Java Properties in CAPS 5.1
Using Properties for Runtime Control, Note 3

Custom properties in a properties file

Introduction

Java CAPS 5.1 developer may need to determine a runtime value of
one or more system properties to, perhaps, use its vale for runtime
flow control. This is the next in a series of notes on the use of Java

Properties for controlling runtime behaviour of Java CAPS solutions.

This note introduces the use of the Java Properties file, some
locations where such a file can be put, a method to use a properties
file residing in an arbitrary location without hardcoding the location,
and the most basic method of access to the properties in the
properties file.

Examples shown in this note apply to the Sun SeeBeyond Integration
Server, provided as part of the Java CAPS 5.1 distribution.

Java Properties file

A Java Properties file may contain a series of key=element pairs,
where key is the name of the property and element is the value of
the property. See description of the java.util.Properties class load
method,
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html,
for a detailed discussion of what the properties file can contain and
how it can be formatted.

Let’'s assume with have a properties file containing the following:

begin properties

My. property. 1 :theFirstProperty
MyPr operty?2 =t heSecondPr operty
I end properties

in a properties file named note3.properties.

Loading Java Properties from a file

To get the properties into the JCD we need to use the
java.util.Properties load method. The load method expects a
java.io.InputStream argument. This stream would, ultimately, be
associated with a properties file somewhere in the file system.

One could construct the InputStream through a FileInputStream
using a reference to a file in the file system. This reference would

be an absolute reference or a reference relative to the default
application working directory.

Here are sample Java statements that would get the Properties
object populated from a properties file whose absolute path is
hardcoded.

java.util.Properties p = new java.util.Properties();

java.io.File fin

= new java.io.File("c:/tenp/properties/note3-1.properties”);
java.io.FilelnputStreamfins = new java.io.FilelnputStrean(fin);
p.load(fins);
fins.close();

If the properties file is not present an exception will be thrown.

Hardcoding absolute file references in JCDs may be considered non-
portable.

This method contravenes the dictates of the EJB specification as the
JCD is explicitly accessing a file in the file system. Since the file is
accessed for reading and there is no lock this would be considered a
minor matter.

This method will load the properties file each time the JCD is
invoked.

To avoid hardcoding the absolute path to the property file one could
consider placing the file in the application’s default working
directory. For a Java CAPS Java Collaboration Definition the default
application working directory will be

<JCAPSI nst al | Root >/ | ogi cal host /i s/ domai ns/ <domai n- name>/ confi g.
Assuming we have a properties file called note3-1.properties in the
application’s default working directory we could do something like
this:

java.util.Properties p = new java.util.Properties();

java.io.File fin = new java.io.File("note3-2.properties");
java.io.FilelnputStreamfins = new java.io.FilelnputStrean(fin);
p.load(fins);

fins.close();

WtoFileCient.setText(propertiesListAsString(p));
WtoFileCient.wite();

If the properties file is not present an exception will be thrown.

Dumping property files in server’s config directory might be
considered somewhat questionable.

This method contravenes the dictates of the EJB specification as the
JCD is explicitly accessing a file in the file system. Since the file is
accessed for reading and there is no lock this would be considered a
minor matter.

This method will load the properties file each time the JCD is
invoked.

One could avoid using the FileInpoutStream, whether with an
absolute or a relative file path reference, by exploiting the Java
Class Loader’s capability to locate a resource at runtime through the
classpath and provide it as a stream to the collaboration.
Unfortunately, Java CAPS classpath consists of a long series of
absolute paths to Java Archives but there are no directories. One
must explicitly add a directory, which will contain the properties file,
to the classpath. The Enterprise Manager of the Integration Server
Administration Console can be used to do this. Let’s add a directory
c:/tenp/ properties to the classpath and place a file not e3-

3. properties there. Note that modification of the classpath
requires restart of the Integration Server.

Integration Server Administration JEL Restart Required |

Configuration Agenl:-

General J¥M Settings J| Logging | Advanced
hlntegratlon Server et . J¥M Options
" & Configuration

39 y2£E Cortaners JVM Classpath Settings

: gﬁTransac:tion Service
=8 HTTP Service

QSun SeeBevond JMS 10 ¥
. Manager Environment Classpath: ¥ lanore CLASSPATH erwvironment variable

&2} El Security Service

lse thiz page to change the path settings for pour Java Yirtual Machine [V,

Server Clazspath: C:AICAPSE1 3ogicalhostAredlib/tools. jar.C: /jcapsbl 3/logicalhostAsAibdn. <
stall/applicationsdmsradimgimsra.jarC: /jcaps51 3/ ogicathost /s Aimglibdax

-

api.jarC:Acapshl 3ogicalhostdizdimgslibfzcontest jar,C: Acaps51 3ogical

hostdiz/libdantdibd ant jarC Acapehl 3dogicalhostdisdibd ant /b ant-

launcher jar.C: /jcapshl 3fogicalhost s/ derby/ derby. jar

Classpath required for server operation

Classpath Prefix: a

__f‘ -
Brepend to senses claszpath
Cl:lassl:lalh Suffin: c:ftemp/properties ;1

The following will load the properties file using the classloader:

|java. util.Properties p = new java.util.Properties();

b. | oad
(this.getd ass().getC assLoader (). get ResourceAsStream
("note3-3.properties"”));

If the properties file is missing a runtime exception will be thrown.

This method will load the properties file each time the JCD is
invoked.

Access properties

Use code similar to that in the project developed in Note 1 to list all
properties, or to access specific properties by name, for example:

String sAll Properties = propertiesListAsString(p);

étri ng MyProperty2 = p.getProperty(" MyProperty2");

Characteristics of this method

Properties are local to the Java Collaboration.
Property values can be changed at any time.
Property file is read each time through the collaboration.

Closing

One can add custom Java properties to be used for dynamic runtime
control of Java CAPS solutions by reading a Java Properties file from
within a Java Collaboration.

The JCD receive method, shown below, consolidates all of the code
fragments discussed in this note.

public void receive
(comstc.connectors.jms. Message i nput
, comstc.connector.appconn.file.FileApplication WtoFileCient)
t hrows Throwabl e

java.util.Properties p = new java.util.Properties();
{
java.io.File fin
= new java.io.File
("c:/tenp/properties/note3-1.properties”);
java.io.FilelnputStreamfins
= new java.io.FilelnputStrean(fin);
p.load(fins);
fins.close();

WtoFileClient.setText(propertiesListAsString(p));
WtoFileCient.wite();

java.io.File fin = new java.io.File("note3-2.properties");
java.io.FilelnputStreamfins
= new java.io.FilelnputStrean(fin);
p.load(fins);
fins.close();

WtoFiledient.setText(propertiesListAsString(p));
WtoFileCient.wite();

}
p. | oad
(this.getC ass().getd assLoader (). get ResourceAsStream
("note3-3.properties"));
WtoFileCient.setText(propertiesListAsString(p));
WtoFileCient.wite();

The helper method, propertiesLi st AsStri ng, used in the code
above, is shown below.

String propertiesListAsString(java.util.Properties props)

{

throws java.io.| CException

/1 get systemproperties list as string
java.i o. Byt eArrayQut put St r eam baos
= new j ava.i 0. Byt eArrayQut put Strean();
java.io.PrintStreamps = new java.io.PrintStrean(baos);
props.list(ps);
ps. flush();
baos. fl ush();
String sProperties = baos.toString();
ps. cl ose();
baos. cl ose();
return sProperties;

