
Message Exchange Patterns

56

Create a deployment profile, build and deploy the solution. Use the

Enterprise Manager to inspect messages in qSchedulerMessageOut.

Note that the scheduler configuration is not particularly

sophisticated and the content on the input message is the literal

string “StaticString”.

@@@ talk briefly obout implementing a hearbeat with external

scheduke for cron-like functionality @@@@@
@@@@@@@@@@

[TBD]

9.4 Request/Reply

Some messaging solutions require that the recipient be active at the

time of send, thereby guaranteeing to the sender that the message

was received by the recipient. BEA MessageQ, a proprietary system

from BEA Inc., is one such system. Other messaging solutions
operate on a fire-and-forget, or a store-and-forward basis,

expecting the messaging infrastructure to deliver each message to

the intended recipient whether that recipient is active at the time of

send or not. JMS is one such system. The major difference, from

the architectural perspective, is the timing. In the former case a

message is delivered ‘immediately’ or fails ‘immediately’ so the

sender can branch as appropriate upon sending the message. In the
latter case the message is delivered to the messaging system,

which ‘immediately’ acknowledges that is has taken the

responsibility for delivery to the ultimate recipient. That delivery,

however, may take some time if the recipient is not active for some
time or may not take place at all if the recipient never appears. The

sender will never know what the ultimate outcome was.

In some situations a solution may be architected such that major

pieces of functionality are built as functions, modules or services,

Message Exchange Patterns

57

accepting some input message, performing some processing and

producing some result. It is necessary, to implement such
components, that the invocation mechanism allows the invoker to

invoke a component, provide the input data it needs, wait for the

execution to complete and receive the result. This interaction is

what [EIP] calls the Request/Reply pattern.

In general, one could implement a request/reply pattern using any

end-points, with or without messaging infrastructure, as long as the

requestor was engineered to make a request, wait for the reply and

receive it. Even file exchange can support the request/reply pattern.

In fact the Australian Energy Industry-developed HokeyPokey

protocol uses the File Transfer Protocol (FTP) to implement a

request/reply pattern for submitting XML documents. The sending

component places a file containing an XML Document in a ‘malibox’

of an Energy Hub, then polls the ‘outbox’ at the Energy Hub for an

Acknowledgment file. The exchange is not complete until the

Acknowledgment file is received or a timeout occurs. This is a

classic request/reply implementation.

Java CAPS provides a number of mechanisms to implement

Request/Reply pattern. Which of the different mechanisms is

appropriate will depend on the problem that needs to be solved.
Whilst, as said previously, any end-point type can be used to

implement the request/reply pattern, we will discuss only the more

common/useful/interesting mechanisms – JMS Request/Reply, HTTP

Request/Reply. SOAP Request/Reply, Web Service Invocation and

TCP/IP Request Reply.

9.4.1 JMS Request/Reply

Whilst JMS is typically used to build store-and-forward messaging

solutions, it also supports implementation of Request/Reply

solutions using Temporary JMS Destinations. In Java CAPS a Java

Collaboration can both be a requester and a responder in a

request/reply configuration. An eInsight Business Process can only

be a responder since no eInsight service exists that would allow an

eInsight BP to invoke JMS Request/Reply functionality. All is not
lost, however. Since an eInsight Business Process can invoke a ‘New

Web Service’ Java Collaboration as an activity, and a Java

Collaboration can invoke JMS Request/Reply functionality a JCD

‘wrapper’ can be used to overcome this limitation.

Picture the following models:

Message Exchange Patterns

58

JMS Request/Reply

Invoker

JCD

‘Normal’

Queue

Temporary

Queue

JMS Request/Reply

Responder

JCD or BP

JMS Request/Reply

Invoker

JCD

‘Normal’

Queue

Temporary

Queue

JMS Request/Reply

Responder

JCD or BP

Intermediate Processor

JCD or BP

‘’Normal’

Queue

Simple Request/Reply Extended Request/Reply

The receive method of a Java Collaboration that serves as a

Responder in the simple Request/Reply model would look like this:

Needless to say a responder in a real solution would do something

more interesting that converting the request string to upper case.

Note that this particular collaboration could be used as both a

request/reply responder and as a ‘regular’ ‘pick form one JMS

Destination and deliver to another JMS Destination’ collaboration.

By obtaining the value of the JMS ReplyTo property in the input

message (line 29) and setting it as a destination for the response

message (line 34) we are turning this collaboration into a

request/response processor. If the component that submitted a

message, which this collaboration is operating upon, did not set the

ReplyTo property, the condition would be false and the response

would go to the JMS Destination configured in the Connectivity Map.

Message Exchange Patterns

59

Notice also that this collaboration does not need to be the one that

directly interacts with the JMS Destinations set up by the requestor,
as shown in the Extended Request/Reply model. There could be

other collaborations and business processes operating on the

message, with multiple JMS Destinations between the requestor and

responder. As long as each component in the chain took care to
propagate the value of the original ReplyTo property, set by the

requestor, the response would still get delivered to the original

requestor. Propagation of the ReplyTo, and other JMS Message

properties requires a bit more work, as much as two extra lines:

In the previous example the sendText() method of the JMS

Connector object was used to directly send the response string. In
order to set properties a message object is required (line 40). The

payload and the properties of the object are set (lines 41 and 42)

and the message object is sent using the send() method. Needless

to say other properties, including User-defined properties can be set

before sending the message.

The JMS Request/Reply functionality relies on Java CAPS creating a

Temporary JMS Destination, under the hood as it were, and

transparently setting the ReplyTo property of the request message

to the name of that destination. The requestReply() method puts

the request message to a regular JMS Destination, named in the

Connectivity Map and performs a blocking receive on the temporary

destination. Once the message is received, or the time expires, the

call returns to the collaboration.

The receive method of a basic Java Collaboration that invokes a JMS

Request/Reply functionality would look like this:

Message Exchange Patterns

60

This collaboration is triggered by a File eWay and ultimately writes

its output to a file using a File eWay. The content of the input file is
set as the content of a request message. The JMS Request/Reply

method is invoked with a timeout and a request message. The

method will return a JMS message with the response or null if

timeout occurred. The input message could be delivered by means
other than a File eWay, and it could be pre-processed before being

sent as a request. The response could be pos-processed and sent to

some destination other than a File eWay. The point is that a JMS

Request/Reply client is quite simple to implement in a Java

Collaboration.

For the Simple Request/Reply model the connectivity Map will look
like this:

Message Exchange Patterns

61

Note the final qDummyResponseNeverUsed. This JMS Destination is

never used because the collaboration explicitly sends the response
message to the JMS Destination whose name is specified in the JMS

ReplyTo property – in this case it will be the name of the temporary

destination created for the requester by the JMS Message Server.

Note also that the Connectivity Map, which could otherwise be used
as a good reflection of real connections, no longer accurately

depicts the interactions that take place. The literal ‘Dummy’ is

added to the name of the unused destination to give a strong hint

that code may have to be inspected to discover what is actually

happening. We could have, without loss of functionality, produced a

Connectivity Map where the output of the service svcJMSReqResSrv

would be connected to the qSimpleRequestReply. This could,

perhaps be better for the simple case as it would suggest a

request/response relationship.

For Extended Request/Reply mode the Connectivity Map will look

like this:

Here too we could have connected the output of svcJMS ReqResSvc

service to qPreservePropsQueue, to suggest that request/response
pattern is used.

Message Exchange Patterns

62

Much as a Java Collaboration can be used to implement the
responder logic so too an eInsight Business Process can be used for

this purpose. Similarly, and even more simply than in the case of a

Java Collaboration, the ReplyTo property needs be copied from the

input JMS Message to the Destination property of the output JMS

Message. The infrastructure will take care of the rest.

An important property of the temporary queue, created by the requestReply()

method, is that it exists only as long as its creator exists. In this case, if the

collaboration that invokes the requestReply() method exits, because the

requestReply() timed out, for example, the temporary queue will be

destroyed. If the responding service attempts to put a response message to

the response queue it will receive an exception because the temporary

response queue no longer exists. This is a very desirable characteristic in

request/response scenarios where requestor will not wait longer than a certain

amount of time. If appropriately designed, the responder will discard late

responses on exception. Note, however, that the responses may be lost by

design. Not also that should the system fail, whilst request processing is in

progress, message loss will occur.

Message Exchange Patterns

63

Where building a JMS Request/Reply responder in eInsight is easy,

building a JMS Request/Reply requestor is perhaps harder than it

needs to be. As mentioned before, it is necessary to write a Java

Collaboration to wrap the call to the JMS requestResponse() method

and invoke that collaboration as an activity in the business process.

The collaboration will look almost exactly like the one presented

earlier except it will be designed as a “New Web Service”

collaboration, and the input and output will be message structures

rather than connectors. How to create an OTD to use as the input

and output will not be covered here. Let’s just assume we have a
user-defined OTD that represents a string.

Here is a schematic of a Business Process-based JMS

Request/Response solution discussed in the following section:

Message Exchange Patterns

64

Java Collaboration Invoker

Business Process

JMS Request/Reply

Wrapper JCD

‘Permanent’

Queue

Temporary

Queue

JMS Request/Reply

Responder

JCD or BP

‘Normal’

Queue

Temporary

Queue

JMS Request/Reply

Responder

JCD or BP

Intermediate Processor

JCD or BP

‘’Normal’

Queue

Java Collaboration Invoker

Business Process

JMS Request/Reply

Wrapper JCD

Let’s create the JMS Request/Response Wrapper Collaboration:

Message Exchange Patterns

65

Message Exchange Patterns

66

Message Exchange Patterns

67

Now drag the JCD operation onto the Business Process Editor

canvas, assign input, use output and complete the process as might
be required.

The Connectivity Map is shown below. This Connectivity Map

includes all components involved in the example. Since the client

components and the server are sharing a JMS Destination the client

components could be deployed using separate Connectivity Map and

Deployment Profile from the server components.

Message Exchange Patterns

68

Ultimately, whether the responder is implemented as a Java

Collaboration or a Business Process with a Java wrapper, the JMS-

based Request/Response pattern can be used to construct reusable

components.

The requestReply() method uses a temporary JMS Destination,

whose name is transparently set in the request message and is later

used by the responder as the destination for responses. As

mentioned, the temporary destination, and the messages within it,
will be destroyed when the collaboration that created it exits. Since

the name of the temporary JMS Destination is transparently

generated and set in the ReplyTo property of the outgoing message

it will a) be different from invocation to invocation and b) only the

recipient of the message will have access to it. Note, also, that the

requestReply() method variant, used in sample code, specifies a

timeout parameter. The value of that parameter must be large
enough to guarantee delivery of responses in normal circumstances.

Message Exchange Patterns

69

A form of an Auction Pattern, where the fastest responder wins,

would be an interesting application of a JMS Request/Reply pattern,
which uses Topics rather than Queues, and has multiple responders

configured in the Connectivity Map. Here is the Connectivity Map:

JMS will deliver a copy of each message to all subscribers. Once a

subscriber/responder completes the request and submits the

response the requestor will complete, causing the temporary Topic,

and any responses from other respondents, to be destroyed. The

multiple responders could be deployed to different Integration

Servers, likely on different physical machines, thus distributing

workload so as to get the best response time possible. The

Connectivity Map explicitly specifies 4 responders. To make this

solution more flexible one would break up the Connectivity Map into
two, a Requestor and a Responder, and create as many Responder

Deployment Profiles as might be desired. Responders could then be

added and removed by deploying and un-deploying Responder

deployments.

Requestor Connectivity Map:

The discussion above uses a somewhat awkward term JMS Destination to

name what one would naturally call a Queue. This is because in the Java

Collaboration code samples and Business Process screenshots there is no

distinction between Queues and Topics, both of which are JMS Destinations. It

is not until the Connectivity Map is being constructed that the actual JMS

Destination type is specified. This is handy as the code is generic and

destination type independent and because the same code, if general enough,

can be used in solutions using Queues and ones using Topics.

Message Exchange Patterns

70

Responder Connectivity Map:

This implementation is very wasteful of resources because all

responders eventually perform all the work required to process all
messages, only to have all but one response discarded. If fastest

possible response or fault tolerance is needed, however, this kind of

implementation may be appropriate.

9.4.2 HTTP Request/Reply

The Hypertext Transfer Protocol (HTTP) is the embodiment of the
Request/Reply pattern. A HTTP GET or a HTTP POST request is

submitted to a HTTP Server, which returns a response. The

expression HTTP Server is used deliberately to describe a server

that implements the HTTP Protocol. To use the expression Web

Server would be to invite confusion. Event in the early days of HTTP

0.9 a HTTP Server could return content other than text/html, which

is what a ‘web page’, as implied in the expression ‘web server’,
would be. With support for the Multipurpose Internet Mail

Extensions (MIME) content-type specification and handling, the

range of content types that can be returned by a HTTP Server is

virtually limitless. These properties of HTTP are taken advantage of

to implement Request/Response solutions that deal with content

other than the Hypertext Markup Language [HTML401]. HTTP

makes provisions for PUT, DELETE, TRACE, CONNECT and OPTIONS

An important point to note about the JMS requestReply() method is

that, at leastthrough version 5.1.1, both the requestor and the

responder JMS Clients must be deployed to the same Message Server.
If the responder must be deployed to a different JVM then other

request/reply mechanisms must be considered instead.

