
Java CAPS 5.1.3 Notes
Logging

Michael Czapski, January 2008

Logging to additional destinations

Introduction

By default, the Sun SeeBeyond Integration Server domain uses a single log to log all
events, whether arising out of execution of the Integration Server or arising out of
execution of Java CAPS solutions deployed to it. This log is named server.log and
is kept in the <JavaVACPInstallRoot>/logicalhost/is/domains/<domainroot>/logs directory.

This note discusses how the Integration Server can be configured to deliver all or
selected events to an additional log handler and how XML-formatted event
information can be obtained. This note also presents some ideas on multiple logging
destinations and notification.

Note
The writing of this note, and the underlying development and configuration work, were
prompted by repeated questions about logging in Java CAPS, in particular how it could be
made to behave like it used to in the non-J2EE versions of the SeeBeyond EAI products. For
these readers who are still waiting for the answer they like – there will be no such answer
coming. It is not possible to configure logging for ‘your interface’ separately from logging for
all other ‘interfaces’ since there is no notion of ‘your interface’ as a separate component in
Java CAPS. There is no way to collect logging information pertaining to a specific project or
deployment in such a way that all relevant information is collected, no information is lost and
no information on unrelated components is included.

Default logging configuration

Starting with release 5.1.0, Java CAPS comes with a Sun SeeBeyond Integration
Server, which is a patched and modified version of the Sun Application Server 8.0
Platform Edition.

The default runtime platform for the Integration Server is Java 5 Standard Edition, or
JDK 1.5. Java 5 Standard Edition provides logging support through the Java Logging
APIs. Typically, logging in Java 5 SE is configured through the
logging.properties configuration file in the platform’s jre/lib directory. In a
default Sun SeeBeyond Integration Server domain this configuration file is largely
ignored.

Java Logging configuration and APIs documentation is readily available on the
Internet so only issues pertinent to this note will be discussed. Readers with interest in
this matter should consult the JavaTM Logging Overview
(http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html) and the Java

Logging APIs JavaDocs
(http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html).

Since the Application Server 8.0 uses the Java Logging APIs for logging so too does
Java CAPS. By default, each Java CAPS domain logs to a server.log in the
<JavaVACPInstallRoot>/logicalhost/is/domains/<domainroot>/logs
directory.

The Integration Server overrides and supplements logging configuration provided in
the platform’s logging.properties configuration file. In particular, logging levels
and logger categories are configured through the Integration Server Administration
Console and stored in the domain.xml Integration Server’s domain configuration file.

Some of the resulting Integration Server logging behaviour can still be modified
through the logging.properties configuration file. This will be discussed later in
this note.

Configuring the IS to use an additional handler

In Java Logging API a “Handler” is a Java class that receives logging records and
does something with them. There are a set of Standard “handlers” supplied with the
platform. These are:

• StreamHandler: A simple handler for writing formatted records to an
OutputStream.

• ConsoleHandler: A simple handler for writing formatted records to System.err
• FileHandler: A handler that writes formatted log records either to a single file,

or to a set of rotating log files.
• SocketHandler: A handler that writes formatted log records to remote TCP

ports.
• MemoryHandler: A handler that buffers log records in memory.

The Java Logging API allows the user to specify multiple “handlers” so that logging
records can be handled in different ways. Users can develop their own handlers that
comply with the Java Logging APIs.

Notionally, one could specify multiple handlers in the logging.properties file.
This would appear to work, with the globality caveats mentioned below, however in
actuality only the Integration Server logging would go to the handlers so specified. No
Java CAPS solutions log entries would go there. I don’t know why this would be.
Perhaps the IS overrides the handler chain or adds handlers after the
logging.properties handlers are configured. In short, the ‘interesting’ logging
records, these pertaining to Java CAPS solutions, will not be sent to handlers
specified in the logging.properties configuration file.

The Sun SeeBeyond Integration Server is configured with a variant of a FileHandler
that writes to the server.log. The Integration Server has a prevision for specifying
one additional handler through the Integration Server Administration console’s
Logging Tab.

Unfortunately, there is no provision in the IS Administration console, or the
domain.xml, for specifying configuration properties for this handler. This means that,
if for example a standard FileHandler handler was specified, there would be no way to
override the default name of the log file, default location to which it would be written,
default format to use for log records and other properties that a FileHandler uses to
modify its operation.

Fortunately, whilst it should not be used to add a handler, the
jre/lib/logging.properties file for the logical host can be used to supply
property values for the properties the handler specified through the IS Logging Tab
uses to modify its runtime behaviour.

Unfortunately, the jre/lib/logging.properties file is global so that all Java
CAPS IS domains under that logical host use the one file.

Unfortunately, the Sun SeeBeyond Integration Server ignores some of the
configuration properties, for example the formatter, so only a limited degree of
control over the additional handler, directly specified to the IS through the IS
Administration console Logging Tab, is available through the configuration properties
in the configuration file.

Fortunately, one can specify a MemoryHandler instead of another Handler and then
configure the MemoryHandler to pass log records to that other Handler. The other
Handler can then use all configuration file properties that pertain to it. This gives a
handler indirection that overcomes the issue with inability to specify a formatter for
directly configured handler, for example.

Preliminaries

Discussion below assumes that there is a Java CAPS 5.1.3 domain created and
running. This domain will be started and stopped lots of times. It has a series of
projects deployed and ready to exercise logging, most notably, projects discussed in
the blog entry Java CAPS 5.1.3 - JCD-based Programmatic log manipulation
(http://blogs.sun.com/javacapsfieldtech/entry/java_caps_5_1_311).

Adding a FileHandler through the logging.properties

Let’s add a FileHandler to the jre/lib/logging.properties under the logicalhost –
<JCAPSInstallRoot>/logicalhost/jre/lib/logging.properties.

The original file has the following handlers listed

Commenting the first handlers line and uncommenting the second handlers line will
add the FileHandler.

Let’s change the global logging level from INFO

to ALL

Let’s leave the rest of the original logging.properties file as is.

There are a series of properties pertaining to the FileHandler configuration. In the
default logging.properties file created as part of Java CAPS installation these are:

See Java Doc for the java.util.logging.FileHandler
(http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/FileHandler.html) class for
definitions and explanations. In summary, with the settings as shown, the log file will
be placed in the “user.home” directory, whatever that is for the particular platform,
and will be called java<nnnn>.log, where <nnn> is a unique number. There will be at
most one version of the file and it will be at most around 50K in size. It will contain
XML-formatted log records.

Let’s re-start the domain, wait for it to go quiet and inspect the extra log file in the
“user.home” directory. In this example the file will contain a series of records that
look similar to the one shown below.

<record>
 <date>2008-01-11T12:10:15</date>
 <millis>1200013815828</millis>
 <sequence>1978</sequence>
 <logger>sun.rmi.client.ref</logger>
 <level>FINE</level>
 <class>sun.rmi.server.UnicastRef</class>
 <method>invoke</method>
 <thread>10</thread>
 <message>main: free connection (reuse = true)</message>
</record>

Because we have a global logging level set to ALL and we did not restrict the
FileHandler there are a lot of logging records in the file. None of them, however, are
identifiable as relating to out Java CAPS solutions. To make sure, let’s exercise the
project ListLogCategories discussed in the blog mentioned before.

The regular Java CAPS log, the server.log, shows the following log entry (most
omitted for brevity):

[#|2008-01-
11T12:15:08.906+1100|WARNING|IS5.1.3|STC.eGate.CMap.Collabs.ListLogCategories.cmListLo
gCategories_jcdListLogCategories1.LoggingListLogCategories.jcdListLogCategories|_Threa
dID=16; ThreadName=Worker: 3;
Context=project=ListLogCategories,deployment=dpListLogCategories,collab=cmListLogCateg
ories_jcdListLogCategories1,external=cListLogCategories;|
Loggers currently registered, with configured logging levels:

=INFO

ListLogCategories.cmListLogCategories_jcdListLogCategories1.jcdListLogCategories_Runti
me_Handler=INFO
STC.JMS.com.stc.jms.client.ConnectionImpl=INFO
STC.JMS.com.stc.jms.client.ObjectFactory=INFO
STC.JMS.com.stc.jms.client.QueueObjectFactory=INFO
STC.JMS.com.stc.jms.client.STCConnection=INFO
STC.JMS.com.stc.jms.client.STCConnectionFactory=INFO
STC.JMS.com.stc.jms.client.STCDestination=INFO

The additional log shown nothing – pretty useless. The IS fails to use the handler
specified this way.

Let’s comment out the handlers property with two handlers and uncomment the
original handlers property for the next exercise. Let’s leave the global logging level at
ALL.

Adding extra FileHandler directly to the IS

java.util.logging.FileHandler class is available in the rt.jar. It can be used as
an additional handler for the IS.

Let’s enter the string java.util.logging.FileHandler in the Logging Handler text
box in the Integration Server Administration Logging Tab and press the “Save”
button. Notice that the SI needs to be re-started.

The log file will be called java<nnnn>.log, as before, and will reside in the
“user.home” directory, as before, since we have not changed relevant FileHandler
properties in the logging.properties configuration file.

Let’s re-start the IS and see what the additional log file shows.

Use a differences utility to see the differences between the java<nnn>.log and the
server.log. The java<nnn>.log is a log smaller, because the FileHandler.limit property
is set at 50000 bytes, however the last 50,000 bytes of both files are identical.

Let’s exercise the ListLogCategories project. Where in the previous example none of
the Java CAPS logging records went to the additional log, in this exercise, with the
handler configured through the IS Administrator console, all records went to both
logs.

Notice that the java<nnn>.log file no longer contains XML records. The
FileHandler.formatter property in the logging.properties file, which was used to
configure the formatter in the previous example, was completely ignored.

Changing FileHandler’s Log File Name and Location

Let’s modify logging.properties configuration file and specify different file name
and location for the additional log file.

Let’s set the file name to /temp/logging/additional<nnn>.log and re-start the IS.

Obligingly, the new log file with the name of additional0.log was created in the
specified directory, still in the same format as the server.log and still logging
exactly the same information.

Filtering messages by Level

Because the global logging level in the logging.properties configuration file was
set to ALL and no specific logging level was set for the FileHandler the log contained
all the entries that the server.log contained.

We can restrict the entries that are logged to the additional log by specifying the
FileHandler.level property and setting it to the appropriate value. Let’s add the
property and set it to the WARNING Level. The expectation is that only WARNING
and more severe records will be logged to the additional log regardless of what gets
logged to the server.log.

Let’s re-start the IS. Notice that the additional0.log is empty. No information was
logged (assuming there were no warning when the IS was starting☺)

Let’s exercise the ListLogCategories project. Notice that now a WARNING-level
message was logged in the additional0.log. This is because the project emits a
WARNING message.

With the FileHandler.level property set to WARNING, only WARNING and
SEVERE messages will be logged to that log. With the property set to SEVERE only
SEVERE level messages will get logged. This can be used as a simple filtering
mechanism.

Getting XML format messages through the FileHandler

Since the IS somehow overrides the formatting property of the FileHandler we cannot
use the FileHandler directly. A java.util.logging.MemoryHandler
(http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/MemoryHand

ler.html) is a handler that logs to a circular buffer in memory and, when a log
record of the “push level” or greater is logged, it pushes this log record to another
handler, which it has been configured to use as the ultimate destination of log records.

Let’s specifiy the java.util.logging.MemeoryHandler through the IS Administrator
console Logging Tab as the additional handler to use instead of the FileHandler.

Before re-starting the IS let’s configure the MemoryHandler through the
logging.properties configuration file to use the FileHandler we used before as the
ultimate destination of log reords.

The ultimate handler is the FileHandler. We expect all log records to be pushed to the
FileHandler and be filtered by it to WARNING or more sever, as before.

Let’s re-start the IS and observe the additional0.log log file configured to receive log
records from the MemoryHandler. As in previous section, if no WARNING messages
were logged during IS startup the additional log will be empty.

Let’s exercise the ListLogCategories project. Notice that now a WARNING-level
message was logged in the additional0.log. This is because the project emits a
WARNING message. Notice, too, that the log record in the additional0.log is in XML
format. The FileHandler.formatter property setting has been recognised and used.

Different Formatter class can be developed and specified if appropriate. By default, an
XMLFormatter is used if one not specified. Another standard formatter that is
available in java.util.logging is the SimpleFormatter, which formats log records as
shown in the server.log.

Discussion about development of Formatters is beyond the scope of this Note. See

Other Handlers

Using the MemoryHandler as the directly specified additional handler for the Sun
SeeBeyond Integration Server, allows one to specify a different target Handler in such
a way that all its properties are recognized and acted upon at runtime.

In addition to standard handlers supplied as part of the java.util.logging package a
number of handlers have been developed by various people and are available for
download. One of the ‘interesting’ ones is a SMTPHandler
(http://smtphandler.sourceforge.net/) – a handler which sends log records as electronic
mail.

Other handlers I have come across but not used include:
RollingFileHandler http://www.x4juli.de/api/org/x4juli/handlers/Rolling

FileHandler.html
GenericHandler http://monolog.objectweb.org/jdoc/ow_util_log/org/o

bjectweb/util/monolog/wrapper/javaLog/GenericHan
dler.html

TableHandler http://www-ui.is.s.u-

tokyo.ac.jp/~kobayash/misc/doc/jp/ac/u_tokyo/s/is/w
ww_ui/tomlib/logging/TableHandler.html

LogHandler http://www.mit.edu/~vona/VonaUtils/javadoc-
Vona/vona/log/Log.LogHandler.html

Java Logging YMSG Instant
Message Handler and
Formatter

http://www.planetsaturn.pwp.blueyonder.co.uk/ymsg
handler/index.htm

Other handlers can be written as required.

I have come across a couple of articles that some might find interesting.

“Building the Ultimate
Logging Solution”

http://java.sys-con.com/read/44698.htm

“Creating a JDBC Log
Handler for JDK 1.4”

http://www.developer.com/java/article.php/1468351

“Using Log4j appenders
with JDK logging”

http://www.kromosoft.com/resources/chainsawHandler/
UsingChainsawWithJDKLogging.htm

“Gooey Logger” https://aptframework.dev.java.net/gooey/logger.html

Using a SMTPHandler

Let’s download the SMTPHandler from SourceForge
(http://sourceforge.net/projects/smtphandler/), unzip to a convenient directory and
copy the smtphandler-0.6.jar archive to the logicalhost/is/lib/endorsed
directory. We could put it elsewhere but the archive must be in the IS’s classpath.

In addition a JavaMail (http://java.sun.com/products/javamail/downloads/index.html)
and Java Activation Framework
(http://java.sun.com/products/javabeans/jaf/downloads/index.html) jars are required.
Let’s download them from their appropriate sites. From the JavaMail distribution
extract the mailapi.jar and smtp.jar and copy them to the
logicalhost/is/lib/endorsed directory. From the JAF distribution extract
activation.jar and copy it to the logicalhost/is/lib/endorsed directory.

SMTPHandler seems to require permissions to read and write system properties. Let’s
add the following stanza to the end of the server.policy file.
Let’s add SMTPHandler properties to the logging.properties configuration file and
configure as appropriate for your SMTP server. Property values below are an example
only.

properties for SMTPHandler
smtphandler.SMTPHandler.level=WARNING
smtphandler.SMTPHandler.smtpHost=127.0.0.1
smtphandler.SMTPHandler.smtpUsername=mczapski@MyPostOffice
smtphandler.SMTPHandler.smtpPassword=mczapski
smtphandler.SMTPHandler.to=mczapski@aus.sun.com
smtphandler.SMTPHandler.from=JavaCAPS@5.1.3
smtphandler.SMTPHandler.subject=[SMTPHandler] LogRecord
smtphandler.SMTPHandler.bufferSize=100

smtphandler.SMTPHandler.formatter=java.util.logging.XMLFormatter

Let’s change the MemoryHandler.target property value to read:
java.util.logging.MemoryHandler.target=smtphandler.SMTPHandler

Let’s re-start the IS and exercise the ListLogCategories project.

If all is configured correctly, the Electronic Mail Client will receive a message similar
to the following.

All log records of severity WARNING and SEVERE will be sent, by electronic mail,
to a configured mail recipient.

Some Ideas

With the ability to replicate logging information to an alternative destination all
manner of possibilities open up to a Java programmers who don’t mind getting their
hands a bit dirty.

The SMTPHandler used in the example points a way to using a Handler as a
notification mechanism. With suitable handler one could send SEVERE-level
message to a pager or a mobile telephone via a text message.

With a suitable handler one could send replicas of messages to multiple destinations.
Modifying the MemoryHandler that comes with the java.util.logging could lead to a
new MultiDestinationMemoryHandler that sends messages to multiple other handlers
and implements independent configuration properties for each of the configured
handlers.

Whereas filtering log records by specifying a logging level for a handler is useful but
very coarse-grained, java.util.logging and the Sun SeeBeyond Integration Server
support specification of a Filter class that determines which log records to pass on log.
This may or may not become a subject of a separate note ☺

Other References

JavaTM Logging Overview -
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

JavaTM Logging APIs - http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

