Message Exchange Patterns

8o
A

svi_jcdSimpleScheduler gechedulerMessageCut

cScheduler

Configuration |E]|E] |E] || |§|
&2 schedule LIk
2 Daily attime Seconds |30]

O 1 Weekly on day

—IE3 Monthly by date

1 tonthly by week
1 Yearly by date

O Yearly by waek

O Fraguency in hours
-3 Fregquency in minutes
-3 Frequency in seconds

Create a deployment profile, build and deploy the solution. Use the
Enterprise Manager to inspect messages in gSchedulerMessageOut.

Note that the scheduler configuration is not particularly
sophisticated and the content on the input message is the literal
string “StaticString”.

@@@ talk briefly obout implementing a hearbeat with external
scheduke for cron-like functionality @@@@@

@@O@@@@@@@

[TBD]

9.4 Request/Reply

Some messaging solutions require that the recipient be active at the
time of send, thereby guaranteeing to the sender that the message
was received by the recipient. BEA MessageQ, a proprietary system
from BEA Inc., is one such system. Other messaging solutions
operate on a fire-and-forget, or a store-and-forward basis,
expecting the messaging infrastructure to deliver each message to
the intended recipient whether that recipient is active at the time of
send or not. JMS is one such system. The major difference, from
the architectural perspective, is the timing. In the former case a
message is delivered ‘immediately’ or fails ‘immediately’ so the
sender can branch as appropriate upon sending the message. In the
latter case the message is delivered to the messaging system,
which ‘immediately’ acknowledges that is has taken the
responsibility for delivery to the ultimate recipient. That delivery,
however, may take some time if the recipient is not active for some
time or may not take place at all if the recipient never appears. The
sender will never know what the ultimate outcome was.

In some situations a solution may be architected such that major
pieces of functionality are built as functions, modules or services,

56

Message Exchange Patterns

accepting some input message, performing some processing and
producing some result. It is necessary, to implement such
components, that the invocation mechanism allows the invoker to
invoke a component, provide the input data it needs, wait for the
execution to complete and receive the result. This interaction is
what [EIP] calls the Request/Reply pattern.

In general, one could implement a request/reply pattern using any
end-points, with or without messaging infrastructure, as long as the
requestor was engineered to make a request, wait for the reply and
receive it. Even file exchange can support the request/reply pattern.
In fact the Australian Energy Industry-developed HokeyPokey
protocol uses the File Transfer Protocol (FTP) to implement a
request/reply pattern for submitting XML documents. The sending
component places a file containing an XML Document in a ‘malibox’
of an Energy Hub, then polls the ‘outbox’ at the Energy Hub for an
Acknowledgment file. The exchange is not complete until the
Acknowledgment file is received or a timeout occurs. This is a
classic request/reply implementation.

Java CAPS provides a number of mechanisms to implement
Request/Reply pattern. Which of the different mechanisms is
appropriate will depend on the problem that needs to be solved.
Whilst, as said previously, any end-point type can be used to
implement the request/reply pattern, we will discuss only the more
common/useful/interesting mechanisms - JMS Request/Reply, HTTP
Request/Reply. SOAP Request/Reply, Web Service Invocation and
TCP/IP Request Reply.

9.4.1JIMS Request/Reply

Whilst JMS is typically used to build store-and-forward messaging
solutions, it also supports implementation of Request/Reply
solutions using Temporary JMS Destinations. In Java CAPS a Java
Collaboration can both be a requester and a responder in a
request/reply configuration. An elnsight Business Process can only
be a responder since no elnsight service exists that would allow an
elnsight BP to invoke JMS Request/Reply functionality. All is not
lost, however. Since an elnsight Business Process can invoke a ‘New
Web Service’ Java Collaboration as an activity, and a Java
Collaboration can invoke JMS Request/Reply functionality a JCD
‘wrapper’ can be used to overcome this limitation.

Picture the following models:

57

Message Exchange Patterns

Simple Request/Reply

JMS Request/Reply
Invoker
JCD

Extended Request/Reply

JMS Request/Reply
Invoker
JCD

= —

‘Normal’ Temporary ‘Normal’ Temporary
Queue Queue Queue Queue
“Normal’
Queue

JMSRZ esc:)l:)ensdtleljeply IntermjgigterBrgcessor <
The receive method of a Java Collaboration that serves as a
Responder in the simple Request/Reply model would look like this:

JMS Request/Reply
Responder

JCD or BP JCD or BP

15 public wvoid receive

16 (com. stc. connectors. jus.Message input

17 ,Com. Sto.commectors. jms. JMS W_JIMH3Response)

15 throws Throwabhle

19 {

Z0 ;

21 A4 extract reguest from input JM5 message

22 String sJMSEequest = input.getTextMessage!):

e '

24 A process message content

z5 3tring sIM3Response = sIM3Requestc. tolpperCase ()

26 H

27 A7 detarnin wherther to send response to a specific destination
g A or to the default Conpectivity Map destination

Z9 String sReplyTo = input.getMessageProperties|).getReplyTol);
a0 if (sReplyTo '=s nmull && sReplyTo.lemgthi() > 0) {

31 ;

32 S have return address — set destination to return response to where it is expected
33 H

34 W_JM3Response.setDestination| sReplyTo):

35 3

36 H

37 A send response

35 W_JM3Response.sendText [sJM3Response | ;

39 :

40 }

Needless to say a responder in a real solution would do something
more interesting that converting the request string to upper case.

Note that this particular collaboration could be used as both a
request/reply responder and as a ‘regular’ ‘pick form one JIMS
Destination and deliver to another JMS Destination’ collaboration.

By obtaining the value of the JMS ReplyTo property in the input
message (line 29) and setting it as a destination for the response
message (line 34) we are turning this collaboration into a
request/response processor. If the component that submitted a
message, which this collaboration is operating upon, did not set the
ReplyTo property, the condition would be false and the response
would go to the JMS Destination configured in the Connectivity Map.

58

Message Exchange Patterns

Notice also that this collaboration does not need to be the one that
directly interacts with the JMS Destinations set up by the requestor,
as shown in the Extended Request/Reply model. There could be
other collaborations and business processes operating on the
message, with multiple JMS Destinations between the requestor and
responder. As long as each component in the chain took care to
propagate the value of the original ReplyTo property, set by the
requestor, the response would still get delivered to the original
requestor. Propagation of the ReplyTo, and other JMS Message
properties requires a bit more work, as much as two extra lines:

15 public woid receive

15 [com, 3tc, connectors. jus. Message input

17 ,COIL. 3tC. connectors. jus. JMS W_JHSResponse |

LG throws Throwahle

19 i

Z0 H

21 A/ extract request from input JMS message

ZZ 3tring sIMSRequest = input.getTextMessage () :

23 ;

24 A process message conbtent

25 String sJMEResponse = sTM3Request.tolpperCase() :

26 H

Z7 A create & OMS message to send out and populate it with the payload
28 A7 and ReplyTo proerty value

29 H

50 COl. StC. CcONNectors. jns.Meszage jmsResponse = W_JMiResponse.createTextMessage () ;
31 jnsResponse. setTextMessage [sTM3Response)

G2 JjusResponse. getMessageProperties () .setReplyTo | input.getMessageProperties () .getReplyToi())
33 H

54 A send response

535 W_JMSEesponse.semd| jmsFEesponse);

36 H

37 1

In the previous example the sendText() method of the JIMS
Connector object was used to directly send the response string. In
order to set properties a message object is required (line 40). The
payload and the properties of the object are set (lines 41 and 42)
and the message object is sent using the send() method. Needless
to say other properties, including User-defined properties can be set
before sending the message.

The JMS Request/Reply functionality relies on Java CAPS creating a
Temporary JMS Destination, under the hood as it were, and
transparently setting the ReplyTo property of the request message
to the name of that destination. The requestReply() method puts
the request message to a regular JMS Destination, named in the
Connectivity Map and performs a blocking receive on the temporary
destination. Once the message is received, or the time expires, the
call returns to the collaboration.

The receive method of a basic Java Collaboration that invokes a JMS
Request/Reply functionality would look like this:

59

Message Exchange Patterns

15 public void receive

16 [com.stc.connector.appconn. file. FileTextMeszage input

17 OO0, 3tC. connectors. jus. JM3 JUSRRClient

15 ,COLL. StCc.connector. appconn. £ile. Filedpplication W_toFile)

19 throws Throwable

20 !

21 String sRequestText = input.getText ()

22 H

23 final int TIMEOUT IN MILLI3 = 1000 * 30 % 1;

24 H

25 S create @ JEM Text Message and populate it using input data

26 H

27 Com. 3to. connectors, jns. Message jmsRequest = JMARREClient.createTextMessage () ;
28 jnsEequest.setTextMessage | sRequestText) :

29 jnsFemquest.storellserProperty| "MyProertylane™, "MyPropertyValues"™) :
30 H

31 A invoke JMS Request Reply functionality

32 H

33 com. 3tc. connectors. Jns. Message jmsResponse

34 = IMSERClient.requestReply(_TIMEOUT_IN MILLI3_, jmsRedquest);
35 H

36 A process response, including empty response 1f request times oud
37 H

35 if (junsResponse == null) |

39 throw new javax.jns.JMSException| "Timed out waiting for BEesponse™ 1;
40 i

41 String sResponse = junsResponse.getTextMessage ()

4z H

43 W_toFile.setText | sResponse):

44 W_toFile.wwite();

45 H

46 1

A7

This collaboration is triggered by a File eWay and ultimately writes
its output to a file using a File eWay. The content of the input file is
set as the content of a request message. The JMS Request/Reply
method is invoked with a timeout and a request message. The
method will return a JMS message with the response or null if
timeout occurred. The input message could be delivered by means
other than a File eWay, and it could be pre-processed before being
sent as a request. The response could be pos-processed and sent to
some destination other than a File eWay. The point is that a JMS
Request/Reply client is quite simple to implement in a Java
Collaboration.

For the Simple Request/Reply model the connectivity Map will look
like this:

svcMSRegRessry dDummyResponseMeverllzed

of5 p—o D@]{D/D o5 P

cFileFeader JMSRegRespCl cFileEater

60

Message Exchange Patterns

Note the final gDummyResponseNeverUsed. This JMS Destination is
never used because the collaboration explicitly sends the response
message to the JMS Destination whose name is specified in the JMS
ReplyTo property - in this case it will be the name of the temporary
destination created for the requester by the JMS Message Server.
Note also that the Connectivity Map, which could otherwise be used
as a good reflection of real connections, no longer accurately
depicts the interactions that take place. The literal ‘Dummy’ is
added to the name of the unused destination to give a strong hint
that code may have to be inspected to discover what is actually
happening. We could have, without loss of functionality, produced a
Connectivity Map where the output of the service svcJMSReqResSrv
would be connected to the gSimpleRequestReply. This could,
perhaps be better for the simple case as it would suggest a
request/response relationship.

impleRequestReply

_— ya _
o p—O—R)p o ::Lm B>
cFileFeeder JMSRegRespCl cFileEater

For Extended Request/Reply mode the Connectivity Map will look
like this:

2
Dy ResponseMeversed

£l f _
aPréservePropsGueu i o W
i)
sveMSReqResSrvPreserve svrM3ReqResSry

[JE\D—D—D@)(D—LD—EJE\D

cFileFeader avilMERegRespCl cFileEater

Here too we could have connected the output of svcJMS RegResSvc
service to gPreservePropsQueue, to suggest that request/response
pattern is used.

61

Message Exchange Patterns

o %{a P

cFileFeeder v MEReqRespCli cFileEater

An important property of the temporary queue, created by the requestReply()
method, is that it exists only as long as its creator exists. In this case, if the
collaboration that invokes the requestReply() method exits, because the
requestReply() timed out, for example, the temporary queue will be
destroyed. If the responding service attempts to put a response message to
the response queue it will receive an exception because the temporary
response queue no longer exists. This is a very desirable characteristic in
request/response scenarios where requestor will not wait longer than a certain
amount of time. If appropriately designed, the responder will discard late
responses on exception. Note, however, that the responses may be lost by
design. Not also that should the system fail, whilst request processing is in
progress, message loss will occur.

Much as a Java Collaboration can be used to implement the
responder logic so too an elnsight Business Process can be used for
this purpose. Similarly, and even more simply than in the case of a
Java Collaboration, the ReplyTo property needs be copied from the
input JMS Message to the Destination property of the output JMS
Message. The infrastructure will take care of the rest.

62

Message Exchange Patterns

o % @88 e GoBRsduataE O~ 0 0
Oe I> D@bn ap@p O

=tart JMS receive Business Rule JWS =end End

K| I | dﬂ

Business Rule Designer
'E'El X Conversion ¥ = Datetime ¥ = Operator ¥ ~ Boolean % = Sitring ¥ ~ Modes % = Murr

. | T -

Business Process Attributes Buziness Process Attributes

.T= JhiS receive Output Jru'IS.send.Input-':

¢—lﬁ Meszage WS Lﬁ—¢

Eﬂ UserProperty deliveryhode &

MeszageProperies priority @

— 4 ComelationlD timeToLive @

— 4 ComnelationlDAsBytes destination @

— 4 Deliverytode Message lﬂ

— @ Destination

— & Expiration

— @ Messagell

— @ Priority

— @ Redelivered

-

— 4@ Timestamp

— @ Type

— ¥ IMSMessageType

— ¥ BytesMeszage

— @ TexMessage

Where building a JMS Request/Reply responder in elnsight is easy,
building a JMS Request/Reply requestor is perhaps harder than it
needs to be. As mentioned before, it is necessary to write a Java
Collaboration to wrap the call to the JMS requestResponse() method
and invoke that collaboration as an activity in the business process.
The collaboration will look almost exactly like the one presented
earlier except it will be designed as a “New Web Service”
collaboration, and the input and output will be message structures
rather than connectors. How to create an OTD to use as the input
and output will not be covered here. Let’s just assume we have a
user-defined OTD that represents a string.

| Object Type Definition—————

Internal | External Cﬂ LdtString

@ value

Here is a schematic of a Business Process-based JMS
Request/Response solution discussed in the following section:

63

Message Exchange Patterns

Java Collaboration Invoker

Java Collaboration Invoker
Business Process

Business Process

JMS Request/Reply JMS Request/Reply
Wrapper JCD Wrapper JCD

‘Permanent’ Temporary ‘Normal’
Queue Queue Queue

Temporary
Queue

JMS';\; e;:)l:)ensdt;l?eply Intermediate Processor “Normal’ JMS;} Zc:)lgiztlel'?’eply
JCD or BP JeDEre QueLs JCD or BP

et’s create the JMS Request/Response Wrapper Collaboration:

Enter Collaboration Hame and Type

nter Name and_Type Flease enter a name for the Collaboration
SelectVWeb Service

Dperation ta implement
Select OTDs

Caollaboration Name: icdJMSRERWrapper
Weh Service Type

(@ [Mew: Create a new YWeb Service operation|

(O Existing: Implement an existing Weh Service operation

[] Callable as an external SOAP Weh Service

| <Back |[ne-)| Einisn || cancel ||

Enter Operation Name for this Collaboration {Java)

nter Hame and Type

nter Operation Name
Select Input Message
Select Qutput Message
Select OTD=

Qperation Name: [imsReguestReply

<Back || Mest= || Finish || cancel |[Help

64

Message Exchange Patterns

pps

Select Input Message

Enter Mame and Type

Enter Operation Mame
Select Input Message
Select Qutput Message
Select OTDs=

Look in: |E| RequestReply E| |i| @
tE [= udtString

Mame: |udtString

Type: |Web Service Message

pps

<Back || Met> || Finisn || cancel || Help

Select Output Message

Enter Mame and Type
Enter Operation Mame
Select Input Messane
Select Output Message
Select OTDs

Loak in: |E| RequestReply E| |i| @
tE & udtString

Mame: |udt8tring

Type: |Web Senice Message

<gack || Met> || Fmisn || cancel || Hem

65

Message Exchange Patterns

Steps Select OTDs to be used in this Collahoration

Enter Marme and Type

Enter Operation Mame Look in: | eGate E| |E| @

Select Input Message

Select Output Message =
Select OTDs OTDLead

S8 JIMe
B8 Scheduler

Marne: |JMS

Type: |ObjectT\,rpe Definition

Add
Selected OTDs

oTD | Instance Mame
SeeBeyond eGate JMS UMSRRClient

Remaove

| <Back || nea= |[_Finish
15 public void jmsRequestReply
16 {udl.udtitring 3045858860, Tdtatring input
17 sudl.udtitring 3045858869 . Tdtatring output
13 SOOI, Sto. connectors, jus. JMS JMSClient)
19 throws Throwable
Z0 {
21 Gtring sRequestText = input.getWalue();
22 ;
23 final int TIMEOUT IN MILLIZ = 1000 * 30 * 1:
24 H
Z5 S5 cregte @ J5M Text Message and populate it using input data
26 ;
27 com. 3tc.connectors. jus.Message jmsRecquest = JHi3Client.createTextMessage!|) ;
28 jusRequest.setTextMessage | sRequestText |
29 ;
30 S invoke JMS Request Reply functionality
31 ;
32 COl. STC.CONNectors, jus.Message jusResponse
33 = JMiClient.requestReply| TIMEOUT IN MILLI3 , jmsEequest):
54 H
35 /S process resporse, including cmpty response if reguest times out
1 H
37 if [(jmsResponse == null) !
38 throw new javax.jus.JMSException| "Tiwed out waiting for Responsze™):
39 3
A0 String sResponse = junsResponse.getTextMessage () ;
41 ;
42 output.setValue | sResponse) !
L] i

66

Message Exchange Patterns

Now drag the JCD operation onto the Business Process Editor
canvas, assign input, use output and complete the process as might
be required.

O [> D@I} o o §B) o F7)e 9

Sl FileClient recsive Business Rule jedMSRRWrapp FilaClient write S

et
jmERequestReply

[| I D)

Business Rule Designer

'EE' x Conversion ¥ -~ Datetime ¥ -~ Operator % -~ Boaolean % - Siring % = Nodes % - Mumhber %

e | e

é' Business Process Attributes Business Process Attributes
(= -T: jeddMSRRWrapperjmsRequestReply. Input jeddMSRRWrapperjmsRequestReply.Input .T:
= -'[: joddMSRRWrapperjmsRequestReply. Output udtString Iﬁ—¢
= -T:jcdJMSRRllll'rapper.jmsRequestReply.FauIt Value @ -
= .'[= FilaCliant.receive. Output
@
@ byteAray
@ encoding
2= 12 FileClientrite. Input
2= 12 FileClientwite. Output
O -T: FileCliantwrite . Fault

The Connectivity Map is shown below. This Connectivity Map
includes all components involved in the example. Since the client
components and the server are sharing a JMS Destination the client
components could be deployed using separate Connectivity Map and
Deployment Profile from the server components.

67

Message Exchange Patterns

cFileEater

=]

cFileEater|cFil SRegRespCl

cFileFeeder

svedMSRegRespCh

ezpCli_cFileFeeder

& sve MSRegRespCli A
Rule: [bpJMSRegRespCli |2 @
Implemented Services Invvoked Services b
A [=FileSender FileSender . [2FileRe.. FileRe... | p—
[@icdIMS... jeddMS . | p—

Q’ svedMSERWrapper

E

Fule : |jcd.JMSRRWrapper

L
| Juua

JImplernented Services

Invoked Services

a [FudtString input @ [udtString output
eony| 82 UMS IMSCIH..
apper_gsimpleRequestReply
A
gSimpleReguestRaply
- I B a@ TS} =y

aSimleReas e SR e b — HASReaqResp o

We b svcMSReqRespSry A v|3\-'u:.JMSRe‘ill?espSrv_qSimpIeRequestRepl\;
Rule: [bpJMSRegRespSw [g
Implemented Services Invoked Services
5 [2MSDe.. JMSDe. ..

= dMSSource JM3Source

Ultimately, whether the responder is implemented as a Java
Collaboration or a Business Process with a Java wrapper, the JMS-
based Request/Response pattern can be used to construct reusable
components.

The requestReply() method uses a temporary JMS Destination,
whose name is transparently set in the request message and is later
used by the responder as the destination for responses. As
mentioned, the temporary destination, and the messages within it,
will be destroyed when the collaboration that created it exits. Since
the name of the temporary JIMS Destination is transparently
generated and set in the ReplyTo property of the outgoing message
it will @) be different from invocation to invocation and b) only the
recipient of the message will have access to it. Note, also, that the
requestReply() method variant, used in sample code, specifies a
timeout parameter. The value of that parameter must be large
enough to guarantee delivery of responses in normal circumstances.

68

Message Exchange Patterns

The discussion above uses a somewhat awkward term JMS Destination to
name what one would naturally call a Queue. This is because in the Java
Collaboration code samples and Business Process screenshots there is no
distinction between Queues and Topics, both of which are JMS Destinations. It
is not until the Connectivity Map is being constructed that the actual JMS
Destination type is specified. This is handy as the code is generic and
destination type independent and because the same code, if general enough,
can be used in solutions using Queues and ones using Topics.

A form of an Auction Pattern, where the fastest responder wins,
would be an interesting application of a JMS Request/Reply pattern,
which uses Topics rather than Queues, and has multiple responders
configured in the Connectivity Map. Here is the Connectivity Map:

0 b=
Ed
cFileEater
svodMIRegResSrv04

JMS will deliver a copy of each message to all subscribers. Once a
subscriber/responder completes the request and submits the
response the requestor will complete, causing the temporary Topic,
and any responses from other respondents, to be destroyed. The
multiple responders could be deployed to different Integration
Servers, likely on different physical machines, thus distributing
workload so as to get the best response time possible. The
Connectivity Map explicitly specifies 4 responders. To make this
solution more flexible one would break up the Connectivity Map into
two, a Requestor and a Responder, and create as many Responder
Deployment Profiles as might be desired. Responders could then be
added and removed by deploying and un-deploying Responder
deployments.

Requestor Connectivity Map:

69

Message Exchange Patterns

— A+
Ed 5 Ld Sl
cFileFeeder JMSRegRespCl tSimpleRequestReply

O |
a
cFileEater

Responder Connectivity Map:

ATy
tSimpleRegquestReply

This implementation is very wasteful of resources because all
responders eventually perform all the work required to process all
messages, only to have all but one response discarded. If fastest
possible response or fault tolerance is needed, however, this kind of
implementation may be appropriate.

An important point to note about the IJMS requestReply() method is
that, at leastthrough version 5.1.1, both the requestor and the
responder JMS Clients must be deployed to the same Message Server.
If the responder must be deployed to a different JVM then other
request/reply mechanisms must be considered instead.

9.4.2HTTP Request/Reply

The Hypertext Transfer Protocol (HTTP) is the embodiment of the
Request/Reply pattern. A HTTP GET or a HTTP POST request is
submitted to a HTTP Server, which returns a response. The
expression HTTP Server is used deliberately to describe a server
that implements the HTTP Protocol. To use the expression Web
Server would be to invite confusion. Event in the early days of HTTP
0.9 a HTTP Server could return content other than text/html, which
is what a '‘web page’, as implied in the expression ‘web server’,
would be. With support for the Multipurpose Internet Mail
Extensions (MIME) content-type specification and handling, the
range of content types that can be returned by a HTTP Server is
virtually limitless. These properties of HTTP are taken advantage of
to implement Request/Response solutions that deal with content
other than the Hypertext Markup Language [HTML401]. HTTP
makes provisions for PUT, DELETE, TRACE, CONNECT and OPTIONS

70

