

Page 1 of 13

Using Properties

for runtime ICAN 5.0.x

JCD Configuration

Michael Czapski

OCTOBER 2004

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 2 of 13

Table of Contents
Introduction... 3

IS JVM Properties ... 4

Setting ... 4

Propagating to Runtime ... 5

Using in a JCD .. 5

Issues .. 5

Static Startup Properties .. 5

Setting ... 6

Propagating to Runtime ... 6

Using in a JCD .. 6

Issues .. 7

Synchronized Version.. 7

Continually Refresh... 8

Setting ... 8

Propagating to Runtime ... 8

Using in a JCD .. 9

Issues .. 9

Refreshed until Disable Refresh Flag... 9

Setting ..10

Propagating to Runtime ..10

Using in a JCD ...10

Issues ...11

Refresh When Changed..11

Setting ..12

Propagating to Runtime ..12

Using in a JCD ...12

Issues ...13

Conclusion ...13

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 3 of 13

Introduction
One of the questions, frequently asked by developers using ICAN Java Collaboration

Definitions, is ‘How do I pass runtime values to a collaboration?’.

The quick answer to this question usually is “can’t do it”. On reflection the answer is

supplemented by “not if you need to comply with the EJB 2.0 spec.”. On further

prodding the answer becomes “there are a bunch of ways, all of which involve

programming and most of which violate EJB 2.0 specification, making the solution

non-J2EE-compliant and, potentially, liable to be broken by a product upgrade”. One

must further say that there may be legitimate reasons to break the rules, so long as the

rule breaker understands and accepts the implications.

Given this, why would one bother? There may be reasons why one would need to pass

runtime values to Java collaboration.

The most obvious one is the need to avoid hard-coding configuration information. The

reason might be that the site cannot afford to re-activate the solution containing the

collaboration each time a volatile configuration item, such as file location, server port

number, password, or similar piece of information used at runtime, changes. Another

reason might be that a change to a Java collaboration is a change and the code change

must go through change control procedures, testing, whatever, making it hard to

respond to events in a timely manner and increasing the likelihood of introducing

issues to a running production system.

This document discusses some of the ways of setting and passing runtime

configuration values to Java Collaboration Definitions.

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 4 of 13

IS JVM Properties
A Java program can access runtime properties of the JVM, like “user.home”,

“user.name”, “os.name”, that are either ‘built-in’ or specified on the invocation

command line.

ICAN 5.0.4 provides an Integration Server property that allows specification of

additional “JVM Args”. These JVM Args are passed to the JVM as part of the

command and are added to “system properties” that can be queried at runtime.

Setting

Figure 1 Integration Server in the Environment

Figure 2 Integration Server Properties

Figure 3 Adding a name/value pair

Note that the name/value pair takes the form “-Dname=value”.

Whilst there appears to be no limit to the number of name/value pairs that one can

specify one ought to exercise caution as there may be limits to the length of the OS

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 5 of 13

command line that can be constructed. These name/value pairs get added to the java

command that runs the Integration Server class.

Propagating to Runtime

Once set, the value can only be propagated to the runtime environment by performing

‘Apply’ for the Logical Host to which the Integration Server belongs, or by shutting

down the Logical Host and re-bootstrapping it with the ‘-f’ options, forcing reload of

the entire deployment. In effect doing ‘apply’ causes re-start of the solution.

Figure 4 Apply changes to IS Properties

Using in a JCD

Suppose you have 2 variables defined in your JVM Agrgs property, mcz_jvm_var and

mcz_jvm_arg2. To access their values at runtime from a JCD you would add code

similar to the following:

String mcz_jvm_var = System.getProperty("mcz_jvm_var");

String mcz_jvm_arg2 = System.getProperty("mcz_jvm_arg2");

You would then do with the String values whatever you need.

Issues

Uncertainty as to how many properties can be set this way has already been

mentioned. To err on the side of caution one would set few properties with short

values.

The properties, set through the “JVM Args” property of the Integration Server, are

‘static’ in the sense that they cannot be changed at runtime. Furthermore a

deployment, deployed to the particular integration server, must be re-

deployed/reactivated or the logical host has to be re-loaded for the changes to take

effect. This effectively shuts down the logical hosts and re-boots it.

Static Startup Properties
It may be that a Java collaboration requires a set of configuration values to be passed

to it at startup. The properties are kept in a properties file somewhere in the file

system. Where one keeps the properties file determines how one can access it at

runtime.

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 6 of 13

If the properties file sits in some arbitrary place in the file system one must tell the

JCD where to find it. One can either hardcode the path in the JCD or pass its value at

runtime using a “JVM Args” property to the Integration Server.

In 5.0.4, if the properties file sits in a directory that is included in the IS classpath it

can be accessed by just the file name, which needs be hardcoded, derived or passed

via “JVM Args” property. Some reasonable places to put the properties file are

<LogicalHostRoot>/logicalhost/logconfigs/IS_<integrationServerName> and

<LogicalHostRoot>/logicalhost/stcis,

In 5.0.5 one must add the directory in which the properties file lives to the classpath

explicitly by setting the ‘Startup Classpath Prepend’ or ‘Startup Classpath Append’

property of the Integration Server so that it includes this directory.

Setting

Create a properties file, called my.properties, in one of the recommended locations,

with the following text:

prop_01 = This is prop_01 value
prop_02 = 123456

Propagating to Runtime

There is nothing to propagate to the runtime environment unless one uses the JVM

Args to pass the file location to the JCD. If so then the same steps apply as in the

previous discussion. If the properties file is accessed via the classpath, the file is

already where it needs to be.

Using in a JCD

Create a new Java Collaboration Definition, jcdProperties02, with whatever input,

manipulation and output OTDs might be required.

In “Source Code Mode” add the following Java code just before the ‘receive’ method:

private static final String sPropFileName = "my.properties";

private static String prop_01 = null;

private static String prop_02 = null;

public jcdProperties02()

throws Exception

{

java.util.Properties props = new java.util.Properties();

try {

props.load(this.getClass().getClassLoader().getResourceAsStream(sPropFileName));

prop_01 = props.getProperty("prop_01");

prop_02 = props.getProperty("prop_02");

} catch (java.io.IOException ioe) {

String sMsg = "Properties File [" + sPropFileName + "] not found in classpath ";

alerter.critical(sMsg);

throw new Exception(sMsg, ioe);

}

}

Note the sPropFileName constant hardcoding the name of the properties file.

Note private static String variables that will hold the values of the two properties of

interest.

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 7 of 13

Note that JCD’s public constructor is used to read the properties file, which is

expected to reside in the classpath, into a Properties object, than the individual

properties are extracted and set as values of the class variables.

In the ‘receive’ method one accesses the value of each property in a normal fashion,

for example:

String sSomeValue = “This is property value “ + prop_01 + “ and the other “ + prop_02;

It must be noted that if the properties file is not available at the time the JCD object is

created the EJB that attempts to create it will throw an exception because the JCD’s

constructor throws an exception.

Issues

This technique contravenes at least two rules set forth in the EJB 2.0 Specification,

Runtime Restrictions. This makes the solution that uses this technique non-EJB

compliant.

The code, as shown, is not thread-safe. So long as there are no multiple threads

concurrently setting/reading property values all will be well. If thread-safe access is

required appropriate synchronisation techniques will need to be employed.

Properties set this way are ‘static’ in the sense that any changes to the properties file

will not be propagated to the running JCD because the properties file is read and

parsed at JCD object creation time (in the constructor).

It must be noted that the ‘static’ characteristic of the property values persists across

‘shutdown’/’startup’ cycle of the collaboration when performed through the

Enterprise Manager. The only way to ‘refresh’ the values is to re-deploy the project

that contains the JCD or to re-bootstrap the logical host.

Synchronized Version

The following code demonstrates synchronized access to class variables and ought to

be thread-safe.

private static final String sPropFileName = "my.properties";

private static String prop_01 = null;

private static String prop_02 = null;

private synchronized void setProp_01(String sProp_01) {

 prop_01 = sProp_01;

}

private synchronized String getProp_01() {

 return prop_01;

}

private synchronized void setProp_02(String sProp_02) {

 prop_02 = sProp_02;

}

private synchronized String getProp_02() {

 return prop_02;

}

public jcdProperties02()

 throws Exception

{

 // logger.info("in jcdProperties02 constructor - doing properties stuff");

 java.util.Properties props = new java.util.Properties();

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 8 of 13

 try {

 props.load(this.getClass().getClassLoader().getResourceAsStream(sPropFileName));

 setProp_01(props.getProperty("prop_01"));

 setProp_02(props.getProperty("prop_02"));

 } catch (java.io.IOException ioe) {

 String sMsg = "Properties File [" + sPropFileName + "] not found in classpath ";

 // alerter.critical(sMsg);

 throw new Exception(sMsg, ioe);

 }

}

Here is the code to access property values at runtime:

String sSomeValue = “Value “ + getProp_01() + “ and the other “ + getProp_02();

Continually Refresh
It may be that a Java collaboration requires a set of configuration values to be passed

to it at runtime and that any changes to the configuration values be used by the JCD as

soon as available. The properties are kept in a properties file somewhere in the file

system. Where one keeps the properties file determines how one can access it at

runtime.

If the properties file sits in some arbitrary place in the file system one must tell the

JCD where to find it. One can either hardcode the path in the JCD or pass its value at

runtime using a “JVM Args” property to the Integration Server.

In 5.0.4, if the properties file sits in a directory that is included in the IS classpath it

can be accessed by just the file name, which needs be hardcoded, derived or passed

via “JVM Args” property. Some reasonable places to put the properties file are

<LogicalHostRoot>/logicalhost/logconfigs/IS_<integrationServerName> and

<LogicalHostRoot>/logicalhost/stcis,

In 5.0.5 one must add the directory in which the properties file lives to the classpath

explicitly by setting the ‘Startup Classpath Prepend’ or ‘Startup Classpath Append’

property of the Integration Server so that it includes this directory.

This technique causes the properties to be ‘refreshed’ from the properties file each

time through the collaboration. This is as dynamic as it gets.

Setting

Create a properties file, called my.properties, in one of the recommended locations,

with the following text:

prop_01 = This is prop_01 value

prop_02 = 123456

Propagating to Runtime

There is nothing to propagate to the runtime environment unless one uses the JVM

Args to pass the file location to the JCD. If so then the same steps apply as in the

previous discussion. If the properties file is accessed via the classpath the file already

is where it needs to be.

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 9 of 13

Using in a JCD

Create a new Java Collaboration Definition, jcdProperties03, with whatever input,

manipulation and output OTDs might be required.

In “Source Code Mode” add the following Java code just before the receive method:

private static final String sPropFileName = "my.properties";

private String prop_01 = null;

private String prop_02 = null;

private java.util.Properties props = new java.util.Properties();

In the ‘receive’ method, at the beginning, insert the following code:

// load properties each time through the collaboration

try {

 props.load(this.getClass().getClassLoader().getResourceAsStream(sPropFileName));

 prop_01 = props.getProperty("prop_01");

 prop_02 = props.getProperty("prop_02");

} catch (java.io.IOException ioe) {

 String sMsg = "Properties File [" + sPropFileName + "] not found in classpath ";

 throw new Exception(sMsg, ioe);

}

Here is the code to access property values some time later in the code:

String sSomeValue = “Value “ + prop_01 + “ and the other “ + prop_02;

Issues

This technique contravenes at least two rules set forth in the EJB 2.0 Specification,

Runtime Restrictions. This makes the solution that uses this technique non-EJB

compliant.

Each time through the JCD, the properties file is found, loaded and reinterpreted.

Depending on the performance requirements and the size of the properties file this

may be unacceptable from the performance stand point. If there are no changes to the

properties file the work of refreshing properties each time is wasted.

Refreshed until Disable Refresh Flag
It may be that a Java collaboration requires a set of configuration values to be passed

to it at runtime and that any changes to the configuration values be used by the JCD as

soon as available. The properties are kept in a properties file somewhere in the file

system. Where one keeps the properties file determines how one can access it at

runtime.

If the properties file sits in some arbitrary place in the file system one must tell the

JCD where to find it. One can either hardcode the path in the JCD or pass its value at

runtime using a “JVM Args” property to the Integration Server.

In 5.0.4, if the properties file sits in a directory that is included in the IS classpath it

can be accessed by just the file name, which needs be hardcoded, derived or passed

via “JVM Args” property. Some reasonable places to put the properties file are

<LogicalHostRoot>/logicalhost/logconfigs/IS_<integrationServerName> and

<LogicalHostRoot>/logicalhost/stcis,

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 10 of 13

In 5.0.5 one must add the directory in which the properties file lives to the classpath

explicitly by setting the ‘Startup Classpath Prepend’ or ‘Startup Classpath Append’

property of the Integration Server so that it includes this directory.

This technique causes the properties to be ‘refreshed’ from the properties file each

time through the collaboration until a flag is set to stop. Once stopped, the refresh

process can only be re-started by re-booting the logical host or re-activating the

deployment.

Setting

Create a properties file, called my.properties, in one of the recommended locations,

with the following text:

prop_01 = This is prop_01 value

prop_02 = 123456

keep_refreshing = TRUE

Propagating to Runtime

There is nothing to propagate to the runtime environment unless one uses the JVM

Args to pass the file location to the JCD. If so then the same steps apply as in the

previous discussion. If the properties file is accessed via the classpath the file already

is where it needs to be.

Using in a JCD

Create a new Java Collaboration Definition, jcdProperties03, with whatever input,

manipulation and output OTDs might be required.

In “Source Code Mode” add the following Java code just before the receive method:

private static final String sPropFileName = "my.properties";

private static String prop_01 = null;

private static String prop_02 = null;

java.util.Properties props = new java.util.Properties();

private static boolean blKeepRefreshing = true;

public synchronized boolean isKeepRefreshing() {

 return blKeepRefreshing;

}

public synchronized void setKeepRefreshing(boolean keep_refreshing) {

 blKeepRefreshing = keep_refreshing;

}

private synchronized void setProp_01(String sProp_01) {

 prop_01 = sProp_01;

}

private synchronized String getProp_01() {

 return prop_01;

}

private synchronized void setProp_02(String sProp_02) {

 prop_02 = sProp_02;

}

private synchronized String getProp_02() {

 return prop_02;

}

In the ‘receive’ method, at the beginning, insert the following code:

if (isKeepRefreshing()) {

 // load properties each time through the collaboration until told to stop

 // the keep_refreshing property, when set to anything other than

 // (case insensitive) true, t, 1 or -1 will stop refresh

 try {

 props.load(this.getClass().getClassLoader().getResourceAsStream(sPropFileName));

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 11 of 13

 setProp_01(props.getProperty("prop_01"));

 setProp_02(props.getProperty("prop_02"));

 String keep_refreshing = props.getProperty("keep_refreshing");

 if (keep_refreshing != null

 && !java.util.regex.Pattern.matches("(?i)true|1|-1|(?i)t", keep_refreshing)) {

 setKeepRefreshing(false);

 }

 } catch (java.io.IOException ioe) {

 String sMsg = "Properties File [" + sPropFileName + "] not found in classpath";

 throw new Exception(sMsg, ioe);

 }

}

Here is the code to access property values some time later in the code:

String sSomeValue = “Value “ + getProp_01() + “ and the other “ + getProp_02();

This collaboration will refresh the properties as long as the ‘keep_refreshing” property

is missing or is set to TRUE, true, T, t, -1 or 1. When it gets set to any other value,

next time the collaboration reloads the properties it will unset the keeprefreshing flag

and will skip refresh code from then on.

This technique is good for development and experimentation as once the property

values settle, the refreshing cycle can be disabled.

Issues

This technique contravenes at least two rules set forth in the EJB 2.0 Specification,

Runtime Restrictions. This makes the solution that uses this technique non-EJB

compliant.

Once the refresh cycle is disabled it cannot be re-enabled without re-booting the

logical host or re-activating deployment.

Refresh When Changed
It may be that a Java collaboration requires a set of configuration values to be passed

to it at runtime and that any changes to the configuration values be used by the JCD

when indicated. The properties are kept in a properties file somewhere in the file

system. Where one keeps the properties file determines how one can access it at

runtime.

If the properties file sits in some arbitrary place in the file system one must tell the

JCD where to find it. One can either hardcode the path in the JCD or pass its value at

runtime using a “JVM Args” property to the Integration Server.

In 5.0.4, if the properties file sits in a directory that is included in the IS classpath it

can be accessed by just the file name, which needs be hardcoded, derived or passed

via “JVM Args” property. Some reasonable places to put the properties file are

<LogicalHostRoot>/logicalhost/logconfigs/IS_<integrationServerName> and

<LogicalHostRoot>/logicalhost/stcis,

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 12 of 13

In 5.0.5 one must add the directory in which the properties file lives to the classpath

explicitly by setting the ‘Startup Classpath Prepend’ or ‘Startup Classpath Append’

property of the Integration Server so that it includes this directory.

This technique causes the properties to be ‘refreshed’ from the properties file when

the properties file changes.

Setting

Create a properties file, called my.properties, in one of the recommended locations,

with the following text:

prop_01 = This is prop_01 value

prop_02 = 123456

Propagating to Runtime

There is nothing to propagate to the runtime environment unless one uses the JVM

Args to pass the file location to the JCD. If so then the same steps apply as in the

previous discussion. If the properties file is accessed via the classpath the file already

is where it needs to be.

Using in a JCD

Create a new Java Collaboration Definition, jcdProperties03, with whatever input,

manipulation and output OTDs might be required.

In “Source Code Mode” add the following Java code just before the receive method:

private static final String sPropFileName = "my.properties";

private static String prop_01 = null;

private static String prop_02 = null;

private static java.io.File flFile = null;

private static long lastModified = 0;

java.util.Properties props = new java.util.Properties();

private synchronized void setProp_01(String sProp_01) {

 prop_01 = sProp_01;

}

private synchronized String getProp_01() {

 return prop_01;

}

private synchronized void setProp_02(String sProp_02) {

 prop_02 = sProp_02;

}

private synchronized String getProp_02() {

 return prop_02;

}

private synchronized void setFile(java.io.File pflFile) {

 flFile = pflFile;

}

private synchronized java.io.File getFile() {

 return flFile;

}

private synchronized void setLastModified(long lLastModified) {

 lastModified = lLastModified;

}

private synchronized long getLastModified() {

 return lastModified;

}

In the ‘receive’ method, at the beginning, insert the following code:

ClassLoader cl = this.getClass().getClassLoader();

// first time init?

SeeBeyond Asia Pacific Special Projects Unit

Using Properties for runtime ICAN 5.0.x JCD Configuration

Page 13 of 13

if (getLastModified() == 0) {

 java.net.URL url = cl.getResource(sPropFileName);

 setFile(new java.io.File(url.getPath()));

}

// has the file changed?

if (getLastModified() < getFile().lastModified()) {

 setLastModified(getFile().lastModified());

 try {

 props.load(cl.getResourceAsStream(sPropFileName));

 setProp_01(props.getProperty("prop_01"));

 setProp_02(props.getProperty("prop_02"));

 } catch (java.io.IOException ioe) {

 String sMsg = "Properties File [" + sPropFileName + "] not found in classpath";

 throw new Exception(sMsg, ioe);

 }

}

// do whatever needs doing

Here is the code to access property values some time later in the code:
String sSomeValue = “Value “ + getProp_01() + “ and the other “ + getProp_02();

This collaboration will refresh the properties each time it detects that the properties

file was modified.

This technique can be combined with elements of the previous technique such that

when the property values settle the refresh can be disabled by a property setting.

Issues

This technique contravenes at least two rules set forth in the EJB 2.0 Specification,

Runtime Restrictions. This makes the solution that uses this technique non-EJB

compliant.

The ‘last modified time’ is obtained each time through the collaboration. This imposes

an overhead that may or may not be acceptable depending on the circumstances.

Conclusion
Examples provided in this paper illustrate some of the techniques that may be used to

supply a Java Collaboration Definition with configuration values at runtime. From an

EJB compliance standpoint there are other ways to do this which are more or less

legitimate, however most of the techniques presented here contravene Runtime

Restrictions set forth in the EJB 2.0 Specification. Breaking the rules may be

appropriate in specific circumstances as long as the rule breaker is aware of the rules

and understands and accepts the consequences.

