to the global B2B configuration 

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example


 

Page 50 

 

Now the Self partner knows about both version 2.4 documents. 

 

The article “Oracle SOA Suite 11g HL7 Outbound Example” at 

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example, discusses 

configuration of the outbound HL7 partnership agreement and a Mediator solution that sends 

messages to it. Please review the article and refer to it as needed. For this article I will assume you 

have done so and can perform the necessary configuration work based on the brief discussion given 

here. I will be referring to specific section on the “Oracle SOA Suite 11g HL7 Outbound Example” 

by page number, varying names and settings as necessary, in the discussion that follows. 

Page 3, Configure B2B Partnership: Skip all the way to the bottom of page 3 and proceed from 

there, remembering that we are dealing with HL7 v2.4 ADT A04 messages rather than HL7 v2.3.1 

ADT A01 messages. Your local trading partner may also be called something other than 

LocalHL7Receiver. In my screenshots in this article it is called Self, for example. Adjust as 

necessary. Assuming you have a local trading partner configured, whatever its name, as you should 

if you followed this article so far, let's proceed to page 5 to add HL7 2.4 document types to the 

RemoteHL7Sender partner, which we will have if we configured it in the previous section. 

 

Illustration 76: Add ACK document 

Illustration 77: Loal partner knows about new documents 

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-outbound-example


 

Page 51 

 

Proceed to add an outbound channel, page 5. 

Proceed to add a Trading Partnership Agreement, HL7ReceiverOuboundTPA, as discussed on page 

6, making sure to choose ADT_A04_DocType document from HL7 2.4 ADT_A04 node tree. 

Continue configuring as discussed on page 7. Make sure to uncheck both the Translate and the 

Functional Ack checkboxes. We don't want to do the former and we cannot do the later because of 

the former. Once done, save and deploy. 

 

Stop half way through page 10 and do not continue to develop File Reader Solution. 

Add a new Trading Partnership Agreement,  HL7ReceiverOuboundACK_TPA, to handle receipt of 

the ACK form the remote party. 

 

Illustration 78: RemoteHL7Sender knows about ADT A04 and ACK 

Illustration 79: Outbound partnership agreement 



 

Page 52 

 

Add B2B HL7 Support to the Mediator Solution 

B2B HL7 trading partnership agreements for both the inbound and the outbound sides are ready. 

Let's now modify the Mediator solution to use these channels to receive and send HL7 messages. 

We will add new adapters and a simple mediator, which will reuse the Spring Component, to the 

same composite which we developed so far. 

Switch to JDeveloper, locate the project HL7TransformFF and open the composite. Drag the B2B 

Service Adapter from the Component Palette to the Exposed Services swim line. 

Illustration 80: TPA for handling ACKs 



 

Page 53 

 

Configure as follows: 

Service Name HL7TransformFFB2BIn 

Select the B2B Integration Type Default 

AppServe Connection Choose the connection and Test B2B 

Operation Receive 

Document Definition Handling Advanced: Check the Opaque radio button 

Document Definition HL7 → 2.3.1 → ADT_A01 → ADT_A01_DocDef 

 

Drag the B2B Service Adapter to the External References swim line and configure as follows 

Service Name HL7TransformFFB2BOut 

B2B Integration Type Default 

AppServe Connection Choose the connection and Test B2B 

Operation Send 

Document Definition Handling Advanced: Check the Opaque radio button 

Document Definition HL7 → 2.4 → ADT_A04 → ADT_A04_DocDef 

 

Drag a Mediator component onto the components swim line and name it 

HL7TramsformFFB2BMediator. 

Connect the inbound B2B adapter to the new Mediator (HL7TramsformFFB2BMediator). Connect 

the new Mediator to the Spring Component on the canvas. 

Illustration 81: Add B2B Service Adapter to the canvas 



 

Page 54 

 

Allow the wizard to replace the WSDL (not that it should matter). 

 

Double-click the new Mediator to configure its mapping files. Create a new mapping file for the 

request mapping. 

Illustration 83: Allow WSDL replacement 

Illustration 82: Conncet mediator to the inbound B2B adapter and the Spring 

Component 



 

Page 55 

 

As before, copy input to output to pass request data to the HL7Transform Spring Component. 

 

Save and close the mapping file. 

Click on the Target Service button in the Reply part, click the Service button and choose the 

B2BOut service Send operation. 

Illustration 84: Create mapping file for the request 

Illustration 85: Copy input to output for request side 



 

Page 56 

 

Create a new mapper file for the response and copy input to output, as we did before. 

 

 

The outbound Oracle SOA Suite B2B component must pass key pieces of information to the B2B  

runtime to allow it to identify the partnership agreement to use for sending the message.  In addition 

to creating a mapping file that will copy the result of the transformation to the input of the outbound 

B2B adapter we must add the following Assign Values assignments: 

Illustration 86: choose Service Target 

Illustration 87: Create a new mapper file 

Illustration 88: Copy input to output 



 

Page 57 

Expression Property 

oraext:generate-guid() - use expression builder b2b.messageId 

“Name” b2b.fromTradingPartnerIdType 

"Name” b2b.toTradingPartnerIdType 

"RemoteHL7Sender" b2b.toTradingPartnerId 

"Self” (or whatever the local partner name is) b2b.fromTradingPartnerId 

"ADT_A04_DocDef" b2b.documentDefinitionName 

"ADT_A04” b2b.documentTypeName 

"HL7" b2b.documentProtocolName 

"2.4” b2b.documentProtocolVersion 

"1” b2b.messageType 

 

Follow the steps on pages 24 through 26 in the article “Oracle SOA Suite 11g HL7 Inbound 

Example” at http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example, to 

complete this task. 

 

The final composite is shown below. 

Illustration 89: B2B Exchaneg Properties 

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example


 

Page 58 

 

This composite, with two inbound adapters invoking a single service, implements what is referred 

to in EAI as the Service Activator Pattern. 

Deploy this composite. 

To verify that file handing functionality still works submit the test file and observe the outcome. 

To exercise the solution using HL7 externals we can use the HL7 Browser, discussed in the article 

“Oracle SOA Suite 11g HL7 Inbound Example” at http://blogs.czapski.id.au/2010/06/oracle-soa-

suite-11g-hl7-inbound-example, pages 2 through 6. 

Start the HL7 Browser, load the ADT_A01_output_1.hl7 file, start the network utility with the 

receiver configured to listen on port 12122 and the sender configured to send to localhost on port 

12121. Connect both and send a message. 

 

 

Illustration 90: Final composite 

http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example
http://blogs.czapski.id.au/2010/06/oracle-soa-suite-11g-hl7-inbound-example


 

Page 59 

 

 

Click the Send Messages button and observe the outcome. 

 

Illustration 91: 

HL7 Browser configured to send and recive 



 

Page 60 

 

B2B Web Console Reports Tab will show message exchange. 

 

An A01 was received with a pre-set ACK sent and not shown in the list. The SOA Composite 

processed the message, including using the Spring Component to execute the JCD transformation 

logic. This is not shown in the B2B Console. Finally, an A04 message was sent and the ACK was 

received. 

Start the Enterprise Manager and expand the SOA → soa-infra node. Click on Instances Tab and on 

the most recent instance id. 

Illustration 92: ADT A01 Sent and ADT A04 Received 

Illustration 93: Busiess Messages exchanged between partners 



 

Page 61 

 

Execution flow trace is shown. Click on the Mediator link to see details of this instance's execution, 

including messages processed through the solution. 

 

 

Illustration 94: Inspect instance 

Illustration 95: Execution flow trace 



 

Page 62 

 

Explore. 

Summary 

The example developed in this article came from the healthcare domain and used the HL7 OTDs 

(Object Type Definitions). HL7 JCDs and JCDs used for mapping other complex messaging 

standards are good candidates for migrating to the SOA Suite Spring Component as means of 

preserving the transformation code and the effort invested in developing it. The method is 

applicable to all other domains where JCDs with significant transformation and mapping rules 

content are used. 

Discussion in this article addressed a subset of technologies available in the Java CAPS and in the 

SOA Suite. Specifically, the Java Collaboration Definitions supported in Java CAPS 5.x and in Java 

CAPS 6/Repository, and the Spring Component supported in the SOA Suite 11g R1 PS2. Both use 

the Java programming language and related runtime environment to implement processing logic.   

The HL7 eWay and JCD based Java CAPS solution was ported to the Oracle SOA Suite 11g B2B 

and Mediator-based solution. 

The JCD code and class libraries were first externalised and tested as a stand alone Java class. 

The Mediator project was then developed and elaborated to host the JCD code in a Spring 

Component. This project was tested to ensure the port worked. 

Finally, B2B HL7 inbound and outbound were added to replicate the functionality of the end-to-end 

Java CAPS HL7 project with which we started. 

Illustration 96: Instance details of HL7TansformFFB2BMediator 



 

Page 63 

It is clear that certain classes of Java CAPS JCDs can be good candidates for porting to Spring 

Components to protect investment in development of transformation rules. 

 



 

Page 64 

Appendix - HL702Transformer JCD Source 

This code is available in a ZIP archive at http://blogs.czapski.id.au/wp-

content/uploads/2010/09/jcdHL702Transformer.zip. 

 

package HL7TransformerHL702Transformer; 

public class jcdHL702Transformer 

{ 

    public com.stc.codegen.logger.Logger logger; 

    public com.stc.codegen.alerter.Alerter alerter; 

    public com.stc.codegen.util.CollaborationContext collabContext; 

    public com.stc.codegen.util.TypeConverter typeConverter; 

 

    public void receive 

            ( com.stc.connectors.jms.Message input 

            , com.stc.SeeBeyond.OTD_Library.HL7.X_2_3.HL7_23_ADT_A01.ADT_A01 vA01_23 

            , com.stc.SeeBeyond.OTD_Library.HL7.X_2_4.HL7_24_ADT_A04.ADT_A04 vA04_24 

            , com.stc.connectors.jms.JMS vJMSOut ) 

        throws Throwable 

    { 

        vA01_23.unmarshalFromString( input.getTextMessage() ); 

        ; 

        vA04_24.getMSH().setMSH_segment_ID( vA01_23.getMSH().getMSH_segment_ID() ); 

        vA04_24.getMSH().setMsh1FieldSeparator( vA01_23.getMSH().getMsh1FieldSeparator() ); 

        vA04_24.getMSH().setMsh2EncodingCharacters( vA01_23.getMSH().getMsh2EncodingCharacters() ); 

        if (vA01_23.getMSH().hasMsh3SendingApplication()) { 

            if (vA01_23.getMSH().getMsh3SendingApplication().hasHD()) { 

                if (vA01_23.getMSH().getMsh3SendingApplication().getHD().hasN342NamespaceId()) { 

                    vA04_24.getMSH().getMsh3SendingApplication().getHD().setN342NamespaceId( 

vA01_23.getMSH().getMsh3SendingApplication().getHD().getN342NamespaceId() ); 

                } 

            } 

        } 

        if (vA01_23.getMSH().hasMsh4SendingFacility()) { 

            if (vA01_23.getMSH().getMsh4SendingFacility().hasHD()) { 

                if (vA01_23.getMSH().getMsh4SendingFacility().getHD().hasN342NamespaceId()) { 

                    vA04_24.getMSH().getMsh4SendingFacility().getHD().setN342NamespaceId( 

vA01_23.getMSH().getMsh4SendingFacility().getHD().getN342NamespaceId() ); 

                } 

            } 

        } 

        if (vA01_23.getMSH().hasMsh5ReceivingApplication()) { 

            if (vA01_23.getMSH().getMsh5ReceivingApplication().hasHD()) { 

                if (vA01_23.getMSH().getMsh5ReceivingApplication().getHD().hasN342NamespaceId()) { 

                    vA04_24.getMSH().getMsh5ReceivingApplication().getHD().setN342NamespaceId( 

vA01_23.getMSH().getMsh5ReceivingApplication().getHD().getN342NamespaceId() ); 

                } 

            } 

        } 

        if (vA01_23.getMSH().hasMsh6ReceivingFacility()) { 

            if (vA01_23.getMSH().getMsh6ReceivingFacility().hasHD()) { 

                if (vA01_23.getMSH().getMsh6ReceivingFacility().getHD().hasN342NamespaceId()) { 

                    vA04_24.getMSH().getMsh6ReceivingFacility().getHD().setN342NamespaceId( 

http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip
http://blogs.czapski.id.au/wp-content/uploads/2010/09/jcdHL702Transformer.zip


 

Page 65 

vA01_23.getMSH().getMsh6ReceivingFacility().getHD().getN342NamespaceId() ); 

                } 

            } 

        } 

        if (vA01_23.getMSH().hasMsh7DateTimeOfMessage()) { 

            if (vA01_23.getMSH().getMsh7DateTimeOfMessage().hasTS()) { 

                if (vA01_23.getMSH().getMsh7DateTimeOfMessage().getTS().hasN439TimeOfAnEvent()) { 

                    vA04_24.getMSH().getMsh7DateTimeOfMessage().getTS().setN439TimeOfAnEvent( 

vA01_23.getMSH().getMsh7DateTimeOfMessage().getTS().getN439TimeOfAnEvent() ); 

                } 

            } 

        } 

        if (vA01_23.getMSH().hasMsh8Security()) { 

            vA04_24.getMSH().setMsh8Security( vA01_23.getMSH().getMsh8Security() ); 

        } 

        if (vA01_23.getMSH().getMsh9MessageType().hasCM_MSG()) { 

            if (vA01_23.getMSH().getMsh9MessageType().getCM_MSG().hasN223MessageType()) { 

                vA04_24.getMSH().getMsh9MessageType().getMSG().setN223MessageType( 

vA01_23.getMSH().getMsh9MessageType().getCM_MSG().getN223MessageType() ); 

            } 

        } 

        vA04_24.getMSH().getMsh9MessageType().getMSG().setN2TriggerEvent( "A04" ); 

        vA04_24.getMSH().setMsh10MessageControlId( vA01_23.getMSH().getMsh10MessageControlId() ); 

        if (vA01_23.getMSH().getMsh11ProcessingId().hasPT()) { 

            if (vA01_23.getMSH().getMsh11ProcessingId().getPT().hasN231ProcessingId()) { 

                vA04_24.getMSH().getMsh11ProcessingId().getPT().setN231ProcessingId( 

vA01_23.getMSH().getMsh11ProcessingId().getPT().getN231ProcessingId() ); 

            } 

        } 

        vA04_24.getMSH().getMsh12VersionId().getVID().setN362VersionId( "2.4" ); 

        if (vA01_23.getMSH().hasMsh13SequenceNumber()) { 

            vA04_24.getMSH().setMsh13SequenceNumber( vA01_23.getMSH().getMsh13SequenceNumber() ); 

        } 

        if (vA01_23.getMSH().hasMsh14ContinuationPointer()) { 

            vA04_24.getMSH().setMsh14ContinuationPointer( vA01_23.getMSH().getMsh14ContinuationPointer() ); 

        } 

        if (vA01_23.getMSH().hasMsh15AcceptAcknowledgementType()) { 

            vA04_24.getMSH().setMsh15AcceptAcknowledgmentType( 

vA01_23.getMSH().getMsh15AcceptAcknowledgementType() ); 

        } 

        if (vA01_23.getMSH().hasMsh16ApplicationAcknowledgementType()) { 

            vA04_24.getMSH().setMsh16ApplicationAcknowledgmentType( 

vA01_23.getMSH().getMsh16ApplicationAcknowledgementType() ); 

        } 

        if (vA01_23.getMSH().hasMsh17CountryCode()) { 

            vA04_24.getMSH().setMsh17CountryCode( vA01_23.getMSH().getMsh17CountryCode() ); 

        } 

        if (vA01_23.getMSH().hasMsh18CharacterSet()) { 

            vA04_24.getMSH().setMsh18CharacterSet( 0, vA01_23.getMSH().getMsh18CharacterSet() ); 

        } 

        ; 

        vA04_24.getEVN().setEVN_segment_ID( vA01_23.getEVN().getEVN_segment_ID() ); 

        vA04_24.getEVN().setEvn1EventTypeCode( "A04" ); 

        if (vA01_23.getEVN().hasEvn4EventReasonCode()) { 



 

Page 66 

            vA04_24.getEVN().setEvn4EventReasonCode( vA01_23.getEVN().getEvn4EventReasonCode() ); 

        } 

        if (vA01_23.getEVN().hasEvn2RecordedDateTime()) { 

            if (vA01_23.getEVN().getEvn2RecordedDateTime().hasTS()) { 

                if (vA01_23.getEVN().getEvn2RecordedDateTime().getTS().hasN439TimeOfAnEvent()) { 

                    vA04_24.getEVN().getEvn2RecordedDateTime().getTS().setN439TimeOfAnEvent( 

vA01_23.getEVN().getEvn2RecordedDateTime().getTS().getN439TimeOfAnEvent() ); 

                } 

            } 

        } 

        if (vA01_23.getEVN().hasEvn3DateTimePlannedEvent()) { 

            if (vA01_23.getEVN().getEvn3DateTimePlannedEvent().hasTS()) { 

                if (vA01_23.getEVN().getEvn3DateTimePlannedEvent().getTS().hasN439TimeOfAnEvent()) { 

                    vA04_24.getEVN().getEvn3DateTimePlannedEvent().getTS().setN439TimeOfAnEvent( 

vA01_23.getEVN().getEvn3DateTimePlannedEvent().getTS().getN439TimeOfAnEvent() ); 

                } 

            } 

        } 

        if (vA01_23.getEVN().hasEvn5OperatorId()) { 

            if (vA01_23.getEVN().getEvn5OperatorId().hasCN()) { 

                if (vA01_23.getEVN().getEvn5OperatorId().getCN().hasN272SourceTable()) { 

                    for (int i1 = 0; i1 < 1; i1 += 1) { 

                        vA04_24.getEVN().getEvn5OperatorId( i1 ).getXCN().setN272SourceTable( 

vA01_23.getEVN().getEvn5OperatorId().getCN().getN272SourceTable() ); 

                    } 

                } 

                if (vA01_23.getEVN().getEvn5OperatorId().getCN().hasN292IdNumberSt()) { 

                    vA04_24.getEVN().getEvn5OperatorId( 0 ).getXCN().setN292IdNumberSt( 

vA01_23.getEVN().getEvn5OperatorId().getCN().getN292IdNumberSt() ); 

                } 

            } 

        } 

        if (vA01_23.getEVN().hasEvn6EventOccured()) { 

            if (vA01_23.getEVN().getEvn6EventOccured().hasTS()) { 

                if (vA01_23.getEVN().getEvn6EventOccured().getTS().hasN439TimeOfAnEvent()) { 

                    vA04_24.getEVN().getEvn6EventOccurred().getTS().setN439TimeOfAnEvent( 

vA01_23.getEVN().getEvn6EventOccured().getTS().getN439TimeOfAnEvent() ); 

                } 

            } 

        } 

        ; 

        vA04_24.getPID().setPID_segment_ID( vA01_23.getPID().getPID_segment_ID() ); 

        if (vA01_23.getPID().hasPid1SetIdPatientId()) { 

            vA04_24.getPID().setPid1SetIdPid( vA01_23.getPID().getPid1SetIdPatientId() ); 

        } 

        if (vA01_23.getPID().hasPid2PatientIdExternalId()) { 

            if (vA01_23.getPID().getPid2PatientIdExternalId().hasCX()) { 

                if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().hasN297Id()) { 

                    vA04_24.getPID().getPid2PatientId().getCX().setN297Id( 

vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN297Id() ); 

                } 

                if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().hasN281AssigningAuthority()) { 

                    if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN281AssigningAuthority().hasHD()) 

{ 

                        if 

(vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN281AssigningAuthority().getHD().hasN342NamespaceId()) { 



 

Page 67 

                            

vA04_24.getPID().getPid2PatientId().getCX().getN281AssigningAuthority().getHD().setN342NamespaceId( 

vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN281AssigningAuthority().getHD().getN342NamespaceId() ); 

                        } 

                    } 

                } 

                if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().hasN252IdentifierTypeCode()) { 

                    vA04_24.getPID().getPid2PatientId().getCX().setN252IdentifierTypeCodeId( 

vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN252IdentifierTypeCode() ); 

                } 

                if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().hasN237AssigningFacility()) { 

                    if (vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN237AssigningFacility().hasHD()) 

{ 

                        if 

(vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN237AssigningFacility().getHD().hasN342NamespaceId()) { 

                            

vA04_24.getPID().getPid2PatientId().getCX().getN237AssigningFacility().getHD().setN342NamespaceId( 

vA01_23.getPID().getPid2PatientIdExternalId().getCX().getN237AssigningFacility().getHD().getN342NamespaceId() ); 

                        } 

                    } 

                } 

            } 

        } 

        for (int i1 = 0; i1 < vA01_23.getPID().countPid3PatientIdInternalId(); i1 += 1) { 

            if (vA01_23.getPID().getPid3PatientIdInternalId( i1 ).hasCX()) { 

                if (vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().hasN297Id()) { 

                    vA04_24.getPID().getPid3PatientIdentifierList( i1 ).getCX().setN297Id( 

vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().getN297Id() ); 

                } 

                if (vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().hasN281AssigningAuthority()) { 

                    if (vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN281AssigningAuthority().hasHD()) { 

                        if (vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN281AssigningAuthority().getHD().hasN342NamespaceId()) { 

                            vA04_24.getPID().getPid3PatientIdentifierList( i1 

).getCX().getN281AssigningAuthority().getHD().setN342NamespaceId( vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN281AssigningAuthority().getHD().getN342NamespaceId() ); 

                        } 

                    } 

                } 

                if (vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().hasN252IdentifierTypeCode()) { 

                    vA04_24.getPID().getPid3PatientIdentifierList( i1 ).getCX().setN252IdentifierTypeCodeId( 

vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().getN252IdentifierTypeCode() ); 

                } 

                if (vA01_23.getPID().getPid3PatientIdInternalId( i1 ).getCX().hasN237AssigningFacility()) { 

                    if (vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN237AssigningFacility().hasHD()) { 

                        if (vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN237AssigningFacility().getHD().hasN342NamespaceId()) { 

                            vA04_24.getPID().getPid3PatientIdentifierList( i1 

).getCX().getN237AssigningFacility().getHD().setN342NamespaceId( vA01_23.getPID().getPid3PatientIdInternalId( i1 

).getCX().getN237AssigningFacility().getHD().getN342NamespaceId() ); 

                        } 

                    } 

                } 

            } 

        } 

        if (vA01_23.getPID().getPid5PatientName().hasXPN()) { 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN201FamilyName()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 



 

Page 68 

                    vA04_24.getPID().getPid5PatientName( i1 ).getXPN().getN201FamilyName().getFN().setN386Surname( 

vA01_23.getPID().getPid5PatientName().getXPN().getN201FamilyName() ); 

                } 

            } 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN22GivenName()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 

                    vA04_24.getPID().getPid5PatientName( i1 ).getXPN().setN22GivenName( 

vA01_23.getPID().getPid5PatientName().getXPN().getN22GivenName() ); 

                } 

            } 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN23MiddleInitialOrName()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 

                    vA04_24.getPID().getPid5PatientName( i1 

).getXPN().setN23SecondAndFurtherGivenNamesOrInitialsThereof( 

vA01_23.getPID().getPid5PatientName().getXPN().getN23MiddleInitialOrName() ); 

                } 

            } 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN273SuffixEGJrOrIii()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 

                    vA04_24.getPID().getPid5PatientName( i1 ).getXPN().setN273SuffixEGJrOrIii( 

vA01_23.getPID().getPid5PatientName().getXPN().getN273SuffixEGJrOrIii() ); 

                } 

            } 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN235PrefixEGDr()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 

                    vA04_24.getPID().getPid5PatientName( i1 ).getXPN().setN235PrefixEGDr( 

vA01_23.getPID().getPid5PatientName().getXPN().getN235PrefixEGDr() ); 

                } 

            } 

            if (vA01_23.getPID().getPid5PatientName().getXPN().hasN203DegreeEGMd()) { 

                for (int i1 = 0; i1 < 1; i1 += 1) { 

                    vA04_24.getPID().getPid5PatientName( i1 ).getXPN().setN203DegreeEGMd( 

vA01_23.getPID().getPid5PatientName().getXPN().getN203DegreeEGMd() ); 

                } 

            } 

        } 

        if (vA01_23.getPID().hasPid7DateOfBirth()) { 

            if (vA01_23.getPID().getPid7DateOfBirth().hasTS()) { 

                if (vA01_23.getPID().getPid7DateOfBirth().getTS().hasN439TimeOfAnEvent()) { 

                    vA04_24.getPID().getPid7DateTimeOfBirth().getTS().setN439TimeOfAnEvent( 

vA01_23.getPID().getPid7DateOfBirth().getTS().getN439TimeOfAnEvent() ); 

                } 

            } 

        } 

        if (vA01_23.getPID().hasPid8Sex()) { 

            vA04_24.getPID().setPid8AdministrativeSex( vA01_23.getPID().getPid8Sex() ); 

        } 

        if (vA01_23.getPID().hasPid11PatientAddress()) { 

            for (int i1 = 0; i1 < vA01_23.getPID().countPid11PatientAddress(); i1 += 1) { 

                if (vA01_23.getPID().getPid11PatientAddress( i1 ).hasXAD()) { 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN27StreetAddress()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 

).getXAD().getN403StreetAddressSad().getSAD().setN398StreetOrMailingAddress( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN27StreetAddress() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN28OtherDesignation()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN28OtherDesignation( 



 

Page 69 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN28OtherDesignation() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN29City()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN29City( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN29City() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN30StateOrProvince()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN30StateOrProvince( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN30StateOrProvince() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN31ZipOrPostalCode()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN31ZipOrPostalCode( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN31ZipOrPostalCode() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN32Country()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN32Country( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN32Country() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN202AddressType()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN202AddressType( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN202AddressType() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN34OtherGeographicDesignation()) 

{ 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN34OtherGeographicDesignation( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN34OtherGeographicDesignation() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN330CountyParishCode()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN330CountyParishCode( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN330CountyParishCode() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().hasN266CensusTract()) { 

                        vA04_24.getPID().getPid11PatientAddress( i1 ).getXAD().setN266CensusTract( 

vA01_23.getPID().getPid11PatientAddress( i1 ).getXAD().getN266CensusTract() ); 

                    } 

                    if (vA01_23.getPID().getPid11PatientAddress( i1 

).getXAD().hasXAD_sun_unexpected_subcomponent()) { 

                        for (int i2 = 0; i2 < vA01_23.getPID().getPid11PatientAddress( i1 

).getXAD().countXAD_sun_unexpected_subcomponent(); i2 += 1) { 

                            vA04_24.getPID().getPid11PatientAddress( i1 

).getXAD().setN365AddressRepresentationCode( vA01_23.getPID().getPid11PatientAddress( i1 

).getXAD().getXAD_sun_unexpected_subcomponent( i2 ) ); 

                        } 

                    } 

                } 

            } 

        } 

        if (vA01_23.getPID().hasPid16MaritalStatus()) { 

            for (int i1 = 0; i1 < vA01_23.getPID().countPid16MaritalStatus(); i1 += 1) { 

                vA04_24.getPID().getPid16MaritalStatus().getCE_0002().setN391IdentifierSt 

   ( vA01_23.getPID().getPid16MaritalStatus( i1 ) ); 

            } 

        } 

        if (vA01_23.getPID().hasPid18PatientAccountNumber()) { 

            if (vA01_23.getPID().getPid18PatientAccountNumber().hasCX()) { 

                if (vA01_23.getPID().getPid18PatientAccountNumber().getCX().hasN297Id()) { 

                    vA04_24.getPID().getPid18PatientAccountNumber().getCX().setN297Id 

   ( vA01_23.getPID().getPid18PatientAccountNumber().getCX().getN297Id() ); 

                } 



 

Page 70 

            } 

        } 

        if (vA01_23.getPID().hasPid19SsnNumberPatient()) { 

            vA04_24.getPID().setPid19SsnNumberPatient( vA01_23.getPID().getPid19SsnNumberPatient() ); 

        } 

        ; 

        vA04_24.getPV1().setPV1_segment_ID( vA01_23.getPV1().getPV1_segment_ID() ); 

        if (vA01_23.getPV1().hasPv11SetIdPatientVisit()) { 

            vA04_24.getPV1().setPv11SetIdPv1( vA01_23.getPV1().getPv11SetIdPatientVisit() ); 

        } 

        vA04_24.getPV1().setPv12PatientClass( vA01_23.getPV1().getPv12PatientClass() ); 

        ; 

        ; 

        ; 

        String sA04Out = vA04_24.marshalToString(); 

        ; 

        ; 

        com.stc.connectors.jms.Message vJMSMsg = vJMSOut.createTextMessage(); 

        vJMSMsg.setTextMessage( sA04Out ); 

        vJMSOut.sendText( sA04Out ); 

    } 

 

} 


