
Message Correlation

219

Indeed, activity timed out and appropriate message was generated

and sent. We could exercise timeout on the third activity but this

would require us to modify bpASNandDNsubmitter so it submits just

the ASN and not the DN. We will skip this.

This is one of the possible implementations of the Scatter Gather

Pattern. Another implementation, using Asynchronous Subprocess,

will be presented in Chapter on Architecting Scalability and

Resillience, section dealing with Subprocesses.

11.9.9 Message Relationship Patterns Summary

Message Relationship Patterns discussed in the preceding sections

represent the basic relationships that exist between messages in

messaging solutions. Other, more complex patterns can be broken

down into these basic patterns. All of the Message Relationship

Patterns, whose examples were implemented using eInsight, rely on

the eInsight Engine’s ability to identify key data values in messages

and use that key data to associate messages with business

processes and, in particular, business process instances that are

collecting related messages. To be effectively employed in

integration solutions all implementations must have a notion of

when to stop waiting for related messages and to processes

messages that are already collected. Common indicators are

timeout expiration, collection of a pre-defined number of messages

or arrival of a sentinel message that indicates end of collection. The

basic examples presented above are common to all implementation

of a type and can be used as the basis for extended

implementations. Custom logic will need to reflect processing

requirements of assembled collections of messages, for example

selections of a lowest price or a highest bid, rather than how the

collection is performed or when collection ends and processing

begins.

11.10 eGate Correlation with Dynamic Selectors

eInsight-based Correlation takes advantage of the eInsight Engine’s

correlation facilities. eInsight Engine ensures that processing

components receive only messages they require. Without eInsight,

correlation must be implemented differently.

As a general proposition, a correlating component would receive all

messages, determine which are of interest and discard or return to

sender these that are not. It would then pass the messages of

interest to the processing component or would process them itself.

The major issue with this approach is that the correlating

component receives all messages even if only a small proportion of

them are of interest to it. This is an overhead in terms of resources

required to receive all messages and increased latency whilst the

Message Correlation

220

component determines whether it is required to process each

message and return it to the sender, or not. The component could

rapidly become a bottleneck. Re-submitting messages to the sender

could result in the same messages being continually re-delivered to

the correlating component only to be continually returned to the

sender. This issue could be addressed by having the correlating

component subscribe to a JMS Topic so that it receives copies of all

messages and can safely discard these that are not of interest. That

addresses one issue but introduces another – that of additional

resources required for copies of all messages. Ideally one would like

the correlating component to receive only messages that are of

interest to it.

To further refine the problem one must mention that the correlating

component is only interested in messages that are to be correlated

by it. That means not just specific kinds of messages, or messages

from specific sources but messages with specific Correlation

Identifier values.

If one were to develop a solution that correlates massages without

the benefit of eInsight Engine’s correlation facilities the solution

itself would have to implement the necessary correlation logic.

Message correlation processing consists of collecting and storing

batches of related messages until batch completion criteria are

meet, and submission of completed batches to the processing

components for processing. With eInsight-based correlation all of

the logic necessary to determine if a message is related to any

other message(s) is performed by the eInsight Engine. All of the

logic necessary to collect, store, determine completion criteria state

and process the batch of messages is implemented by eInsight

Business Processes.

The fundamental piece of functionality would be that which

determines if a current message is related to any other message

already known or isolating and making available the pieces of data

necessary for some component to make that determination.

Another fundamental piece of functionality necessary for correlation

would be the storage of batches of related messages, as they are

being assembled, prior to invocation of the completed batch

processing component.

Yet another fundamental piece would be the functionality that

determines batch completion and delivers related messages for

processing.

Message Correlation

221

The final piece of functionality would be that which processes

batches of related messages.

Short of developing a sophisticated and, most likely large, Java

Collaboration that implements all of the required functionality, there

is no real way to develop a generic Java Collaboration Definition-

based Correlation Processor. Not all is lost, however. We will

implement some of the Message relationship Patterns, discussed

above, using just the JMS Message Server and Java Collaboratoin

Definitions.

Bear in mind that it still is much easier to implement correlations

using eInsight than it is to do so without it.

11.10.1 Items-Trailer Correlation

Let’s re-implement the Items-Trailer Message Relationship Pattern

without the use of eInsight and eInsight Correlation functionlity.

Recaping the scenario - We are required to collect related messages

until a “special” trailer message, indicating that a batch of messages

is finished, arrives. When it does we are to process all messages

collected so far and release them for further processing by the next

component.

Let as assume that each ordinary message carries a Purchase Order

Number, an Item Number and a Quantity to be delivered. The

trailer message carries the same Purchase Order Number, a dummy

ItemNumber and a count of items for cross-check. The messages

are to be assembled into a Purchase Order with the Purchase Order

Number and a repeating group of Item number and Quantity.

Ordinary messages will come from a JMS Destination qItemsIn. The

Trailer message will come from another JMS Destination qTrailerIn.

This is a contrived example. With the items-trailer one would

perhaps be better off using a single queue and a trailer message

with a sentinel value in one of the fields, perhaps an ItemNumber

value of “TRAILER” or similar.

Let us assume that the ordinary messages use pipe-delimited

structure, as in PONumber|ItemNumber|ItemQuantity, and the

Purchase Order message is an XML message with the same

structure as used previously.

We copy the User-defined OTD, udtitems, and the Purchase order

XML Schema, SOAPRequestReply_PO, from the eInisght Items

Trailer implementation project.

Message Correlation

222

We have the User Defined OTD for the Items messages and the

XSD-based OTD for the Purchase Order message that will aggregate

related Items. The User-defined Items OTD will also carry a trailer

message that will indicate end of run of items and cause completion

of correlation processing for the run of items.

With just the eGate, and the JMS Message Server, we need to figure

a way of collecting related items and triggering processing of

related items once the trailer is received.

One way to implement storage of items is to use a JMS Destination

with no current receiver/subscriber – all messages sent there will

remain until expired or until explicitly received by some component,

whichever is the sooner. One way to implement collection of related

items, such that they can be retrieved as a collection of related

messages, is to use JMS Correlaton ID property to store the

Correlation ID of related items, and to use the JMS Selector

mechanism to retrieve items related by the common Correlation ID.

One way to trigger processing of related items is to create a Java

Collaboration that will be triggerd by a trailer message containing

the Correlation ID to use, and that will retriveve and process related

items from the JMS Queue using dynamically constructed selector

expression that contains the Correlation ID.

Of the required infrastructure only dynamic selectors are not

available out of the box. The reader should have reviewed material

presented in “12.5.7 Selectors (MCz)” before looking at the

example.

The implementation schematic, below, shows the major user-

devloped components involved in the solution.

Any items or trailer messages, submitted to qItemsIn and

qTrailerIn, will be passed to the “Add Correlation ID” collaboration

where the Purchase Order value will be extracted and assigned to

the JMS Header Property Correlation ID. The Assemble PO

collaboration will be invoked by the arrival of the trailer message.

Using the Correlation ID in the trailer message it will construct a

Message Correlation

223

dynamic selector expression, create a selective receiver, receive

from qItemsInCorr, all messages with the matching Correlation ID,

combine them and finally send the combined message to qPOOut.

Here the JMS Message server is the means of storing messages

whilst they are being correlated and retrieving related messages.

The jcdAddCorrelationID Correlation is identical to that presented in

11.9.5 Header Counted Items Correlation, and is reproduced below.

public void receive
 (com.stc.connectors.jms.Message input
 ,com.stc.connectors.jms.JMS W_toJMS)
 throws Throwable
{
 String sPONumber = input.getTextMessage().subst ring
 (0, input.getTextMessage() .indexOf("|"));
 com.stc.connectors.jms.Message jmsOut = W_toJMS .createTextMessage();
 jmsOut.getMessageProperties().setCorrelationID(sPONumber);
 jmsOut.setTextMessage(input.getTextMessage()) ;
 W_toJMS.send(jmsOut);
}

As before, the collaboration takes advantage of the delimited

message structure to extract the leading part, up to but not

including the initial pipe delimiter, the Purchase Order Number, to

use as the value of the Correlation ID.

The jcdAssemblePO Correlation, see below, uses the dynamic JMS

Selectors technique, documented in 12.5.7 Selectors (MCz), to

receive all messages related to the trailer message by the

Correlation ID value. It assembles them into a single Purchase

Order message and sends the message on its way.

package __BookMessageCorrelationEGateCorrelations98 0396720;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.QueueSession;
import javax.jms.Session;
import javax.jms.Queue;
import javax.jms.QueueReceiver;

public class jcdAssemblePO {

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContex t collabContext;
 public com.stc.codegen.util.TypeConverter typeC onverter;

 static final long lTimeout = 5 * 1000;
 static final String cJMS_HOST = "localhost";
 static final String cJMS_PORT = "20007";
 static final String cRECEIVE_FROM = "qItemsInCo rr";
 static final String cPROVIDER_URL =
 "stcms://" + cJMS_HOST + ":" + cJMS_POR T;

Message Correlation

224

 static final String cCONNECTION_FACTORY =
 "connectionfactories/queueconnectionfac tory";
 static final String cINITIAL_CONTEXT_FACTORY =
 "com.stc.jms.jndispi.InitialContextFact ory";
 static final boolean cTRANSACTED = true;

 public void receive
 (com.stc.connectors.jms.Message input
 ,ud1.udtItems236415793.Udtitems v_udtItems
 ,stcgen.fcxotd.http___MCZ01_14000__SOAPRequ estReply.PODocument v_PO
 ,com.stc.connectors.jms.JMS W_toJMS)
 throws Throwable
 {
 // construct dynamic selector expression
 ;
 String sCorrelationID =

input.getMessageProperties().getCorrelationID();
 ;
 String sSelector = "JMSCorrelationID = '" + sCorrelationID + "'";
 ;
 // get a receiver for the specific Queue ob ject
 ;
 QueueConnection myConnection = null;
 QueueSession mySession = null;
 QueueReceiver myReceiver = null;
 ;
 try {
 java.util.Hashtable env = new java.util .Hashtable();
 env.put

(Context.INITIAL_CONTEXT_FACTORY, cINITIAL_CONTEXT _FACTORY);
 env.put(Context.PROVIDER_URL, cPROVIDE R_URL);
 InitialContext jndiContext = new Initia lContext(env);
 QueueConnectionFactory QCFactory =
 (QueueConnectionFactory) jndiContex t.lookup
 (c CONNECTION_FACTORY);
 myConnection = QCFactory.createQueueCon nection();
 Queue myQueue = (Queue) jndiContext.loo kup
 ("queues/" + cRECEIVE_FROM);
 mySession = myConnection.createQueueSes sion
 (cTRANSACTED, Session.AUTO_ACK NOWLEDGE);
 myReceiver = mySession.createReceiver(myQueue, sSelector);
 myConnection.start();
 } catch (Exception e) {
 e.printStackTrace();
 throw new Exception

("\n===>>> Exception from jndi processing", e);
 }
 ;
 // =============== end of dynamic selector preliminaries
 ;
 ;
 ;
 // is there at least one message in the cor relation queue?
 ;
 javax.jms.TextMessage m = null;
 m = (javax.jms.TextMessage) myReceiver.rece ive(lTimeout);
 if (m == null) {
 logger.debug("\n===>>> There were no m essages to receive");
 mySession.rollback();
 return;
 }
 ;
 v_PO.getPO().setPONumber(sCorrelationID);
 v_PO.getPO().setPODate("" + new java.util. Date());
 ;
 // process all related message in the corre lation queue
 ;
 int i = -1;

Message Correlation

225

 while (m != null) {
 i++;
 ;
 // populae item entry
 ;
 v_udtItems.unmarshalFromString(m.getTe xt());
 v_PO.getPO().getItems(i).setItemNumbe r
 (v_udtItems.getItemnumber());
 v_PO.getPO().getItems(i).setItemQuant ity
 (new java.math.BigInteger

(v_udtItems.getItemquantity()));
 ;
 // get next related message, if any
 ;
 m = (javax.jms.TextMessage) myReceiver. receive(lTimeout);
 }
 ;
 // create a message, set its correlation id and payload and send out
 ;
 com.stc.connectors.jms.Message msgOut = W_t oJMS.createTextMessage();
 msgOut.getMessageProperties().setCorrelatio nID(sCorrelationID);
 msgOut.setTextMessage(v_PO.marshalToString ());
 W_toJMS.send(msgOut);
 ;
 // ============== wind down =============== ============
 ;
 mySession.commit();
 mySession.close();
 myConnection.stop();
 myConnection.close();
 ;
 logger.debug("\n===>>> sent message: " + m sgOut.getTextMessage());
 }
}

Note the collaboration receives all messages using the selective

receiver and constructs the PO message. This is the business part of

the correlation infrastructure – the rules that govern what is to be

done with the related messages. In this case the PO message is

assembled. In other cases item costs could be summed up and a

summary message could be sent out. In still other cases each

message would be inspected to choose the highest bid, the lowest

price or whatever business requirement is being met by message

correlation implementation.

Let’s create the Connectivity Map, build and deploy.

Feed qItemsIn the following messages in the order given:

PO12345|IT001|2

Message Correlation

226

PO12346|IT001|1
PO12346|IT002|2
PO12345|IT002|3
PO12345|IT003|4
PO12346|IT005|7
PO12345|IT001|8

Observe 7 messages queued in qItemsInCorr, each with the

Correlation ID property set to either PO12345 or PO12346.

Feed qTrailerIn with the following messages:

PO12345|TRAILER|0
PO12346|TRAILER|0

Observe, in qPOOut, the following two assembled Purchase Order

messages:

Message Correlation

227

And

Notice that correct items were associated with appropriate orders as

expected.

This implementation of the Items Trailer Message Relationship

Pattern takes advantage of the JMS Message Server to support

storage and selective retrieval of related messages. If configured for

discrete timeout, which could be done when messages are queued

by the jcdAddCorrelationID, message for which there is no trailer

would be discarded by the JMS Message Server when expired.

Message Correlation

228

11.10.2 @@ Timed Items Correlation

[TBD]

