
Java Properties in CAPS 5.1
Using Properties for Runtime Control, Note 3

Custom properties in a properties file

Introduction
Java CAPS 5.1 developer may need to determine a runtime value of

one or more system properties to, perhaps, use its vale for runtime
flow control. This is the next in a series of notes on the use of Java

Properties for controlling runtime behaviour of Java CAPS solutions.

This note introduces the use of the Java Properties file, some
locations where such a file can be put, a method to use a properties

file residing in an arbitrary location without hardcoding the location,
and the most basic method of access to the properties in the

properties file.

Examples shown in this note apply to the Sun SeeBeyond Integration

Server, provided as part of the Java CAPS 5.1 distribution.

Java Properties file
A Java Properties file may contain a series of key=element pairs,
where key is the name of the property and element is the value of

the property. See description of the java.util.Properties class load

method,
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html,

for a detailed discussion of what the properties file can contain and
how it can be formatted.

Let’s assume with have a properties file containing the following:

begin properties
My.property.1 :theFirstProperty
MyProperty2 =theSecondProperty
! end properties

in a properties file named note3.properties.

Loading Java Properties from a file
To get the properties into the JCD we need to use the

java.util.Properties load method. The load method expects a
java.io.InputStream argument. This stream would, ultimately, be

associated with a properties file somewhere in the file system.

One could construct the InputStream through a FileInputStream
using a reference to a file in the file system. This reference would

be an absolute reference or a reference relative to the default

application working directory.

Here are sample Java statements that would get the Properties
object populated from a properties file whose absolute path is

hardcoded.

java.util.Properties p = new java.util.Properties();
;
java.io.File fin
 = new java.io.File("c:/temp/properties/note3-1.properties");
java.io.FileInputStream fins = new java.io.FileInputStream(fin);
p.load(fins);
fins.close();
;

If the properties file is not present an exception will be thrown.

Hardcoding absolute file references in JCDs may be considered non-

portable.

This method contravenes the dictates of the EJB specification as the
JCD is explicitly accessing a file in the file system. Since the file is

accessed for reading and there is no lock this would be considered a
minor matter.

This method will load the properties file each time the JCD is

invoked.

To avoid hardcoding the absolute path to the property file one could

consider placing the file in the application’s default working
directory. For a Java CAPS Java Collaboration Definition the default

application working directory will be

<JCAPSInstallRoot>/logicalhost/is/domains/<domain-name>/config.

Assuming we have a properties file called note3-1.properties in the

application’s default working directory we could do something like
this:

java.util.Properties p = new java.util.Properties();
;
java.io.File fin = new java.io.File("note3-2.properties");
java.io.FileInputStream fins = new java.io.FileInputStream(fin);
p.load(fins);
fins.close();
;
W_toFileClient.setText(propertiesListAsString(p));
W_toFileClient.write();
;

If the properties file is not present an exception will be thrown.

Dumping property files in server’s config directory might be
considered somewhat questionable.

This method contravenes the dictates of the EJB specification as the

JCD is explicitly accessing a file in the file system. Since the file is
accessed for reading and there is no lock this would be considered a

minor matter.

This method will load the properties file each time the JCD is

invoked.

One could avoid using the FileInpoutStream, whether with an
absolute or a relative file path reference, by exploiting the Java

Class Loader’s capability to locate a resource at runtime through the
classpath and provide it as a stream to the collaboration.

Unfortunately, Java CAPS classpath consists of a long series of

absolute paths to Java Archives but there are no directories. One
must explicitly add a directory, which will contain the properties file,

to the classpath. The Enterprise Manager of the Integration Server
Administration Console can be used to do this. Let’s add a directory

c:/temp/properties to the classpath and place a file note3-
3.properties there. Note that modification of the classpath

requires restart of the Integration Server.

The following will load the properties file using the classloader:

java.util.Properties p = new java.util.Properties();

;
p.load
 (this.getClass().getClassLoader().getResourceAsStream
 ("note3-3.properties"));

If the properties file is missing a runtime exception will be thrown.

This method will load the properties file each time the JCD is

invoked.

Access properties
Use code similar to that in the project developed in Note 1 to list all
properties, or to access specific properties by name, for example:

String sAllProperties = propertiesListAsString(p);
;
String MyProperty2 = p.getProperty(" MyProperty2");
;

Characteristics of this method
Properties are local to the Java Collaboration.
Property values can be changed at any time.

Property file is read each time through the collaboration.

Closing
One can add custom Java properties to be used for dynamic runtime
control of Java CAPS solutions by reading a Java Properties file from

within a Java Collaboration.

The JCD receive method, shown below, consolidates all of the code
fragments discussed in this note.

public void receive
 (com.stc.connectors.jms.Message input
 , com.stc.connector.appconn.file.FileApplication W_toFileClient)
 throws Throwable
{
 java.util.Properties p = new java.util.Properties();
 ;
 {
 java.io.File fin
 = new java.io.File
 ("c:/temp/properties/note3-1.properties");
 java.io.FileInputStream fins
 = new java.io.FileInputStream(fin);
 p.load(fins);
 fins.close();
 ;
 W_toFileClient.setText(propertiesListAsString(p));
 W_toFileClient.write();
 }
 ;

 {
 java.io.File fin = new java.io.File("note3-2.properties");
 java.io.FileInputStream fins
 = new java.io.FileInputStream(fin);
 p.load(fins);
 fins.close();
 ;
 W_toFileClient.setText(propertiesListAsString(p));
 W_toFileClient.write();
 ;
 }
 ;
 p.load
 (this.getClass().getClassLoader().getResourceAsStream
 ("note3-3.properties"));
 W_toFileClient.setText(propertiesListAsString(p));
 W_toFileClient.write();
 ;
 ;
}

The helper method, propertiesListAsString, used in the code
above, is shown below.

String propertiesListAsString(java.util.Properties props)
 throws java.io.IOException
{
 // get system properties list as string
 java.io.ByteArrayOutputStream baos
 = new java.io.ByteArrayOutputStream();
 java.io.PrintStream ps = new java.io.PrintStream(baos);
 props.list(ps);
 ps.flush();
 baos.flush();
 String sProperties = baos.toString();
 ps.close();
 baos.close();
 return sProperties;
}

