eInsight Correlations in CAPS 5.1
Correlation Examples, Example 2

ELS Static Counted Implementation

Michael.Czapski@sun.com
November 2007

Introduction

Correlations are probably the single least undetstoea of elnsight functionality.
The example discussed here implements one of thentH.inking and Sequencing”
patterns, present in e*Gate 4.5 and eGate SREisthlieged to have been lost in
ICAN and Java CAPS. In as much as implementing iBLSnsight 5.1 using
correlation requires some development, rather jinginconfiguration, one could argue
that it was lost. In as much as implementing EL8Iirsight 5.1 is possible and
relatively simple, one could also argue the opposit

This example implements a part of the ELS functibndealing with linking a
number of related messages, a counted correlasitterp, or an aggregator pattern.

Unlike the simple implementation from Example istimplementation will correlate
a varying number of messages, statically set agdesne. Thus the same
implementation can be used to correlate 2, 3, I¥Danessages, by modifying the
value of a single business process attribute. Bgioing the value of the business
process attribute, which controls the message ¢fnamt the environment or the
initial message, one will change the static impletagon into a dynamic counted
correlation solution.

Key Points

Rather then developing the example step-by-stewaasione in example 1, only the
key points will be illustrated and discussed. There solution is available as a Java
CAPS project export and can be inspected.

Message Container Array

In example 1 there were two JMS receive actividies only two messages were
correlated. Each receive activity has an associagssage container so both
messages were available for aggregation once berth rgceived. This example will
also have two JMS Receive activities but it willdelt to collect more then two
messages. In order to collect a number of messhges greater then the number of
JMS Receive activities, hence greater then the eumwicontainers available by
default, we must implement an expandable arraypofaners to hold the messages as
they are received. This we will do by creatingsaradefined, delimited Object Type
Definition (OTD) in which a single repeating stringde will serve as a container for
any number of messages, see Figures 1, 2 andSisTaiserviceable simplification.
More sophisticated solution is left to the reader.

B oo ¥ D E dcheXx e

= Reference Object Type Definition Properties
Internal | External | L‘ﬂ udtStringArray narme udtStringArray
] uatotingAray ¢ value javalarme Udtstringarray
javaType ud1 udtStringArray! 2692194
comment
delim notset
(nodeType group /"
antecoding
decoding
encoding
order seq
postcoding
nublic false
rootClassMame ud1 udtStringArray! 2692194
top true

Figure 1 User-defined OTD, root node properties

H oo B W E @eheX €

= Reference Object Type Definition Properties
Internal | External | L‘ﬂgdtStringArray narme value
& uststringArray - EH javahlame Lalus
('avaType java.lang.Strin_g‘j)
lcomment I -
access moadify
optional [false
(repeat true)
ImaxOccurs] =
delim specified
initial
match
hodeType delim
(showDeIim n)
align blind

Figure 2 User-defined OTD, repeating element propgies

o B D E Rmex e

| Reference ' ~Ohject Type Definition— - Properties-
Internal | External | Lﬁ udtStringArray narme walue
— L 9 " |
=] udiStingArray — avaliane pahie,
javaType [Java.lang. String
comment
access Imodify
optional ifalze
repeat true
maxOccurs. 1
|t i ==
:Kdellm specified
Celimiter List
| Level [Type | Delimiter B...| Precedence | Optional M... [Terminator Mo..] Offset | Length || 7y
l,'l Level1 _._l
= | Delimiter normal @ 10 never never 0 [t} | 9 |

Figure 3 User-defined OTD, delimiter definition

Business Process

The business process contains a loop, controllealdnuple ofnt business process
attributes, in which all messages but the first areereceived and added to the
message buffer, Figure 4.

While | = ibdax
Exit

A
Op—? £ [>—': £ B BE- [>_‘“‘H—-.,3 . ép—@p—? Eb—bo
0

el JMS receive JMS receive uchStringArray. JME =zend A
‘ trarshal

Repeat
Figure 4 Business Process

Note that the User-defined OTD’s marshal serviaragged onto the canvas and
placed after the loop. This has two results. Fist,buffer for messages becomes
available to the process. Second, once the buffgopulated with messages we can
marshal it into a JMS Text Message and send itsoway without any further ado.

Note that the correlation key and the correlatienase created identically to the way
they were created in Example 1, and the JMS Reeaitreéities are configured to use
correlations in exactly the same way as in Exariplehis is not discussed in this
document but is critical to the operation of tharaple.

The loop control attribute, is set to 1 before entering the loop and incraewby 1
each time through. The loop termination attributégx, is initialised to the number
of messages to collect before the loop is entendthjs case 3. See Figures 5 and 6.

General | Business Process Aftributes | Partners | Correlations | wsDL [Grid |

Attribute Marne | Type [InUse | Marnespace
IMS receive Output nsl:Message YBS Urjmsservice
UMS receive Outputt nsl:Message YBS Urjmsservice
gMS.send.lnput nslsendinput | Yes _urnjmsserice .
i =dtInt Yes hitpdiseebeyondicomifxsddefinediSimpleDataTypes \l
L iMax =dtInt Yes hitpdfseebeyondicomifxsddefinediSimpleDataTypes /,-
udtStringArray.marshal Fault nsTfaultessa.. | Mo urnstcegate ofdudtStrinaAmray T 260219451 —
udtStringArray.marshal Fault! \ns1:unmarshal .. Mo |jurncsteiegateotd udtStringArray:1 269219451
udtStringArray.marshal.lnput |ns1:.OtdMessage | Yes urnistoegate:otd:.udtStringArray1 2659219451
udtStringArray.marshal. Out... |ns1:Stream Yes urnstoegate:otd:.udtStringArray 1 269219451

Figure 5 Loop control attributes

While | = ibdax
\q Exit
b@Lb 3¢

C)bim[> s b BE

EET JME receive JMS receive

—@Cv)‘— »

Repeat

[« | EB

Business Rule Designer
'E‘ X Conversion ¥ - Datetime ¥ -~ Operator ¥ - Boolean % - String % ~ |

-i- Business Process Attributes Business Process Attributes g
B8 S receive. Dutput [1] numberliteral IMS receive. Output 18—
B8 S receive. Output! 1.0 JMS.receive. Output! H18—G
.=JMS.send.Input JMS.send.Input.=(
"E i "
B hax [1] number literal = — e value ¢ -

L = udtStringAray.marshal.Fa an iMax ™ =—q
L = udtStringAray.marshal.Fa _l— ———— #value @ —

L = udtStringArray.marshal.Inp udtStringAray.marshal Fault L =(

L = udtStringAray.marshal. Ou udtStringAray.marshal . Fault1 L =(

udtStringAray.marshal. Input L =(

udtStringArray.marshal. Output L =(

Figure 6 Initialisation of loop control variables

The Text Message from the first IMS Receive agtigitassigned to iteration 1 of the
OTD repeating element, see Figure 7. elnsight tepeatructures are 1-based, not 0-

based as would be the case in Java.

(@3 bnwnbégb 3€ [>

EET JME receive

JMS receive

.o

@ .

e

Business Rule Designer
& P
-

Business Process Attributes
.'|=JMS.recei\re.Dutput
(i)—l:% Message
&qg UzerProperhy
I:l?; MeszageProperies
@ IMShessageType
@ ByteshMeszage
@ Teuthlessage
£ Streambdeszage

Repeat

[-]
D]

Conversion ¥ - Datetime ¥ -~ Operator ¥ - Boolean % - String % ~ |

Business Process Attributes g

JhS receive. Output .1:(

JMS receive. Outputd .1:(

JhS send.Input .1:(

[ait-F

iMdax .1:(

udtStringAray.marshal Fault .1:(
udtStringAray.marshal . Fault1 .1:(
udtStringAray.marshal. Input .'|=—q

udtStringArray I:l?;—¢
value 2@

Walue[1] | €

udtStringArray.marshal. Output .1:(

Figure 7 Add the first message to the buffer

&qg Maphiessage

The loop conditional is simplé< iMax, see Figure 8.

]
53 =
Ob 2 ofig) P —0,, > o223 of
EET JMS receive JM3 receive _D@ udtStringArray. JMS
marzhal
Repeat E‘
[T | [+

Conversion ¥ - Datetime ¥ -~ Operator ¥ - Boolean ¥ - String ¥ -~ MNodes ¥ -~ MNumbe

J— I—ResutﬂllJ

By incrementing, the loop control attribute, before the next IM&&ve we have its
value ready to use for adding the next messadeetbuffer, see Figure 9.

a
o

& X
£ Business Process Attributes
.'|=JMS.recei\re.Dutput <

.:JMS.receive.DutpuH »

lesser than
numbert

.1: JMS . zend. Input
number?

retum boolean

@ 2 ydtStingAmay.marshal Fault

F|gure 8 Loop conditional

@= [> > oFEn [> e é) SEO =

el JMS receive JMS receive uchStringArray. JME
marzhal
Repeat E‘
e | [+
Business Rule Designer
'E‘ X Conversion ¥ - Datetime ¥ - Operator ¥ - Boolean % - String ¥ -~ MNodes ¥ - Numb

-i- Business Process Attributes
.'|=JMS.recei\re.Dutput +

addition JMS.recei\re.Dutput.ﬂ
.:JMS.receive.DutpuH JMS receive. Output1 .1:
.1: JMS . zend. Input

numbert

0 JMS.send.Input"l:

! |
retum number S————— value & —

udtStringAray.marshal Fault .1:

Business Process Attributes

B hax
@ B2 Y dtStingAmay.marshal Fault

Figure 9 Incrementing loop counter

The Text Message from the JMS Receive activityd@she loop is assigned to the

‘current’ element of the buffer. First time throutite loop it will be 2. The predicate
looks a bit complex but it is really quite simpW¢e merely assign the loop counter,
to the result of ‘New Predicate’, see Figure 10.

nExamples
edSimple
edSimpleTwa
edStatic

bpCaountedStatic
cmiountedStatic
dpCountedStatic
jedSetCorrelationlD
:ountedStaticCorrin
:ountedStaticin

et JMSE receive

(@=" -ﬁ BE [y\?Lp 3E |:>g

Wihile | = ihdax

JMS receive

udtStrlngArray IME
marzhal

Repeat

[«

Business Rule Designer

S5 8 X

[-]
]

Conversion ¥ -~ Datetime % - Operator % ~ Boolean ¥ ~ Stting % - MNodes % = Rumb

‘ountedStatic Out | Al [nput ||
udtStringArray 1 Elusiness Frocess Attributes Business Process Attributes ﬁ
:JMS receive. Outputl IS receive. Output ™18~
5 PRET Message JMS receive. Output! T8 -
b UserProperty IS send.Input ™18~
:e55ing o I_»h MessageFraparties [
=roject — % UMSMessageType i B8
eyand — & Byteshiessage udtStringAnay. marshal Fault ™18~
gent -_s@ Texthlessage udiStringAray. marshal Faultl ™18
Apps — "% Streamidessage udtStringsrray. marshal. Input. 8§
C Eﬂ Maphdeszage udtStnngArrayl_l‘ -¢
DLead e Value @ S
] e Value[get inerbatali!, 'value', Yualue’y] & J
send = TSR gAY T AT Dutpuf.'.{

+HEX

Conversion ¥ = Datetime % - Operator % = Boolean % - Stting % - MNodes % -

? Business Process Attributes

B8 S receive. Output

é)- B8 S send.Input

é} .'n udtStringArray.marshal . Fault
©= W18 | dtstringArmay.marshal Faultt
é)- .'n udtStringArray.marshal. Input
g_"; udtStringArray. m marshal QOutput

Mumber # = XSDOperation % -

Result B

Ly ™\
| value):
@~ W18 inax

Figure 10 Populate 1'th" buffer.

Finally, we copy the output of the marshal senatéhe User-define OTD into the
JMS Text Message and send it on its way.

Create a connectivity map, which will look exadtig same as in Example 1, create a
deployment profile, build and deploy.

Note that the solution uses the very same Javal@wttion as that used in Exercise 1
to populate the JIMS Header Property Correlatiosée, Figure 11.

e & = EN @ B> & @

glountedStaticn - cmCourtedStatic_jcdSetCorrelationiD1 gCountedStaticCorrn - cmCourntedStatic_bpCourtedStatic CICUU”TEC‘SMICOUT

Figure 11 Connectivity Map

Exercise the solution

Exercise the solution by submitting sample messtagt® initial queue as follows:
aa, bb, cc, bb, aa, cc, cc, bb, aa.

In the final queue you should see three messages;antaining three lines of cc, one
containing three lines of bb and one containinge¢Himes of aa.

Summary

This solution is an example that contains all esgskeelements that any static counted
correlation will have to have. By setting the vatieheiMax variable one can collect
any number of messages with the same correlatiddyignodifying the wayMax is
set, for example from an external property or fproperty in the initial message,
one can develop a dynamic counted solution.

