
eInsight Correlations in CAPS 5.1
Correlation Examples, Example 2

ELS Static Counted Implementation

Michael.Czapski@sun.com

November 2007

Introduction
Correlations are probably the single least understood area of eInsight functionality.
The example discussed here implements one of the “Event Linking and Sequencing”
patterns, present in e*Gate 4.5 and eGate SRE, that is alleged to have been lost in
ICAN and Java CAPS. In as much as implementing ELS in eInsight 5.1 using
correlation requires some development, rather then just configuration, one could argue
that it was lost. In as much as implementing ELS in eInsight 5.1 is possible and
relatively simple, one could also argue the opposite.

This example implements a part of the ELS functionality dealing with linking a
number of related messages, a counted correlation pattern, or an aggregator pattern.

Unlike the simple implementation from Example 1, this implementation will correlate
a varying number of messages, statically set at design time. Thus the same
implementation can be used to correlate 2, 3, 10 or 30 messages, by modifying the
value of a single business process attribute. By obtaining the value of the business
process attribute, which controls the message count, from the environment or the
initial message, one will change the static implementation into a dynamic counted
correlation solution.

Key Points
Rather then developing the example step-by-step, as was done in example 1, only the
key points will be illustrated and discussed. The entire solution is available as a Java
CAPS project export and can be inspected.

Message Container Array
In example 1 there were two JMS receive activities and only two messages were
correlated. Each receive activity has an associated message container so both
messages were available for aggregation once both were received. This example will
also have two JMS Receive activities but it will be built to collect more then two
messages. In order to collect a number of messages that is greater then the number of
JMS Receive activities, hence greater then the number of containers available by
default, we must implement an expandable array of containers to hold the messages as
they are received. This we will do by creating a user-defined, delimited Object Type
Definition (OTD) in which a single repeating string node will serve as a container for
any number of messages, see Figures 1, 2 and 3. This is a serviceable simplification.
More sophisticated solution is left to the reader.

Figure 1 User-defined OTD, root node properties

Figure 2 User-defined OTD, repeating element properties

Figure 3 User-defined OTD, delimiter definition

Business Process
The business process contains a loop, controlled by a couple of int business process
attributes, in which all messages but the first one are received and added to the
message buffer, Figure 4.

Figure 4 Business Process

Note that the User-defined OTD’s marshal service is dragged onto the canvas and
placed after the loop. This has two results. First, the buffer for messages becomes
available to the process. Second, once the buffer is populated with messages we can
marshal it into a JMS Text Message and send it on its way without any further ado.

Note that the correlation key and the correlation set are created identically to the way
they were created in Example 1, and the JMS Receive activities are configured to use
correlations in exactly the same way as in Example 1. This is not discussed in this
document but is critical to the operation of the example.

The loop control attribute, i, is set to 1 before entering the loop and incremented by 1
each time through. The loop termination attribute, iMax, is initialised to the number
of messages to collect before the loop is entered, in this case 3. See Figures 5 and 6.

Figure 5 Loop control attributes

Figure 6 Initialisation of loop control variables

The Text Message from the first JMS Receive activity is assigned to iteration 1 of the
OTD repeating element, see Figure 7. eInsight repeating structures are 1-based, not 0-
based as would be the case in Java.

Figure 7 Add the first message to the buffer

The loop conditional is simple, i < iMax, see Figure 8.

Figure 8 Loop conditional

By incrementing i, the loop control attribute, before the next JMS Receive we have its
value ready to use for adding the next message to the buffer, see Figure 9.

 Figure 9 Incrementing loop counter

The Text Message from the JMS Receive activity inside the loop is assigned to the
‘current’ element of the buffer. First time through the loop it will be 2. The predicate
looks a bit complex but it is really quite simple. We merely assign i, the loop counter,
to the result of ‘New Predicate’, see Figure 10.

Figure 10 Populate "i'th" buffer.

Finally, we copy the output of the marshal service of the User-define OTD into the
JMS Text Message and send it on its way.

Create a connectivity map, which will look exactly the same as in Example 1, create a
deployment profile, build and deploy.

Note that the solution uses the very same Java Collaboration as that used in Exercise 1
to populate the JMS Header Property Correlation Id, see Figure 11.

Figure 11 Connectivity Map

Exercise the solution
Exercise the solution by submitting sample messages to the initial queue as follows:
aa, bb, cc, bb, aa, cc, cc, bb, aa.

In the final queue you should see three messages, one containing three lines of cc, one
containing three lines of bb and one containing three lines of aa.

Summary
This solution is an example that contains all essential elements that any static counted
correlation will have to have. By setting the value of the iMax variable one can collect
any number of messages with the same correlation id. By modifying the way iMax is
set, for example from an external property or from a property in the initial message,
one can develop a dynamic counted solution.

