
Chapter 1, 1 

Streaming Large FTP Transfers 
using Java CAPS 5.1.x and 6 

Michael.Czapski@sun.com, April 2008 

TABLE OF CONTENTS 

1 Introduction ................................................................................................................................................. 1 
2 Batch FTP eWay Read Timing Parameters................................................................................................. 2 
3 Streaming from FTP Server to Local File System....................................................................................... 3 
4 Streaming from Local File System to FTP Server....................................................................................... 5 
5 Empirical Timings....................................................................................................................................... 7 
6 Summary ..................................................................................................................................................... 8 

 

1 Introduction 

Transferring large payloads, on the order of tens or hundreds of megabytes, between a FTP 
server and a local file system, in either direction, requires selection of appropriate features of the 
Batch FTP and Batch Local File eWays, and tuning certain timing parameters. 

Default timing parameter values result in timeout exceptions when transferring large 
payloads.  

The Batch FTP eWay and the Batch Local File eWas are typically used to receive the entire 
payload before writing it out. This results in attempts to allocate memory many time the size of 
the payload being transferred and, for large files, causes memory exhaustion and application 
server failures.  

This text points out which timing parameters need to be tuned to facilitate transfer of large 
payloads. It also presents sample Java code that uses facilities of the Batch FTP and Batch Local 
File for streaming payload between the FTP server and the local file systems without using 
excessive amount of memory. 

The material covered here was prepared using Java CAPS projects developed and tested in 
Java CAPS 5.1.0, exported, imported into Java CAPS Release 6 and tested again. It is expected 
that the code presented below will work in all versions of Java CAPS from 5.1.0 up. 



Chapter 1, 2 

2 Batch FTP eWay Read Timing Parameters 

Reading and writing large payloads using the Batch FTP eWay may result in read and socket 
timeouts. To address this issue the eWay timers must be increased to accommodate longer 
transfer times.  

The Batch FTP eWay External System Container does not have any transfer-related timer 
properties. 

The Batch FTP eWay Connector in the Connectivity Map, shown in Figure 1 in the Java 
CAPS Release 6 IDE but also the same in Java CAP 5.1.x, has a configurable Data Connection 
Timeout property.  

 
Figure 1 Data Connection Timeout Batch FTP eWay Connector property 

Setting the Data Connection Timeout property on the Batch FTP eWay Connector to a value 
larger then the default 45 seconds does not eliminate timeout exceptions if the transfer time 
exceeds 45 seconds. This is because there are two other properties, which can only be configured 
programmatically, that affect transfer timeouts. 

Assuming the Batch FTP eWay is added to a Java Collaboration and named vFTPIn, the three 
properties being set in Listing 1 must be configured to the appropriate values to ensure timeout 
exception does not occur. Here iTimeoutMillis is a class variable set to the desired timeout value.  

Listing 1 Timeout properties 

vFTPIn.getConfiguration().setDataConnectionTimeout( iTimeoutMillis ); 
vFTPIn.getProvider().setDataSocketTimeout( iTimeoutMillis ); 



Chapter 1, 3 

vFTPIn.getProvider().setSoTimeout( iTimeoutMillis ); 

The first property, DataConnectionTimeout is the same as the Data Connection Timeout 
property of the connector in the Connectivity Map. The other two properties can only be set 
programmatically. 

3 Streaming from FTP Server to Local File System 

Data streaming features of the Batch FTP and the Batch Local File eWays can be used to 
stream data from the source to the destination. This is different from what one would normally 
do, that is get the entire payload then put it to the file system, which if fine for small payloads but 
disaster-prone for large payloads.  

Streaming keeps memory consumption to a minimum and allows transfer of arbitrarily large 
payloads.  Relevant statements from a Java Collaboration are reproduced in Listing 2. The 
project, of which this code is a part, is provided as an addendum to this document. 

Listing 2 Java code for streaming FTP to Local File System transfer 

com.stc.eways.common.eway.standalone.streaming.OutputStreamAdapter osa = null; 
osa = vLocalFileOut.getClient().getOutputStreamAdapter(); 
vFTPIn.getClient().setOutputStreamAdapter( osa ); 
vFTPIn.getClient().get(); 

We first set the Batch FTP OTD instance’s OutputStreamAdapter to the value of the Batch 
Local File OTD instance’s OutputStreamAdapter. This will cause the Batch FTP eWay to stream 
data to the Batch Local File. 

The Batch FTP OTD Client’s get() method causes the streaming operation to be executed. 

That’s it! This code will stream arbitrarily large payloads from a FTP server to the local file 
system. 

The four lines of code could have been compressed to two by directly providing the Local 
File OTD’s OutputStreamAdapter to the FTP OTD’s OutputStreamAdapter setter. The code is 
shown over multiple lines for readability. 

Listing 3 shows a sample Java Collaboration that hardcodes the file names and directory 
paths, configures read timeout properties, executes streaming transfer and logs some timing 
statistics.  

Listing 3 Sample FTP to Local File Streaming Collaboration 

public void receive 
    ( com.stc.connector.appconn.file.FileTextMessage input 
    , com.stc.eways.batchext.BatchFtp vFTPIn 
    , com.stc.eways.batchext.BatchLocal vLocalFileOut ) 
        throws Throwable 
{ 
    try { 
        long lStartMillis = System.currentTimeMillis(); 
        int iTimeoutMillis = 40 * 60 * 1000; 
        ; 
        vFTPIn.getConfiguration().setTargetDirectoryName( "//" ); 
        vFTPIn.getConfiguration().setTargetDirectoryNameIsPattern( false ); 
        vFTPIn.getConfiguration().setTargetFileName( "eGate_User_Guide_SRE.pdf" ); 
        vFTPIn.getConfiguration().setTargetFileName( "JavaCAPS.exe" ); 
        vFTPIn.getConfiguration().setTargetFileName( "JCAPS6_M8_clean_new.7z" ); 



Chapter 1, 4 

        vFTPIn.getConfiguration().setTargetFileNameIsPattern( false ); 
        ; 
        String sFileName = vFTPIn.getConfiguration().getTargetFileName();  
        ; 
        vLocalFileOut.getConfiguration().setTargetFileName( sFileName ); 
        vLocalFileOut.getConfiguration().setTargetFileNameIsPattern( false ); 
        vLocalFileOut.getConfiguration().setTargetDirectoryName( "g:/____FileIn" ); 
        vLocalFileOut.getConfiguration().setTargetDirectoryNameIsPattern( false ); 
        vLocalFileOut.getConfiguration().setPostDirectoryName( "g:/____FileIn" ); 
        vLocalFileOut.getConfiguration().setPostDirectoryNameIsPattern( false ); 
        vLocalFileOut.getConfiguration().setPostFileName( "%f.done" ); 
        vLocalFileOut.getConfiguration().setPostFileNameIsPattern( true ); 
        vLocalFileOut.getConfiguration().setPostTransferCommand( "rename" ); 
        vLocalFileOut.getConfiguration().setResumeReadingEnabled( true ); 
        logger.debug( "\n===>>>" + vLocalFileOut.getConfiguration().toString() ); 
        ; 
        ; 
        vFTPIn.getConfiguration().setDataConnectionTimeout( iTimeoutMillis ); 
        vFTPIn.getProvider().setDataSocketTimeout( iTimeoutMillis ); 
        vFTPIn.getProvider().setSoTimeout( iTimeoutMillis ); 
        ; 
        com.stc.eways.common.eway.standalone.streaming.OutputStreamAdapter osa = null; 
        osa = vLocalFileOut.getClient().getOutputStreamAdapter(); 
        vFTPIn.getClient().setOutputStreamAdapter( osa ); 
        vFTPIn.getClient().get(); 
        ; 
        long lMillis = System.currentTimeMillis() - lStartMillis; 
        int iSeconds = 0; 
        int iMinutes = 0; 
        int iHours = 0; 
        iSeconds = (int) (lMillis / 1000); 
        iMinutes = iSeconds / 60; 
        iHours = iMinutes / 60; 
        logger.debug( "\n===>>> Execution took " + lMillis + " Milliseconds" ); 
        logger.debug( "\n===>>> Execution took " + iSeconds + " Seconds" ); 
        logger.debug( "\n===>>> Execution took " + iMinutes + " Minutes" ); 
    } catch ( Exception e ) { 
        logger.error( "Exception somewhere performing transfer", e ); 
        return; 
    } 
    ; 
} 

Rather then hardcoding file and path values you can statically configure them through the 
Connectivity Map Connectors for the Batch FTP and Batch Local File eWay.  

The Collaboration is triggered by a File eWay. A presence of a named file will cause the 
collaboration to start, configure the FTP eWay, configure the Local File eWay, execute transfer 
and log statistics. The collaboration could have been triggered by a Scheduler eWay, a JMS 
message or some other means that are appropriate to your solution.  

Note that while the pre- and post-transfer activities are not performed in the FTP eWay some 
string must be statically configured for the pre- and post-transfer file name and directory in the 
FTP eWay connector to avoid warnings at runtime.  

Note that while we dynamically configure the file name and the directory it is necessary to 
also specify some string for the target file name and the target directory properties of the FTP 
eWay connector to avoid runtime error. 

As a teaser, Figure 2 shows what a Project Explorer and the Java Collaboration Editor look 
like in Java CAPS Release 6 ☺ 



Chapter 1, 5 

 
Figure 2 Java Collaboration Editor in Java CAPS Release 6 

Java CAPS Release 6 supports both the “CAPS Repository-based” projects, which is what the 
5.1.x style projects are called, and the regular, repository-less projects. 

This project was developed and exercised in Java CAPS 5.1.0, exported, imported into Java 
CAPS Release 6, Milestone 8, built and exercised. No changes were required to make this 
happen. 

4 Streaming from Local File System to FTP Server 

Relevant statements from a Java Collaboration used to stream data from a file in a local file 
system to an FTP Server are reproduced in Listing 4. The Java CAPS Release 6 CAPS 
Repository-based project, of which this code is a part, is provided as an addendum to this 
document. 

Listing 4 Java code for streaming Local File to FTP transfer 

com.stc.eways.common.eway.standalone.streaming.InputStreamAdapter isa = null; 
isa = vLocalFileIn.getClient().getInputStreamAdapter(); 
vFTPOut.getClient().setInputStreamAdapter( isa ); 
vFTPOut.getClient().put(); 

We first set the Batch FTP OTD instance’s InputStreamAdapter to the value of the Batch 
Local File OTD instance’s InputStreamAdapter. This will cause the Batch FTP eWay to stream 
data from the Batch Local File. 

The Batch FTP OTD Client’s put() method causes the streaming operation to be executed. 



Chapter 1, 6 

That’s it! This code will stream arbitrarily large payloads from a local file system to a FTP 
Server. 

The four lines of code could have been compressed to two by directly providing the Local 
File OTD’s InputStreamAdapter to the FTP OTD’s InputStreamAdapter setter. The code is 
shown over multiple lines for readability. 

Listing 5 shows a sample Java Collaboration that hardcodes the file names and directory 
paths, configures transfer timeout properties, executes streaming transfer and logs some timing 
statistics.  

Listing 5 Sample Local File to FTP Streaming Collaboration 

public void receive 

    ( com.stc.connector.appconn.file.FileTextMessage input 

    , com.stc.eways.batchext.BatchLocal vLocalFileIn 

    , com.stc.eways.batchext.BatchFtp vFTPOut ) 

        throws Throwable 

{ 

    long lStartMillis = System.currentTimeMillis(); 

    int iTimeoutMillis = 40 * 60 * 1000; 

 

    try { 

        vLocalFileIn.getConfiguration().setTargetFileName( "eGate_User_Guide_SRE.pdf.done" ); 

        vLocalFileIn.getConfiguration().setTargetFileName( "JavaCAPS.exe.done" ); 

        vLocalFileIn.getConfiguration().setTargetFileName( "JCAPS6_M8_clean_new.7z.done" ); 

        vLocalFileIn.getConfiguration().setTargetFileNameIsPattern( false ); 

        vLocalFileIn.getConfiguration().setTargetDirectoryName( "g:/____FileIn" ); 

        vLocalFileIn.getConfiguration().setTargetDirectoryNameIsPattern( false ); 

        vLocalFileIn.getConfiguration().setPostDirectoryName( "g:/____FileIn" ); 

        vLocalFileIn.getConfiguration().setPostDirectoryNameIsPattern( false ); 

        vLocalFileIn.getConfiguration().setPostFileName( "%f.done" ); 

        vLocalFileIn.getConfiguration().setPostFileNameIsPattern( true ); 

        vLocalFileIn.getConfiguration().setPostTransferCommand( "rename" ); 

        vLocalFileIn.getConfiguration().setResumeReadingEnabled( true ); 

        logger.debug( "\n===>>>" + vLocalFileIn.getConfiguration().toString() ); 

 

        String sFileName = vLocalFileIn.getConfiguration().getTargetFileName(); 

 

        vFTPOut.getConfiguration().setTargetDirectoryName( "//" ); 

        vFTPOut.getConfiguration().setTargetDirectoryNameIsPattern( false ); 

        vFTPOut.getConfiguration().setTargetFileName(sFileName); 

        vFTPOut.getConfiguration().setTargetFileNameIsPattern( false ); 

 

        vFTPOut.getConfiguration().setDataConnectionTimeout( iTimeoutMillis ); 

        vFTPOut.getProvider().setDataSocketTimeout( iTimeoutMillis ); 

        vFTPOut.getProvider().setSoTimeout( iTimeoutMillis ); 

 

        com.stc.eways.common.eway.standalone.streaming.InputStreamAdapter isa = null; 

        isa = vLocalFileIn.getClient().getInputStreamAdapter(); 

        vFTPOut.getClient().setInputStreamAdapter( isa ); 

        vFTPOut.getClient().put(); 

 

        long lMillis = System.currentTimeMillis() - lStartMillis; 

        int iSeconds = 0; 

        int iMinutes = 0; 

        int iHours = 0; 

        iSeconds = (int) (lMillis / 1000); 

        iMinutes = iSeconds / 60; 

        iHours = iMinutes / 60; 

        logger.debug( "\n===>>> Execution took " + lMillis + " Milliseconds" ); 

        logger.debug( "\n===>>> Execution took " + iSeconds + " Seconds" ); 

        logger.debug( "\n===>>> Execution took " + iMinutes + " Minutes" ); 

    } catch ( Exception e ) { 



Chapter 1, 7 

        logger.error( "Exception somewhere performing transfer", e ); 

        return; 

    } 

} 

Rather then hardcoding file and path values you can statically configure them through the 
Connectivity Map Connectors for the Batch FTP and Batch Local File eWay.  

The Collaboration is triggered by a File eWay. A presence of a named file will cause the 
collaboration to start, configure the Local File eWay, configure the FTP eWay, execute transfer 
and log statistics. The collaboration could have been triggered by a Scheduler eWay, a JMS 
message or some other means that are appropriate to your solution.  

Note that while the pre- and post-transfer activities are not performed in the FTP eWay some 
string must be statically configured for the pre- and post-transfer file name and directory in the 
FTP eWay connector to avoid warnings at runtime.  

Note that while we dynamically configure the file name and the directory it is necessary to 
also specify some string for the target file name and the target directory properties of the FTP 
eWay connector to avoid runtime error. 

5 Empirical Timings 

The FTP to Local File streaming solution, both the Java CAPS 5.1.0 project and the Java 
CAPS Release 6 CAPS Repository-based project were exercised with three files of different 
sizes. The environment was Dell Latitude D600, 1.6 GHz, 2Gb Memory, 2 disks, Windows XP 
SP2, FreeFTPd 1.0.11 (http://www.freeftpd.com/).  

Timings for FTP Server to Local File System transfers are presented in Table 1. 

 

File Size 
in Kb 

File Size 
in Mb 

Transfer Time 

Milliseconds 

Transfer Time 

Seconds 

Transfer Time 

Minutes 

 Java CAPS 5.1.0 project 

7,451 7 3,045 3 < 1 

631,398 631 189,072 189 3 

1,010,666 1,010 421,216 421 7 

 Java CAPS Release 6 CAP Repository-based project 

7,451 7 3,005 3 < 1 

631,398 631 167,450 167 2 

1,010,666 1,010 298,079 298 4 

Table 1 FTP Server to Local File System streaming timings 
 

Timings for Local File System to FTP Server transfers are presented in Table 2. 

File Size 
in Kb 

File Size 
in Mb 

Transfer Time 

Milliseconds 

Transfer Time 

Seconds 

Transfer Time 

Minutes 

 Java CAPS Release 6 CAP Repository-based project 

7,451 7 1,482 1 < 1 



Chapter 1, 8 

631,398 631 145,289 145 2 

1,010,666 1,010 220,306 220 3 

Table 2 Local File System to FTP Server streaming timings 
 

Note that timings in minutes are truncated so 4 minutes may well be just less than 5 minutes. 

These empirical findings are not representative of all environments.  

Note that the JVM memory consumption did vary noticeably before, during or after transfer 
even when a 1Gb file was being transferred. 

6 Summary 

Java CAPS can be used to stream very large payloads between FTP servers and the local file 
system, in both directions, without causing timeout exceptions and exhausting JVM memory. 

Sample projects discussed in this paper illustrate the Java code required to engage appropriate 
Batch FTP and Batch Local File eWay facilities to effect very large transfers in streaming mode. 

As a side benefit it was shown that a Java CAPS 5.1.0 project can be imported “as is” into the 
new Java CAPS Release 6 environment, built and executed without changes. 


