
Message Exchange Patterns

177

that only a partial unmarshal is necessary to determine message

format.

Format Indicator could also be used to handle multiple version of a
message interface. The indicator would be set to indicate to which

version of the messaging interface the message conforms and
would then be used by a Content-based Router to send the

message to the component that implements the correct version of
the interface. This would enable new versions to run alongside old

version while still using the same message infrastructure.

10.11 Data Streaming
As mentioned in section 10.8, “Message Sequence”, handling of

very large messages in a messaging solution may require memory
resources many times greater than the size of the largest message

to be handled. Frequently the architect has no choice but to
consume or produce a very large message, a file containing a batch

or related transactions, for example, or a large and complex XML
message generated by, or intended for, an external application.

Handling such messages poses special challenges. Java CAPS can
assist with Batch eWay support for data streaming when such

messages are manifested as files in a file system. If it is possible to
break large messages up into components and process components

individually, or collect components and assemble them into a large

message. eTL, another of the products in the Java CAPS Suite, can
assist in processing large volumes of data. Whilst ETL (Extract,

Transfer and Load) is typically associated with one off batch
extraction and load of data, Java CAPS’ eTL can be used both

standalone and in-stream as part of a larger Java CAPS solution. In
this in-stream mode it will be discussed as a possible means of

streaming data between a flat file and database table, between flat
files or between database tables/views.

10.11.1 Batch eWay Streaming
Java Collaborations that use Batch eWays are commonly

implemented to read the entire content of the file into the Payload

node of the Batch eWay OTD then unmarshal it into some OTD that
gives access to individual “records” or fields. If the file contains

multiple records that will be processed individually downstream
from the Batch eWay it would be far more efficient to read the file a

record at a time and release records for further processing as soon
as available. Batch Record eWay provides the ability to stream file

data into a parser that breaks it into records. The parser works with
delimited, fixed length and “whole file is a single record” records

through Connectivity Map-based configuration properties.

Message Exchange Patterns

178

Batch eWay Streaming Adapter can be used for streaming data

between an FTP Server and a Local file, in either direction, without
the need to use the Batch Record eWay. This will be useful if a Java

CAPS solution needs to obtain a large file from an FTP Site for use
locally or needs to send a local file to the remote FTP Site as

efficiently as possible. Section 16.4.2, “Polling JMS Destination”,
uses an example of local file to FTP Server streaming to illustrate

polling JMS Destination as part of exception and retry handler.

The concept of data streaming will be illustrated with several
examples, including the use of Batch Record, Java Buffered IO in

conjunction with BatchLocalFile eWay’s StreamAdapters and eTL.

To stream a local file in, process its contents a piece at a time, and
stream it back out again, one must use a BatchLocalFile and a

BatchRecord for the inbound side as well as a BatchRecord and a

BatchLocalFile for the outbound side. The example discussed below
implements this functionality within a collaboration triggered by a

BatchInbound eWay. Because files are streamed, this collaboration
can process files of arbitrarily large size without grossly inflating

JVM memory use.

Here is the bare-bones file-to-file streaming collaboration,
jcdLocal2Local.

public void receive
 (com.stc.connector.batchadapter.appconn.BatchAppconnMessage input
 ,com.stc.eways.batchext.BatchLocal R_BatchLocalFile
 ,com.stc.eways.batchext.BatchLocal W_BatchLocalFile
 ,com.stc.eways.batchext.BatchRecord R_BatchRecord
 ,com.stc.eways.batchext.BatchRecord W_BatchRecord)
 throws Throwable
{
 // populate Batch Local File Client configuration based on the GUID name
 // assigned by the Batch Inbound
 ;
 R_BatchLocalFile.getConfiguration().setTargetFileName

(input.getGUIDFileName());
 R_BatchLocalFile.getConfiguration().setTargetFileNameIsPattern

(false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryNameIsPattern

(false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryName

(input.getPathDirName());
 logger.debug("\n===>>> GUID File: " + input.getGUIDFileName());
 ;
 // use streaming from inut through record to output
 ;
 R_BatchRecord.setInputStreamAdapter
 (R_BatchLocalFile.getClient().getInputStreamAdapter());
 W_BatchRecord.setOutputStreamAdapter
 (W_BatchLocalFile.getClient().getOutputStreamAdapter());
 ;
 byte[] baRecIn = null;
 int i = 0;
 while (R_BatchRecord.get()) {
 baRecIn = R_BatchRecord.getRecord();
 W_BatchRecord.setRecord(baRecIn);
 W_BatchRecord.put();
 i++;
 logger.debug("\n===>>> Record [" + i + "]");

Message Exchange Patterns

179

 }
 ;
}

__Book/MessageExchangePatterns/DataStreaming/Local2Local/jcdLocal2Local

The name and path of the file,, the BatchLocalFile eWay is to

process, is provided by the BatchInbound eWay and is set in the

collaboration. A StreamingAdapter is obtained for inbound and
outbound files. The inbound file is broken into records in a loop and

each record is written out to the outbound stream.

The Connectivity Map for this solution looks like this:

__Book/MessageExchangePatterns/DataStreaming/Local2Local/jcdLocal2Local

To assist parsing files into records and assembling files from records
BatchRecord eWays are configured to use \r\n delimiter set. In this

example both the input file and the output file are
CarriageReturn/NewLine delimited files.

Parse input delimited by \r\n.

Create output delimited by \r\n

Message Exchange Patterns

180

Create a Deployment Profile, build and deploy. Any Windows \r\n
delimited text file will do as input. The Java Collaboration, as shown

above, will write a tracer message with the record number to
server.log for each record it processes.

The same technique can be used to process files containing fixed

length records. Rather than specifying Record Type as Delimited we
specify it as Fixed and furnish the appropriate value for the Record

Size.

If it is absolutely necessary to break a file into “buffer-sized” chunks
without regard for delimiters or the size of the file, where the file is

not guaranteed to have an even length that is a multiple of desired

buffer size, it is still possible to stream the file. One would have to
use a BatchRecord eWay with a fixed length record of 1 byte on the

input side and do one’s own buffering.

Let’s use a collaboration that receives data through a 1-byte
BatchRecord, assembles bytes in byte array buffer of some defined

size, then writes out each buffer to the output file. The last buffer
may be “short” in that there may be fewer than buffer-size bytes

left. This must be handled differently from the regular buffer.

Note that specifying Record Type of Single Record is no different from not

using the BatchRecord at all but using Batch eWay, in one of its variants, to
load the entire file into memory as a single record.

Note that for fixed record files all records, including the last record, must be

the same size. This means that one cannot use the batch record with an

arbitrary size record to emulate buffering unless it so happens that the last

record is the same size as all other records. When it is not, the last read will

fail and the bytes remining to be read will not be accessible and will be lost.
Exception will be thrown when that happens.

Message Exchange Patterns

181

The buffering implementation is arbitrary and not necessarily the

best. It is here merely as an example.

public void receive
 (com.stc.connector.batchadapter.appconn.BatchAppconnMessage input
 ,com.stc.eways.batchext.BatchLocal R_BatchLocalFile
 ,com.stc.eways.batchext.BatchLocal W_BatchLocalFile
 ,com.stc.eways.batchext.BatchRecord R_BatchRecord)
 throws Throwable
{
 // populate Batch Local File Client configuration based on the GUID name
 // assigned by the Batch Inbound
 ;
 R_BatchLocalFile.getConfiguration().setTargetFileName
 (input.getGUIDFileName());
 R_BatchLocalFile.getConfiguration().setTargetFileNameIsPattern
 (false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryNameIsPattern
 (false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryName
 (input.getPathDirName());
 logger.debug("\n===>>> GUID File: " + input.getGUIDFileName());
 ;
 // use streaming from input through record to output
 ;
 R_BatchRecord.setInputStreamAdapter
 (R_BatchLocalFile.getClient().getInputStreamAdapter());
 ;
 long lStart = System.currentTimeMillis();
 byte[] baRecIn = null;
 byte[] baBuffer = new byte[20480000];
 int i = 0;
 int j = 0;
 logger.debug("\n===>>>After byte array allocation");
 while (R_BatchRecord.get()) {
 baRecIn = R_BatchRecord.getRecord();
 baBuffer[i] = baRecIn[0];
 if (i == baBuffer.length - 1) {
 logger.debug("\n===>>> in loop buffer condition with i="
 + i + " and j=" + j);
 i = 0;
 W_BatchLocalFile.getClient().setPayload(baBuffer);
 W_BatchLocalFile.getClient().put();
 j++;
 } else {
 i++;
 }
 }
 ;
 // write out last short buffer
 ;
 if (i > 0) {
 byte[] baRest = new byte[--i];
 System.arraycopy(baBuffer, 0, baRest, 0, i);
 W_BatchLocalFile.getClient().setPayload(baRest);
 W_BatchLocalFile.getClient().put();
 logger.debug("\n===>>> Record [" + j + "]");
 ;
 }
 ;
 logger.debug("\n===>>>Processed " + j + " buffers in "
 + (System.currentTimeMillis() - lStart) + " milliseconds");
}

__Book/MessageExchangePatterns/DataStreaming/Local2LocalByteStream/jcdLocal2Local

The Connectivity Map for this implementation, and BatchRecord

eWay configuration, are shown below.

Message Exchange Patterns

182

To test the effectiveness of this approach a number of tests were

conducted. The input text file, consisting of 1,050,508 records,
delimited by New Line characters, was 387,459,465 bytes in size

(387 MB). This file was processed by the collaboration using
different buffer sizes. For each run the number of buffers and the

execution duration in milliseconds were recorded. The test machine
was a Dell Latitude D600 with 2 GB of memory and a 1.6 GHz Intel

processor.

The table below summarises run statistics.

Input

Buffer

Size

Output

Buffer

Size Buffers

Duration

Milliseconds

1 2048 189189 14830565 (~4 hrs)

1 20480 18918 3248251 (~54 min)

1 204800 1891 1656812 (~28 min)

1 2048000 189 1563579 (~26 min)

1 20480000 18 1549458 (~26 min)

It is worth noting that with 2MB (2048000) and larger buffers the
machine was CPU-bound.

In contrast, the solution using two BatchRecord eWays to stream

delimited records, described previously, using the same file as
input, took 547287 milliseconds (~9 min) to process the file. The

system was CPU-bound through the entire process.

A third solution, using Java Buffered IO in conjunction with

BatchLocalFile eWay’s StreamAdapters and a 2 MB byte array
buffer, processed the same file in 68890 milliseconds – that’s just

over 1 minute! Further more, there was no issue with the file having
to be a multiple of the buffer size in length.

Message Exchange Patterns

183

The collaboration used to achieve this performance is shown below.

Note that BatchLocalFile’s StreamAdapter can be asked to provide
an InputStream or OutputStream, which can then be used as any

other Java IO stream. Please also note that Stream so obtained
must subsequently be released.

public void receive
 (com.stc.connector.batchadapter.appconn.BatchAppconnMessage input
 ,com.stc.eways.batchext.BatchLocal R_BatchLocalFile
 ,com.stc.eways.batchext.BatchLocal W_BatchLocalFile)
 throws Throwable
{
 // populate Batch Local File Client configuration based on the GUID name
 // assigned by the Batch Inbound
 ;
 R_BatchLocalFile.getConfiguration().setTargetFileName
 (input.getGUIDFileName());
 R_BatchLocalFile.getConfiguration().setTargetFileNameIsPattern
 (false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryNameIsPattern
 (false);
 R_BatchLocalFile.getConfiguration().setTargetDirectoryName
 (input.getPathDirName());
 logger.debug("\n===>>> GUID File: " + input.getGUIDFileName());
 ;
 // use streaming from inut through record to output
 ;
 long lStart = System.currentTimeMillis();
 int iReadCnt = 0;
 byte[] baBuffer = new byte[2048000];
 ;
 com.stc.eways.common.eway.standalone.streaming.InputStreamAdapter isa
 = R_BatchLocalFile.getClient().getInputStreamAdapter();
 java.io.BufferedInputStream bis =
 new java.io.BufferedInputStream(isa.requestInputStream());
 ;
 com.stc.eways.common.eway.standalone.streaming.OutputStreamAdapter osa
 = W_BatchLocalFile.getClient().getOutputStreamAdapter();
 java.io.BufferedOutputStream bos =
 new java.io.BufferedOutputStream(osa.requestOutputStream());
 ;
 int i = 0;
 iReadCnt = bis.read(baBuffer);
 while (iReadCnt > 0) {
 bos.write(baBuffer, 0, iReadCnt);
 bos.flush();
 i++;
 if (i % 10000 == 0) {
 logger.debug("\n===>>> Buffer [" + i
 + "] size " + baBuffer.length);
 }
 iReadCnt = bis.read(baBuffer);
 }
 ;
 isa.releaseInputStream(true);
 osa.releaseOutputStream(true);
 ;
 logger.debug("\n===>>>Processed " + i + " buffers in "
 + (System.currentTimeMillis() - lStart) + " milliseconds");
 ;
}

__Book/MessageExchangePatterns/DataStreaming/Local2LocalJavaIOBuffered/jcdLocal2L

ocal

With Batch eWay there are good, not so good and downright bad
ways of processing large volumes of data as has been

demonstrated. Which of the potential solutions for data streaming is

Message Exchange Patterns

184

best will very likely depend on the individual requirements. This

section presented a number of Batch eWay-based data streaming
solutions that can be used and tailored as appropriate.

10.11.2 eTL Streaming
eTL is the component of Java CAPS intended to be used for data

Extraction, Transfer and Load. Typically used for bulk standalone
extraction, conversion and load of data, Sun SeeBeyond eTL tool

can be also used inside an eInsight Business Process as part of a
larger Java CAPS Solution.

In this section we will build a simple solution that streams a content

of a file to a database table using the eTL tool. First we will

construct and test the eTL Collaboration, then we will use this
collaboration in an eInsight Business Process to demonstrate how

an eTL process can be incorporated into a messaging solution.
Finally, we will construct and exercise an ‘equivalent’ non-eTL

solution, using the Batch eWay in streaming mode to read the file
and the Oracle eWay to populate the table. This will give an

opportunity to compare the effort required to develop and
implement each solution.

The source file, a Comma Separated Values (CSV) file,

csvAUDIT_TRAIL.csv, contains 475,250 rows of data.

The destination table, defined by the following DDL, will receive
data from the CSV file.

CREATE TABLE "UI"."DOC_AUDIT_TRAIL"
 ("DOC_APPLICATION_CODE" VARCHAR2(22) NOT NULL ENABLE,
 "DOC_ID" VARCHAR2(30) NOT NULL ENABLE,
 "CREATE_DATETIME" DATE NOT NULL ENABLE,
 "U_ID" VARCHAR2(15) NOT NULL ENABLE,
 "USER_ID" VARCHAR2(15) NOT NULL ENABLE,
 "ACTION_TYPE" VARCHAR2(1) NOT NULL ENABLE
)

We will create the table using the DDL definition then use the Oracle

OTD Wizard to create the new Oracle Database OTD,
tblAUDIT_TRAIL.

The table definition follows the format of the comma delimited file.

Names of the columns correspond to the names of the fields to be
read from the file, csvAUDIT_TRAIL.headers. This file contains the

list of column names separated by comma characters.

To allow OTD construction and testing before deployment let’s

create a file containing the following.

Message Exchange Patterns

185

DOC_APPLICATION_CODE,DOC_ID,CREATE_DATETIME,U_ID,USER_ID,ACTION_TYPE
FILEBER,107154,2001-05-29T09:17:15,1000251598,GEORGET,V
MEDLAB,6363742200001,2001-05-29T10:31:13,1000047783,GEORGET,V
FILEBER,107188,2001-05-29T10:50:16,1000251598,GEORGET,V
ROMER,31900001,2001-06-15T11:26:46,1000251639,auto,A
FILEBER,106577,2001-06-15T11:32:40,1000192160,GEORGET,V
ROMER,31700001,2001-06-15T11:33:54,1000251639,auto,A
MEDLAB,6753434400002,2001-06-27T08:37:51,1000024167,auto,A
ROMER,33800001,2001-06-27T08:46:42,1000251631,auto,A
ANVISIT,20010627700001,2001-06-27T09:58:14,1000251571,auto,A
ANVISIT,20010627700001,2001-06-27T09:58:45,1000251571,NEGUSJ,V

The new OTD’s name will be ffoAUDIT_TRAIL. We will follow the
steps the wizard suggests. In this example data types and sizes will

match these in the database table.

Message Exchange Patterns

186

Column CREATE_DATETIME contains date/time string in the format
YYYY-MM-DDTHH:MI:SS so we will allow 19 characters to contain it.

Message Exchange Patterns

187

Once the input, ffoAUDIT_TRAIL, and the output, tblAUDIT_TRAIL,

OTDs are defined we can proceed to develop the eTL Collaboration
Definition, ecdETLStreamFile2DB.

Message Exchange Patterns

188

Data will originate in the flat file whose OTD, ffoAUDIT_TRAIL, was

created earlier.

Once transformed, data will be loaded into a database table,
tblAUDIT_TRAIL, developed earlier.

In this example the mapping is perfectly straight forward. All fields

in the input structure, with the exception of create_datetime, are

mapped directly to the corresponding fields in the output structure.

Message Exchange Patterns

189

Let’s right-click on the source table graphic and choose “automap”

operation.

All but the CREATE_DATETIME fields will be mapped. To map
CREATE_DATETIME we need to convert the date/time string, in the

format YYYY-MM-DDTHH:MI:SS into a timestamp. A convenience

function, string to date, available from the date operations drop
down, will be used.

“string to date” function has a number of formats that can be used.
We shall choose the appropriate one and complete the mapping.

Message Exchange Patterns

190

Joins, conversions, functions and other transformations can be
applied to the data as it is being transferred, if required.

We wish to clear the target table before load. Right click on the

target table and choose Properties.

Switch to Expert mode and choose “true” for the value of the

property “Truncate Before Load”.

Message Exchange Patterns

191

Other properties can be configured as required.

We are interested in determining how many rows were processed,
whether processing succeeded and how long it took. We shall add

Output Runtime Arguments to the eTL Collaboration so that the
eInsight Business Process, which will host this collaboration, can

obtain access to these values.

The collaboration, unsophisticated as it is, is now ready. Let’s test it

with a subset of data.

Message Exchange Patterns

192

The collaboration editor window will be divided into two panes with

the lower pane containing log of the test.

Right clicking on the target table graphic and choosing “Show Data”

will display the target table test data load results.

Clearly, a transformation much more complex than the one shown
in this example can be constructed. It could use multiple source and

target tables, variety of data cleansing and manipulation operations,
insert, upsert and delete database operations and more. In this

section we are dealing with the basic data streaming use of the eTL.
eTL will stream data from a file, or a database, to a database much

more efficiently than just about any other method available within
Java CAPS.

Let’s construct the Business Process that will be triggered by a JMS

message, will invoke the eTL Collaboration constructed before, and

will set a JMS message containing the results of the operation to a
downstream component. Whilst we will not show this here the

downstream component could use this information to trigger
processing records loaded by the eTL Collaboration.

The Business Process will be called bpETLStreamiFile2DB. The JMS
message that will trigger the process will contain the path to the file

the eTL Collaboration will process. The results will be concatenated

Message Exchange Patterns

193

into a pipe-delimited (‘|’) message and sent out to the outbound

JMS Queue.

Let’s create the process, drag JMS receive and send activities, and
drag the ‘execute’ service of the eTL Collaboration onto the canvas.

Business Rules mapping between the JMS Receive Activity will
provide the eTL Collaboration with the file path.

Business Rules mapping between the eTL Collaboration and the JMS

Send Activity will construct the outbound message.

Message Exchange Patterns

194

Let’s construct the Connectivity Map, cmETLStreamFile2DB.

Of the three possible inputs to the eTL Collaboration (1) we choose

the “execute” service. This is because we wish to invoke this
collaboration as part of a business process. We could have triggered

it by a timer or by a JMS message directly.

Since we are loading a file using eTL we must use a special “Flat File
DB” connector (2) rather than the regular Batch eWay.

To avoid clattering our existing environments and to show just the

essential containers, let’s create a brand new environment, envETL.
Components mapped to containers in this environment will be

deployed to the same Application Server Domain as components

Message Exchange Patterns

195

mapped to containers in the bkEnv, which we have been using in

most of the examples.

The environment will have the Logical Host with one Integration
Server and one JMS Message Server, one Oracle External and one

Flat File Database external system. The configuration of all
externals, except the Flat File Database, will be much the same as

usual. The Flat File Database will be configured to support dynamic
file path so that the source file can be set at runtime. Furthermore,

because we are using eTL, the Integration Server “Application
Workspace Directory” property must be set to point to a directory

that eTL can use for its work files.

Lt’s now create a new Deployment Profile, ETLStreamFile2DB, which
will allow us to map Connectivity Map components to the envETL

environment.

Message Exchange Patterns

196

Submitting the JMS text message with the name of the flat file

containing our 474,803 records initiates the ETL process. On the
book development platform the process takes around 9 minutes.

The results JMS message shows record count, status, and start and
stop times.

474803|Success|2007-02-04T07:03:13.71Z|2007-02-04T07:12:06.67Z

The Enterprise Manager can be used to inspect runtime information

pertaining to the eTL Collaboration and, if the appropriate inbound
connector, like the Scheduler, is used, the collaboration can be

stopped and started through the Enterprise Manager.

The figure above shows the eTL Collaboration as it is executing.
Once completed, runtime statistics and counters become available

for the eTL run.

To contrast the eTL-based solution with a “regular” solution let’s

develop a Java Collaboration that streams the content of the same

file to the same database table using the Batch Local File eWay, the
Batch Record eWay and the Oracle eWay. As in the eTL example

above the Java Collaboration will be triggered by a JMS message
containing the path to the file and will submit a JMS message

containing the count of records it inserted, the start time and the

Message Exchange Patterns

197

end time. Batch Record streaming mode will be used to break the

file into records and insert records into the database table.

Let’s create a file, csvAUDIT_TRAIL.ffd, with the following contents.

DOC_APPLICATION_CODE
DOC_ID
CREATE_DATETIME
U_ID
USER_ID
ACTION_TYPE

Let’s now create a new OTD using the “UD OTD from file” wizard.
Once the OTD is created let’s add two levels of delimiters, one with

the new line delimiter “\n” and one with the comma delimiter.

__Book/MessageExchangePatterns/DataStreaming/Batch2DBStreaming/csvAUDIT_TRAIL

The Oracle table OTD will be the same as in the previous example.

__Book/MessageExchangePatterns/DataStreaming/Batch2DBStreaming/tbAUDIT_TRAIL

The Java Collaboration, functionally-equivalent to the eTL
Collaboration discussed previously, is shown below. This

collaboration uses the Batch Local File eWay and the Batch Record
eWay’s streaming adapter to read the input file a record at a time.

It parses each record and inserts it into the database table. The

Message Exchange Patterns

198

collaboration needs an Oracle Table OTD for the target table and a

User-defined delimited OTD for the input file.

public void receive
 (com.stc.connectors.jms.Message input
 ,com.stc.csvAUDIT_TRAIL1967709979.Root v_csvAUDIT_TRAIL
 ,tbAUDIT_TRAIL.TbAUDIT_TRAILOTD v_tbAUDIT_TRAIL
 ,com.stc.connectors.jms.JMS W_toJMS
 ,com.stc.eways.batchext.BatchLocal G_BatchLocalFile
 ,com.stc.eways.batchext.BatchRecord G_BatchRecord)
 throws Throwable
{
 G_BatchLocalFile.getConfiguration().setTargetFileName
 (input.getTextMessage());
 G_BatchLocalFile.getConfiguration().setTargetFileNameIsPattern
 (false);
 ;
 // use streaming from input through record to output
 ;
 G_BatchRecord.setInputStreamAdapter
 (G_BatchLocalFile.getClient().getInputStreamAdapter());
 ;
 int i = 0;
 byte[] baRecIn = null;
 long lStart = System.currentTimeMillis();
 ;
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().insert();
 logger.debug("\n===>>> initied for insert");
 ;
 try {
 ;
 while (G_BatchRecord.get()) {
 baRecIn = G_BatchRecord.getRecord();
 if (i > 0) {
 v_csvAUDIT_TRAIL.unmarshalFromBytes(baRecIn);
 ;
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setDOC_APPLICATION_CODE
 (v_csvAUDIT_TRAIL.getDocApplicationCode());
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setDOC_ID
 (v_csvAUDIT_TRAIL.getDocId());
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setCREATE_DATETIME
 (typeConverter.stringToTimestamp
 (v_csvAUDIT_TRAIL.getCreateDatetime().replaceAll
 ("T", " ")

, "yyyy-MM-dd hh:mm:ss", false, ""));
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setU_ID
 (v_csvAUDIT_TRAIL.getUId());
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setUSER_ID
 (v_csvAUDIT_TRAIL.getUserId());
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().setACTION_TYPE
 (v_csvAUDIT_TRAIL.getActionType());
 ;
 v_tbAUDIT_TRAIL.getDOC_AUDIT_TRAIL().insertRow();
 } else {
 logger.debug("\n===>>> Skipping first record");
 }
 if (i % 10000 == 0) {
 logger.debug("\n" + i);
 }
 i++;
 }
 W_toJMS.sendText("" + --i + "|"
 + (System.currentTimeMillis() - lStart) + " milliseconds");
 logger.debug
 ("\n===>>> done " + --i + " in "
 + (System.currentTimeMillis() - lStart)
 + " milliseconds");

Message Exchange Patterns

199

 } catch (Exception e) {
 logger.error("Exception in the collab after processing "

+ i + " records", e);
 }
}

__Book/MessageExchangePatterns/DataStreaming/Batch2DBStreaming/jcdBatch2DBStrea

ming

The Connectivity Map, cmBatch2DBStreaming, looks like this.

__Book/MessageExchangePatterns/DataStreaming/Batch2DBStreaming/cmBatch2DBStrea

ming

Let’s create the deployment profile, dpBatch2DBStreaming, build

and deploy. Before exercising the solution we must make sure the
database table is cleared of any data that might have been inserted

during the previous exercise. Unlike the eTL Collaboration, where
“truncate before use” property was set, we must clear the database

table explicitly.

SQL> truncate table ui.doc_audit_trail ;

Let’s now exercise the solution by submitting a JMS text message
containing the name of the file we used in the previous example.

Once the process completes the database table contains all records

from the input file.

The eTL Collaboration developed in this section is a very simple

collaboration. It uses very little of the built-in eTL facilities for
joining tables, transformation, user-defined functions, built-in test

facility and others that make eTL much more suitable for bulk data
transformation and load than other means. Because of the

simplicity of the requirement the functionally-equivalent Java
Collaboration was constructed with ease and was quite simple. If

the eTL process was more complex, involving multiple source and
target tables, joins and complex transformations, the functionally-

Message Exchange Patterns

200

equivalent Java Collaboration or eInsight Business Process would

have been much more complex to develop and much less efficient
to execute.

10.12 Message Security
In some circumstances it may be necessary to ensure confidentiality

and integrity of messages that travel through the messaging
system. One or both of two methods are typically used to protect

messages in transit.

The more common and easier to relate to, because of its ubiquity, is

the method that secures the point-to-point channel over which
messages travel. Channel Security is typically provided by adding

the Secure Sockets Layer (SSL) to the TCP/IP Protocol-based
channels. Secure Sockets Layer [SSL] standard specifies how

encryption can be applied to all bytes travelling through a point-to-
point channel. It also specifies how End Points can authenticate

each other, exchange cryptographic material, choose encryption
algorithms and negotiate protocol version. In essence, and this is

trivialising the matter considerably, to complete establishment of a
Secure Session the two End Points perform a Cryptographic

Handshake, during which capabilities, cryptographic material and
credentials are negotiated and exchanged, before any payload data

is sent. If the SSL Handshake fails, no session is established and

the End Points do not exchange data. If the SSL Handshake
succeeds, the endpoints cooperate, for the reminder of the session,

in encrypting on send, and decrypting on receive, the byte stream
that represents the payload data. Java CAPS provides the SSL-

based Channel Security capability in the HTTP Client and the HTTP
Server eWay, and in the JMS Message Server implementation. See

21.4, “Secure Sockets Layer (SSL, TLS)”, for a comprehensive
discussion on SSL configuration in Java CAPS for solutions using

HTTP eWay and Web Services End Points.

The less common is the method that individually secures each
message. Snce encryption and digital signature attributes are

applied to the message itself a secured message can traverse
multiple channels and multiple components whilst preserving

security. The Secure Messaging Extension eWay, available in ICAN

5.0.5, is expected to re-appear mid 2007 in conjunction with the
release of the Sun B2B Suite 5.1, a successor to the eXchange

Integrator of the 4.x and 5.0. It is expected to support both the
Secure Multipurpose Mail Extensions (S/MIME) for encryption and

digitial signing, and the XML Digital Signatures and the XML
Encryption functionality. The SME eWay will provide easy means of

securing individual messages.

