Message Exchange Patterns

that only a partial unmarshal is necessary to determine message
format.

Format Indicator could also be used to handle multiple version of a
message interface. The indicator would be set to indicate to which
version of the messaging interface the message conforms and
would then be used by a Content-based Router to send the
message to the component that implements the correct version of
the interface. This would enable new versions to run alongside old
version while still using the same message infrastructure.

10.11 Data Streaming

As mentioned in section 10.8, “"Message Sequence”, handling of
very large messages in a messaging solution may require memory
resources many times greater than the size of the largest message
to be handled. Frequently the architect has no choice but to
consume or produce a very large message, a file containing a batch
or related transactions, for example, or a large and complex XML
message generated by, or intended for, an external application.
Handling such messages poses special challenges. Java CAPS can
assist with Batch eWay support for data streaming when such
messages are manifested as files in a file system. If it is possible to
break large messages up into components and process components
individually, or collect components and assemble them into a large
message. eTL, another of the products in the Java CAPS Suite, can
assist in processing large volumes of data. Whilst ETL (Extract,
Transfer and Load) is typically associated with one off batch
extraction and load of data, Java CAPS’ eTL can be used both
standalone and in-stream as part of a larger Java CAPS solution. In
this in-stream mode it will be discussed as a possible means of
streaming data between a flat file and database table, between flat
files or between database tables/views.

10.11.1 Batch eWay Streaming

Java Collaborations that wuse Batch eWays are commonly
implemented to read the entire content of the file into the Payload
node of the Batch eWay OTD then unmarshal it into some OTD that
gives access to individual “records” or fields. If the file contains
multiple records that will be processed individually downstream
from the Batch eWay it would be far more efficient to read the file a
record at a time and release records for further processing as soon
as available. Batch Record eWay provides the ability to stream file
data into a parser that breaks it into records. The parser works with
delimited, fixed length and “whole file is a single record” records
through Connectivity Map-based configuration properties.

177

Message Exchange Patterns

Batch eWay Streaming Adapter can be used for streaming data
between an FTP Server and a Local file, in either direction, without
the need to use the Batch Record eWay. This will be useful if a Java
CAPS solution needs to obtain a large file from an FTP Site for use
locally or needs to send a local file to the remote FTP Site as
efficiently as possible. Section 16.4.2, “Polling JMS Destination”,
uses an example of local file to FTP Server streaming to illustrate
polling JMS Destination as part of exception and retry handler.

The concept of data streaming will be illustrated with several
examples, including the use of Batch Record, Java Buffered IO in
conjunction with BatchLocalFile eWay’s StreamAdapters and eTL.

To stream a local file in, process its contents a piece at a time, and
stream it back out again, one must use a BatchLocalFile and a
BatchRecord for the inbound side as well as a BatchRecord and a
BatchLocalFile for the outbound side. The example discussed below
implements this functionality within a collaboration triggered by a
BatchInbound eWay. Because files are streamed, this collaboration
can process files of arbitrarily large size without grossly inflating
JVM memory use.

Here is the bare-bones file-to-file streaming collaboration,
jcdLocal2lLocal.

public void receive
(com st c. connect or. bat chadapt er. appconn. Bat chAppconnMessage i nput
,com st c. eways. bat chext . Bat chLocal R _BatchLocal File
,com st c. eways. bat chext . Bat chLocal W BatchLocal File
,com st c. eways. bat chext . Bat chRecord R _Bat chRecord
,com st c. eways. bat chext . Bat chRecord W Bat chRecord)
throws Thr owabl e

/| popul ate Batch Local File Cient configuration based on the GU D nane
/'l assigned by the Batch I nbound

i?_Bat chLocal Fil e. get Configuration().setTarget Fil eNane
(input.getGJ DFileName());
R Bat chLocal Fil e. get Confi guration().set Target Fi | eNanel sPattern
(false);
R Bat chLocal Fil e. get Confi guration().set TargetDi rectoryNanel sPattern
(false);
R Bat chLocal Fil e. get Confi guration().set Target Di rectoryNane
(input.getPathDirNanme());
| ogger. debug("\n===>>> GQUID File: " + input.getGJ DFil eNanme());

/1l use streaming frominut through record to output

R Bat chRecor d. set | nput St r eamAdapt er

(R BatchLocal File.getd ient().getlnputStreamAdapter());
W Bat chRecor d. set Qut put St r eamAdapt er

(WBatchLocal File.getC ient().getQutputStreamidapter());

byte[] baRecln = null;
int i =0;
whil e (R_BatchRecord. get()) {
baRecln = R Bat chRecord. get Record();
W Bat chRecord. set Record(baRecln);
W Bat chRecord. put () ;
i ++;
| ogger. debug("\n===>>> Record [" + i + "]");

178

Message Exchange Patterns

}

—
@_Book/ MessageExchangePatterns/DataStreaming/Local2Local/jcdLocal2Local

The name and path of the file,, the BatchLocalFile eWay is to
process, is provided by the BatchInbound eWay and is set in the
collaboration. A StreamingAdapter is obtained for inbound and
outbound files. The inbound file is broken into records in a loop and
each record is written out to the outbound stream.

The Connectivity Map for this solution looks like this:

clnBatchLocalFile

@b

cOutEstchLocalFile

D——D——D@-ﬂ-‘v
L] [

A .
A —— avi_jodlocalZlocal

coutBstchRecord

—
@_Book/ MessageExchangePatterns/DataStreaming/Local2Local/jcdLocal2Local

To assist parsing files into records and assembling files from records
BatchRecord eWays are configured to use \r\n delimiter set. In this
example both the input file and the output file are
CarriageReturn/NewLine delimited files.

Parse input delimited by \r\n.

configuration @ |i| |i|
':El Benetal Settings ——
) Record Farse or Create Mode ||F'arse ||E| o+
Synchronized | ves

configuration

| CE)L2 ke OO0
t% General Setlings

Record Delimiter On Last Record | Yes
_Remrd Delimiter I LAy -
Record Size 100
Reu:nrd Type Delimited

Create output delimited by \r\n

179

Message Exchange Patterns

configuration

Blitle)) @ (@
General Settings

3 Record Farse or Create Mode | Create

Synchronized Yes

canfiguration

Bt = @ (e

t[ﬁ General Setings —
3 Record Delimiter On Last Record | Yes
Recnrd Delimiter Ir,ln
Recard Size 100
Recaord Type Delimited_

Create a Deployment Profile, build and deploy. Any Windows \r\n
delimited text file will do as input. The Java Collaboration, as shown
above, will write a tracer message with the record number to
server.log for each record it processes.

Note that for fixed record files all records, including the last record, must be
the same size. This means that one cannot use the batch record with an
arbitrary size record to emulate buffering unless it so happens that the last
record is the same size as all other records. When it is not, the last read will
fail and the bytes remining to be read will not be accessible and will be lost.
Exception will be thrown when that happens.

The same technique can be used to process files containing fixed
length records. Rather than specifying Record Type as Delimited we
specify it as Fixed and furnish the appropriate value for the Record
Size.

Note that specifying Record Type of Single Record is no different from not
using the BatchRecord at all but using Batch eWay, in one of its variants, to
load the entire file into memory as a single record.

If it is absolutely necessary to break a file into “buffer-sized” chunks
without regard for delimiters or the size of the file, where the file is
not guaranteed to have an even length that is a multiple of desired
buffer size, it is still possible to stream the file. One would have to
use a BatchRecord eWay with a fixed length record of 1 byte on the
input side and do one’s own buffering.

Let's use a collaboration that receives data through a 1-byte
BatchRecord, assembles bytes in byte array buffer of some defined
size, then writes out each buffer to the output file. The last buffer
may be “short” in that there may be fewer than buffer-size bytes
left. This must be handled differently from the regular buffer.

180

Message Exchange Patterns

The buffering implementation is arbitrary and not necessarily the
best. It is here merely as an example.

public void receive
(com st c. connect or. bat chadapt er. appconn. Bat chAppconnMessage i nput
,com st c. eways. bat chext . Bat chLocal R BatchLocal File
,com st c. eways. bat chext . Bat chLocal W BatchLocal File
, com st c. eways. bat chext . Bat chRecord R _Bat chRecord)
throws Throwabl e

{
/1 popul ate Batch Local File Client configuration based on the GU D nane
/'l assigned by the Batch I nbound
i?_Bat chLocal Fil e. get Configuration().setTargetFil eNane
(input.getGJ DFileName());
R Bat chLocal Fil e. get Confi guration().set Target Fi | eNanel sPattern
(false);
R Bat chLocal Fil e. get Confi guration().set Target Di rectoryNanel sPattern
(false);
R Bat chLocal Fi |l e. get Confi guration().set Target Di rect or yNane
(input.getPathDirNanme());
| ogger.debug("\n===>>> GQUID File: " + input.getGU DFi |l eNane());
}/ use streaming frominput through record to output
i?_Bat chRecord. set | nput St r eamAdapt er
(R_BatchLocal File.getCient().getlnputStreamAdapter());
iong | Start = SystemcurrentTineM I 1lis();
byte[] baRecln = null;
byte[] baBuffer = new byte[20480000];
int i =0;
int j =0;
| ogger. debug("\n===>>>After byte array allocation");
whil e (R_BatchRecord.get()) {
baRecln = R Bat chRecord. get Record();
baBuffer[i] = baRecln[O0];
if (i == baBuffer.length - 1) {
| ogger. debug("\n===>>> in | oop buffer condition with i="
+i +" and j=" +j);
i =0;
W Bat chLocal Fil e.getd i ent().setPayl oad(baBuffer);
W Bat chLocal File.getdient().put();
j ++;
} else {
i ++;
}
}
}/ wite out |last short buffer
it (i >0 {
byte[] baRest = new byte[--i];
System arraycopy(baBuffer, 0, baRest, 0, i);
W Bat chLocal Fil e. getdient().setPayl oad(baRest);
W Bat chLocal File.getdient().put();
| ogger. debug("\ n===>>> Record [" + | + "]");
}
iogger.debug("\ n===>>>Processed " + j + " buffers in "
+ (SystemcurrentTimeMIlis() - IStart) + " mlliseconds");
}

—
gj_Book/ MessageExchangePatterns/DataStreaming/Local2LocalByteStream/jcdLocal2Local

The Connectivity Map for this implementation, and BatchRecord
eWay configuration, are shown below.

181

Message Exchange Patterns

B>
clnBatchLocalFile

By Lo

cBatchinbound sve_jodlocal2Local chBatchRecord

ILE

a
cOutBatchLocalFile

configuratian |E]|@ |@ B |@
tEI General Settings
) Record Delimiter On Last Record || Mo
Record Delimiter in
Record Size 1
Recard Type Fixed

To test the effectiveness of this approach a number of tests were
conducted. The input text file, consisting of 1,050,508 records,
delimited by New Line characters, was 387,459,465 bytes in size
(387 MB). This file was processed by the collaboration using
different buffer sizes. For each run the number of buffers and the
execution duration in milliseconds were recorded. The test machine
was a Dell Latitude D600 with 2 GB of memory and a 1.6 GHz Intel
processor.

The table below summarises run statistics.

Input Output

Buffer Buffer Duration

Size Size Buffers Milliseconds
1 2048 189189 | 14830565 (~4 hrs)
1 20480 18918 | 3248251 (~54 min)
1 204800 1891 | 1656812 (~28 min)
1 2048000 189 | 1563579 (~26 min)
1 20480000 18 | 1549458 (~26 min)

It is worth noting that with 2MB (2048000) and larger buffers the
machine was CPU-bound.

In contrast, the solution using two BatchRecord eWays to stream
delimited records, described previously, using the same file as
input, took 547287 milliseconds (~9 min) to process the file. The
system was CPU-bound through the entire process.

A third solution, using Java Buffered IO in conjunction with
BatchLocalFile eWay’s StreamAdapters and a 2 MB byte array
buffer, processed the same file in 68890 milliseconds - that’s just
over 1 minute! Further more, there was no issue with the file having
to be a multiple of the buffer size in length.

182

Message Exchange Patterns

The collaboration used to achieve this performance is shown below.
Note that BatchLocalFile’s StreamAdapter can be asked to provide
an InputStream or OutputStream, which can then be used as any
other Java IO stream. Please also note that Stream so obtained
must subsequently be released.

public void receive
(com st c. connect or . bat chadapt er . appconn. Bat chAppconnMessage i nput
,com st c. eways. bat chext . Bat chLocal R BatchLocal File
,com st c. eways. bat chext. BatchLocal WBatchLocal File)
throws Thr owabl e

{
/| popul ate Batch Local File dient configuration based on the GU D nane
/'l assigned by the Batch I nbound
i?_Bat chLocal Fil e. get Configuration().setTarget Fil eNane
(input.getGU DFi |l eNane());
R Bat chLocal Fil e. get Confi guration().set Target Fi | eNanel sPattern
(false);
R Bat chLocal Fil e. get Confi guration().set TargetDi rectoryNanel sPattern
(false);
R Bat chLocal Fi |l e. get Confi guration().set Target Di rect oryNane
(input.getPathDirNanme());
| ogger. debug("\n===>>> GQUID File: " + input.getGU DFil eNanme());
}/ use streaning frominut through record to output
iong | Start = SystemcurrentTineM I 1lis();
int i ReadCnt = 0;
byte[] baBuffer = new byte[2048000];
é:om st c. eways. conmon. eway. st andal one. stream ng. | nput St r eamAdapt er isa
= R BatchLocal File.getd ient().getlnputStreamAdapter();
java.io. Bufferedl nput Stream bis =
new j ava. i o. Buf f eredl nput Strean(isa.requestlnputStrean());
é:om st c. eways. conmon. eway. st andal one. st ream ng. Qut put St r eamAdapt er osa
= WBatchLocal File.getC ient().getQutputStreamidapter();
java.io. Buf f er edCut put Stream bos =
new j ava. i o. Buf f eredQut put Strean{ osa.requestQutput Strean());
i nt i =0;
i ReadCnt = bis.read(baBuffer);
while (i ReadCnt > 0) {
bos.wite(baBuffer, 0, iReadCnt);
bos. flush();
i ++;
if (i % 10000 == 0) {
| ogger. debug("\ n===>>> Buffer [" + i
+ "] size " + baBuffer.length);
}
i ReadCnt = bis.read(baBuffer);
}
i sa.rel easel nput Stream(true);
osa.rel easeCut put Strean(true);
iogger.debug("\ n===>>>Processed " + i + " buffers in"
+ (SystemcurrentTineMIlis() - IStart) + " mlliseconds");
}

—
gj_Book/ MessageExchangePatterns/DataStreaming/Local2LocalJavalOBuffered/jcdLocal2L
ocal

With Batch eWay there are good, not so good and downright bad
ways of processing large volumes of data as has been
demonstrated. Which of the potential solutions for data streaming is

183

Message Exchange Patterns

best will very likely depend on the individual requirements. This
section presented a number of Batch eWay-based data streaming
solutions that can be used and tailored as appropriate.

10.11.2 eTL Streaming

eTL is the component of Java CAPS intended to be used for data
Extraction, Transfer and Load. Typically used for bulk standalone
extraction, conversion and load of data, Sun SeeBeyond eTL tool
can be also used inside an elnsight Business Process as part of a
larger Java CAPS Solution.

In this section we will build a simple solution that streams a content
of a file to a database table using the eTL tool. First we will
construct and test the eTL Collaboration, then we will use this
collaboration in an elnsight Business Process to demonstrate how
an eTL process can be incorporated into a messaging solution.
Finally, we will construct and exercise an ‘equivalent’ non-eTL
solution, using the Batch eWay in streaming mode to read the file
and the Oracle eWay to populate the table. This will give an
opportunity to compare the effort required to develop and
implement each solution.

The source file, a Comma Separated Values (CSV) file,
csvAUDIT_TRAIL.csv, contains 475,250 rows of data.

The destination table, defined by the following DDL, will receive
data from the CSV file.

CREATE TABLE "U "."DOC_AUDI T_TRAI L"
("DOC_APPLI CATI ON_CODE" VARCHAR2(22) NOT NULL ENABLE,
"DOC_| D' VARCHAR2(30) NOT NULL ENABLE,
" CREATE_DATETI ME" DATE NOT NULL ENABLE,
"U_I D' VARCHAR2(15) NOT NULL ENABLE,
"USER_I D' VARCHAR2(15) NOT NULL ENABLE,
"ACTI ON_TYPE" VARCHAR2(1) NOT NULL ENABLE

)

We will create the table using the DDL definition then use the Oracle
OTD Wizard to «create the new Oracle Database OTD,
tbIAUDIT_TRAIL.

The table definition follows the format of the comma delimited file.
Names of the columns correspond to the names of the fields to be
read from the file, csvAUDIT_TRAIL.headers. This file contains the
list of column names separated by comma characters.

To allow OTD construction and testing before deployment let's
create a file containing the following.

184

Message Exchange Patterns

DOC_APPLI CATI ON_CODE, DOC_| D, CREATE_DATETI ME, U_I D, USER_| D, ACTI ON_TYPE
FI LEBER, 107154, 2001- 05- 29T09: 17: 15, 1000251598, GEORGET, V
MEDLAB, 6363742200001, 2001- 05- 29T10: 31: 13, 1000047783, GEORGET, V
FI LEBER, 107188, 2001- 05- 29T10: 50: 16, 1000251598, GEORGET, V

ROVER, 31900001, 2001- 06- 15T11: 26: 46, 1000251639, aut 0, A

FI LEBER, 106577, 2001- 06- 15T11: 32: 40, 1000192160, GEORGET, V

ROVER, 31700001, 2001- 06- 15T11: 33: 54, 1000251639, aut 0, A

MEDLAB, 6753434400002, 2001- 06- 27T08: 37: 51, 1000024167, aut 0, A
ROVER, 33800001, 2001- 06- 27T08: 46: 42, 1000251631, aut 0, A

ANVI SI T, 20010627700001, 2001- 06- 27T09: 58: 14, 1000251571, aut o, A
ANVI SI T, 20010627700001, 2001- 06- 27T09: 58: 45, 1000251571, NEGUSJ, V

The new OTD’s name will be ffoAUDIT_TRAIL. We will follow the
steps the wizard suggests. In this example data types and sizes will
match these in the database table.

x|
Steps Specify Flat File Database Definition HMame
1. Selectwizard Type Enter a unigue name far this new flat file database definition.
2. Specify Flat File Database
Definition Name

3. Belect Sample Files
4. Import File Metadata
4. Freview Flat File Database

Definition
Mew flat file database name: [foAUDIT_TRAIL
Steps Select Sample Files for Import
1. SelectWizard Type ~Add Flat Files to Belected List—

2. Bpecify Flat File Datahase
Definition Mame
3. Select Sample Files
4. Impor File Metadata .
8. Preview Flat File Database L AFilePayioad.xsd
Definition |_"| hasefddataxsd
|_'| BatchinboundData xsd
[covAUDIT_TRAIL.cav
|| cowAlUDIT TRAIL headers
[Inv_PO1 234567590 2m|
[Inv_soaPRequestReplyxml

Lookin: |U.j ¥sds

|:| long.xsd

4 [3
File Mame: [csvAUDIT_TRAIL headers |
Files oftype: |All Files -]

| et

~Selected Flat Files

cevAJDIT_TRAIL headers | Remaove]

| = Back]" [Mext = Finigh || Cancel H Halp

185

Message Exchange Patterns

x|

Steps Impaort File Metadata for CSVAUDIT_TRAIL_HEADERS (Step 1 of 3)
1. SelectWizard Type Define the formatting type and encading far this file.
2. Specify Flat File Database

Definition Mame Table name: [CEVAUDIT_TRAIL] |
3. Select Sample Files
4. Import File Metadata (File Encoding scheme: |ﬁSCII (1830646-115) |3|

10f 1)
5. Preview Flat File Database File format: ® Delimited

Definitian

O FixedvVidth

Steps Import File Metadata for CSWAUDIT_TRAIL {Step 2 of 3)
1. SelectWizard Type Supply the following information required to parse this file.
2. Bpecify Flat File Datahase T o

Definition Marne Default data type || varchar
3. Select Sample Files Default precision 20
4. '1“‘;;"1’; Flle: Metadeta (ke Record delimiter {CRHLF} or {LF}
5. Preview Flat File Database Field delimiter || {comma}

Definitian User defined field delimiter

Text gualifier {douhle guote; "}

Firstline contains field names? | True

Fows to =kip a

Maxirmum # of faults to tolerate ' i

Delimited
Preview of file-

LOC APPLICATION CODE,DOC ID,CEREATE DATETIME, U IL =+
FILENET, 107154, 2001-05-29T09:17: 15, 1000251595, GE
AT3LAR , 6363742200001, 2001-05-29T10:31: 13, 1000047
FILENET 107185, 2001-05-29T10:50:16, 1000251595 GE
| HOMER,319:00001,2001-06-15TL1: Z26:46, 1000251639 a1

Column CREATE_DATETIME contains date/time string in the format
YYYY-MM-DDTHH:MI:SS so we will allow 19 characters to contain it.

186

Message Exchange Patterns

Steps Import File Metadata for CSVAUDIT_TRAIL (Step 3 of 3)
1. BelectWizard Type Define table and column definition for this file.
2. Bpecify Flat File Database

Definition Marme Column Definition

3. Select Sample Files

4. Impart File Metadata {File # | Length | Mame |Datatype] Scale| Mull? | PK? [Defaul
1of 1) 1 22 DOC_APPLICATION_CODE warchar | MA | [[}
5. Preview FlatFile Database 3 30D0C_ID = e T MR
B 3 1SCREATE DATETME vachar | NA (1 L]
1 A5UID parchar | Mia | O] | [
5 | 15USER_ID warchar | Mia | [1 | [
6 [1|ACTION_TYPE warchar | tes | 1 [

Freview Table Content

| ""% Limit rowes; |25 Total rowes: 10

Doc_APPLICATION_. || Doc_ID |[CREATE_DATETL.|[

FILEMET 107184 |2001-05-38709:17... 100~
ALISLAB 6363742200001 |2001-05-29T10:31.../100
FILEMET 107188 2001-05-268710:50..100

Steps Preview Flat File Database Definition
T, BelectWizard Type FlatFile Database Definition- | -Properties
2. Specify Flat File Database L e o I
Digfinition Mame .é:- mﬁgg\l;rA_JgﬁrlLTRAlL @@“lﬁj |@ |g| |§|
3. Select Sample Files T = ;
4. Import File Metadats 9 [DOC_APPLICATION_CODE| Defaultvalue || =hlone:
5. Preview Flat File Database 4 DOC_ID Foreign key False
Definition § CREATE_DATETIME
2 UuD Indeien Feise
USER_ID Caolumn name DOG_AFELICATION, COBE
ACTION_TYPE Mullable True

Ordinal position 1
Precision flength || 22

Primary key | False
Scale |0
|| Data typa varchar

Once the input, ffoAUDIT_TRAIL, and the output, tbIAUDIT_TRAIL,
OTDs are defined we can proceed to develop the eTL Collaboration
Definition, ecdETLStreamFile2DB.

@5 MessageExchangePatterns

¢-E3 ~DataStreaming H
£ ETLStreamin
"3 @ thlaupr]__New *| Project
4 B2B Business Protocal Attributes Definition
;[= oAUDT Ack Managemen B2B Delivery Protocol Attributes Definition
] LocalZLocal Yersion Contral — » t
] LocalZLocalB cut B2B Host
o] LocalZLocalls C“ B2E Protocal
g Eventiessage F_Dpt"" B2E Transport Attributes Definition
@ HTTPReqUestREL aste :
551 JmSRequestRep! Business Process
53 MessageEwpirat] TPON » | Collaboration Definition (2TL)... |
@] MessageSecurity| E*port r Collaboration Definition (Java).. ©
@[] MessageSequend Rename Callaharation Definition GCSLT)...
[B =T 0 T e PENPTRTROT Y o)

187

Message Exchange Patterns

Steps

Enter a Unigue Hame for This Collaboration.

1. Enter Collaboration Hame

Select Source Tahles
Select Source Tahles for

Join
Select Target Takles

Mew Collabaration Marme:

lecdETL StreamFila2DE|

Data will originate in the flat file whose OTD, ffoAUDIT_TRAIL, was

created earlier.

Steps

Select Source Tables.

1. Enter Collaboration Mame
2. Select Source Tables
Select Source Tables for
Jain
Select Target Tahles

Available OTD's:
dhoOracle
thIEMP
thIBEOMNUS
thIEMF
thIALIDIT_TRAIL

<ALL
ALL

Selected OTD's:

foAUDIT_TRAIL

Table Name

CEVAUDIT_TRAIL

Once transformed, data will be

loaded

tbIAUDIT_TRAIL, developed earlier.

Steps

Select Target Tables.

into a database table,

Enter Collshoration Mame
Select Source Tables
Select Source Tahles for
Jain

Select Target Tables

Available OTD's:

dhOracle

thIEMP

thIBOMNUS

thIEMP

foALIDIT_TRAIL

otdMessagelD_DB <ALL

sll=ul ALL =

Selected OTD's:

thiAUDIT_TRAIL

Table MName

ULDOC_AUDIT_TRAIL

In this example the mapping is perfectly straight forward. All fields
in the input structure, with the exception of create_datetime, are
mapped directly to the corresponding fields in the output structure.

188

Message Exchange Patterns

Let’s right-click on the source table graphic and choose “automap”
operation.

" Runtimel...

.Ei{m} csunﬂun_mn.... A" 9 (T1) DOC_AUDIT_TR... *
DOC_APPLICATION .. [= = DOC_APPLICATION,_ ...
Doc_D B = DOC_D
5] CREATE_DATETIME [=m [= CREATE_DATETIME

uio = U
ISER_ID = [= USER_ID
ACTIOMN_TYPE =2 [= ACTIOM_TYPE
- - -2 Show SQL...
[Show Data...

E% Select Columns...

5 EBxtraction Conditian. ..
w4 Data Validation...

74 Remove
;‘ Properies...
5 Auto Map

All but the CREATE_DATETIME fields will be mapped. To map
CREATE_DATETIME we need to convert the date/time string, in the
format YYYY-MM-DDTHH:MI:SS into a timestamp. A convenience

function, string to date, available from the date operations drop
down, will be used.

©e PAPEY mMRE 88w A B- &Y ®H- &
% string to date

s addto date %

3 — 78 date difference
% Runtimel... @
=3 date part
= - =
(51} CSYAUDIT_TRA... EQ(T1) DOC_AUDIT_TR... % date to string
DOC_APPLICATION .. [DOC_APPLICATION
- L B > [s - B now
DoC_D [» > DOC_D -
Seftings...
CREATE_DATETIME =3 [= CREATE_DATETIME
Ul = UID
USER_ID =3 » [> |ISER_ID
ACTION_TYPE =3 = [> ACTION_TYPE

“string to date” function has a number of formats that can be used.
We shall choose the appropriate one and complete the mapping.

189

Message Exchange Patterns

[1{S1) CSYAUDIT_TRA... * FS(T1) DOC_AUDIT_TR...
DOC_MPPLICATION_.. [¥ [> DOC_APPLICATION...
DoCD [> > DOC_D
CREATE_DATETME [—— —3 [> CREATE_DATETIME
U » [> LD
USER_D > » [> USER_D
SCTION_TYPE = » [> ACTION_TYPE
%mring to date Ed
— 2 runtimeOutput e

|W’MM_DDTHH24:MI:SS E“ Court_T1_DOC_ALUDIT_TRAIL

result (timestam > —
¢ 2 > STATUS

Joins, conversions, functions and other transformations can be
applied to the data as it is being transferred, if required.

We wish to clear the target table before load. Right click on the
target table and choose Properties.

2% Runtimelnput A
[I(81) CSVAUDIT_TRA.... ~ .rgm)noc_; DIT_TR.)
DOC_APPLICATION_.. [3 [DOC_APPL < Show L.
pocID B » [~ DOC_ID [Show Data...
CREATE_DATETME [— b CREATED 4] Show Rejected Data. ..
up > LD 8% select Columns...
USER_ID [= » [> USER_ID &3 Target Join Condition...
ACTION_TYPE = » [= ACTION_T T Outer Filter Condition...
: : 2 Remaove
%smngm i & ;‘ Praperties...
" [varchar i:@
[rervnm-DD HHzam:ss FE - [=]
result (timestamp) B —

Switch to Expert mode and choose “true” for the value of the
property “Truncate Before Load”.

190

Message Exchange Patterns

Tahle Alias Hame
lzer Defined Tahle Mame
Llzer Defined Schema Mame

Llzer Defined Catalog Mame

Llze Fully-cualified Table Mame | True
Target Table Prefix
Create Target Tahle - True

Truncate Before Load True
Batch Size [a00n

” Cancel l

Other properties can be configured as required.

We are interested in determining how many rows were processed,
whether processing succeeded and how long it took. We shall add
Output Runtime Arguments to the eTL Collaboration so that the
elnsight Business Process, which will host this collaboration, can
obtain access to these values.

96 PUPEBEN HRe DE8B&8 [A B- L 8- &

2 Runtimelnput £
[1¢s1) CSVYAUDIT_TRA... * F9)(T1) DOC_AUDIT_TR... *
DOC_APPLICATION_... [= = DOC_APPLICATION_..
Doc_D B 3 [> DOC_D

Define Columns

Argurrnent Marme | Default Value [SoLType [Precisio..| Scale]
Count_T1_DOC_AUDIT_TRAIL | integer I} 0
STATUE warchar 1] a
STARTTIME timestamp I} 0
EMDTIME timestamp I} 0

The collaboration, unsophisticated as it is, is now ready. Let’s test it
with a subset of data.

191

Message Exchange Patterns

- G %EIEI%@ mRe 2988] A B- | £-

[Test Run Collaboration |

2 puntimelnput -~ - =
= runtimeQutput e

Count_T1_DOC_AUDIT_TRAIL

B STATUS B
STARTTIME
EMDTIME

=]

The collaboration editor window will be divided into two panes with
the lower pane containing log of the test.

_ FECOTE MOTETME w h ,DEATE maTETIME
[4]

% Log |

Target table UL.DOC_AUDIT TRAIL will be truncated before loading, use this option if you want to refresh the data

Teat execution started.

<ecdETLitreanFileZDE: Pipeline:DOC_ATDIT TRATL>=: Pipeline started.

<ecdETLitreamFileZDB: Pipeline:DOC_AUDIT TRATL:: Truncating table...

<ecdETL3treanFileZDB: Pipeline:DOC_AUDIT TRAIL>: Using SQL statement: TRUNCATE TABLE "T1_DOC_AUDIT TRATL™
<ecdETLStreanFilezZDE: Pipeline:DOC_AUDIT TRAIL»: Table truncated.

<ecdETLitreanFileZDE: Pipeline:DOC_AUDIT TRATL>: Attempting to insert into target table.
<ecdETLitreanFileZDE: Pipeline:DOC_AUDIT TRATL>: Using SQL statement: INSERT
INTO "T1_DOC_AUDIT TRAIL™ |

"DOC_APPLICATION CODE™,

Right clicking on the target table graphic and choosing “"Show Data”
will display the target table test data load results.

Clearly, a transformation much more complex than the one shown
in this example can be constructed. It could use multiple source and
target tables, variety of data cleansing and manipulation operations,
insert, upsert and delete database operations and more. In this
section we are dealing with the basic data streaming use of the eTL.
eTL will stream data from a file, or a database, to a database much
more efficiently than just about any other method available within
Java CAPS.

Let’s construct the Business Process that will be triggered by a JMS
message, will invoke the eTL Collaboration constructed before, and
will set a JMS message containing the results of the operation to a
downstream component. Whilst we will not show this here the
downstream component could use this information to trigger
processing records loaded by the eTL Collaboration.

The Business Process will be called bpETLStreamiFile2DB. The JMS
message that will trigger the process will contain the path to the file
the eTL Collaboration will process. The results will be concatenated

192

Message Exchange Patterns

into a pipe-delimited (‘|’) message and sent out to the outbound
JMS Queue.

Let’s create the process, drag JMS receive and send activities, and
drag the ‘execute’ service of the eTL Collaboration onto the canvas.

> MessageCaonstruction

H:I MessangeCaorrelation
P—E'J‘ MessageExchangePatterns
= N fiy
-3 DataStreaming < N .
»-3 ETLStreaming 99” T b—bg
A =

> 'L @ bpETLStreamFile2DE S recelye IS send

D~ {9 @ ecdETLStreamFile2DE
= Y] S il e
> ®% @ thlAUDIATRAIL

Business Rules mapping between the JIJMS Receive Activity will
provide the eTL Collaboration with the file path.

Ov— ofip wros@@h + @ >0

Start End

o % @8 HE BoBRtuataid O 0 00 &
JWS receive ecdETLStreamfil JWS =end

e20B execute

Business Rule Designer

'B‘-@:.E x Conversion % ~ Datetime % = Operator ¥ = Boolean % - String ¥ = Modes ¥ - Numhber ¥ =

I BT
Business Process Attributes
.'.= S receive Output

Business Process Attributes
ecdETLStreamFile2DB.execute Input .[=
Message FILE LOC_S1_CSWAUDIT_TRAIL & —
ﬁ UserProperty
lﬂ- MessageProperties
@ JMSMessageType
& BytesMessage
@ [TexiMessage]

BQ StreamMiessage
ﬁ- Maphdeszage

Business Rules mapping between the eTL Collaboration and the JMS
Send Activity will construct the outbound message.

193

Message Exchange Patterns

Oe [> £ [> = L> =0

Sl MSreceive ecoETLStreamFl JMS send A

22DE execute

D l o§

Business Rule Designer

B0 2 X Conversion ¥ ~ Datetime ¥ - Operator ¥ + Boolean ¥ + String ¥ = PModes ¥ = Mumber ¥ -

) T

Business Process Attributes

Business Process Atributes

.'|= ecdETLStreamFileZDB.execute. Qutput b concat JMS.send.Input.ﬂ
@ Count_T1_DOC_AUDIT_TRAIL string JMs GR -

& STATUS 0 deliverypode &

& STARTTIME str (string) priority @

4 ENDTIME " timeTaLlive &

Sir string) destination ?;

hlessage Lma

l UserProperl‘yEl?;

str(string) MessageFroperies I:l?;
Str(string) IS essage Type @
retumn string Bytestessage @

Texthilessage &
o

Let’s construct the Connectivity Map, cmETLStreamFile2DB.

B — W& sve_bpETLStreamFile2DB A — A

Tri ETL i

R & Rule: [bpETLStreamFile20B & @ aTriggerDBProcess
qTriggerETL|gTriggerETL _pwe_bpE|

vc_pr'ﬁ_StreamFiIeQDB_qTriggerDBProcess

{Implemented Services Invaked Services L

= JdMESource JMSSource - FJMshe.. JM3De..
o BectET.. ecdET.

2
e b sve_ecdETLStreamFile2DB A
Rule: [ecdETLStreamFile2DB | Gas 49@[:
a
{Implemented Services Invaked Services L cFlatfileDs
% Scheduler start 8 ffoALIDI.. ffoAUDI..
5 WS jmsStart gy MR HIAUDL.. thlAUDI.. —
1 L 4| etl-webser.. execute DE|sve JecdETL StreamFils2DB_cOracle
a
cioracle

Of the three possible inputs to the eTL Collaboration (1) we choose
the “execute” service. This is because we wish to invoke this
collaboration as part of a business process. We could have triggered
it by a timer or by a JMS message directly.

Since we are loading a file using eTL we must use a special “Flat File
DB” connector (2) rather than the regular Batch eWay.

To avoid clattering our existing environments and to show just the
essential containers, let’s create a brand new environment, envETL.
Components mapped to containers in this environment will be
deployed to the same Application Server Domain as components

194

Message Exchange Patterns

mapped to containers in the bkEnv, which we have been using in
most of the examples.

The environment will have the Logical Host with one Integration
Server and one JMS Message Server, one Oracle External and one
Flat File Database external system. The configuration of all
externals, except the Flat File Database, will be much the same as
usual. The Flat File Database will be configured to support dynamic
file path so that the source file can be set at runtime. Furthermore,
because we are using eTL, the Integration Server “Application
Workspace Directory” property must be set to point to a directory
that eTL can use for its work files.

gp— EF- ermETL
E ETL_LH
|:§n, @ ETL_IS
% @ ETL_SEYN_MS
[ORA_EN_UI

[2] @ FFDB_Dynamic

Configuration m@ E| |§|

LD Farameter Settings

Cwnamic File Path || True

Directony Coftermp

Lt's now create a new Deployment Profile, ETLStreamFile2DB, which
will allow us to map Connectivity Map components to the envETL
environment.

Emvironment: envETL B | Map\-’ariablea Eluild "Deplwl

ﬁﬂ«utnmap gQES—— ¥

@ ETL_IS

tQ sve_hpETLStreamFile2DE
Leb sve_ecdETLStreamFile20B

% g ETL_sEYN_MS
@ qTriggerETL-= svi_bpETLStreamFile2DB
@ =vc_hpETLStreamFile2DB -= qTtiggetDBEProcess

r F" I_EI |

—[R] sve_ecdETLStrearFile2DB -= cFlatfileDE |

195

Message Exchange Patterns

Submitting the IJMS text message with the name of the flat file
containing our 474,803 records initiates the ETL process. On the
book development platform the process takes around 9 minutes.
The results JMS message shows record count, status, and start and
stop times.

474803| Success| 2007- 02- 04T07: 03: 13. 71Z| 2007- 02- 04T07: 12: 06. 67Z

The Enterprise Manager can be used to inspect runtime information
pertaining to the eTL Collaboration and, if the appropriate inbound
connector, like the Scheduler, is used, the collaboration can be
stopped and started through the Enterprise Manager.

TriggerETL svc_bpETLSheamFie2[B gTriggerD BProcess
oy i

svc_ecdETLS ke,

B'D

cFlatfleDE

cOracle
eTL Collaboration control Status: Up
Start Stop Inbound connector does not support START and STOP operations.

Total Number of records: 1
Tl Collaboration Runs

Selection Criteria Purge Criteria Summary
Start Date: Purge Al T ox _
End Date: Older than Date: _ D
o o

Select | Purge/Save... Ilejected: 0 i}
T O N A AR

T1_DOC_AUDIT_TRAIL 2007-02-05 21:15:19.581 HULL

The figure above shows the eTL Collaboration as it is executing.
Once completed, runtime statistics and counters become available
for the eTL run.

Total Number of records: 1

eTL Collaboration Runs
Selection Criteria Purge Criteria Summary
] — prgeAl: T on [ok _Average)
Endpate: [Il Older than Date: —[& 474803 474803
474803 474803
Select | Purge/Save... Rejected: 1} i}

EXECUTIONID TARGETTABLE STARTDATE ENDDATE EXTRACTED LOADED REJECTED EXCEPTION_MS(

T1_DOC_AUDIT_TRAIL 2007-02-05 21:15:19.531 2007-02-05 21:2316.276 474803 474203 1]

To contrast the eTL-based solution with a “regular” solution let’s
develop a Java Collaboration that streams the content of the same
file to the same database table using the Batch Local File eWay, the
Batch Record eWay and the Oracle eWay. As in the eTL example
above the Java Collaboration will be triggered by a JMS message
containing the path to the file and will submit a JMS message
containing the count of records it inserted, the start time and the

196

Message Exchange Patterns

end time. Batch Record streaming mode will be used to break the
file into records and insert records into the database table.

Let’s create a file, csvAUDIT_TRAIL.ffd, with the following contents.

DOC_APPLI| CATI ON_CODE
DOC_| D

CREATE_DATETI ME

UlD

USER_| D

ACTI ON_TYPE

Let’'s now create a new OTD using the “UD OTD from file” wizard.
Once the OTD is created let’s add two levels of delimiters, one with
the new line delimiter “\n” and one with the comma delimiter.

Ohbject Type Definition Propeties
raot harme raot
¢ DOC_APPLICATIOMN_CODE iavarame Root
¢ DOC_ID .
@ CREATE_DATETIME avaType com.ste.csvAUDIT_TR..
¢ UID comiment
& USER_ID delim specified Ij
& ACTION_TYPE hodeType delim
showDelim in

Cielimiter List

Level [Type [Delimiter Byt.] Precedence | Optional Mo...] Terminator Mode] Offset [Length |T|
() Level 1 =
|—|j Delirmiter normal in 10 never never 0 0 |j
J,,:] Level 2

|—|j Delimiter normal , 10 never never 1]]

—
g/_Book/ MessageExchangePatterns/DataStreaming/Batch2DBStreaming/csvAUDIT_TRAIL

The Oracle table OTD will be the same as in the previous example.

Ohiject Type Definitian

(sa thAUDIT TRAIL

@[3 DOC_AUDIT_TRAIL

— & DOC_APPLICATION_CODE
— & DOC_ID

— & CREATE_DATETIME

— & D

— & USER_ID

— & ACTION_TYPE

o= % gfterlLast

—
gj_Book/ MessageExchangePatterns/DataStreaming/Batch2DBStreaming/tbAUDIT_TRAIL

The Java Collaboration, functionally-equivalent to the eTL
Collaboration discussed previously, is shown below. This
collaboration uses the Batch Local File eWay and the Batch Record
eWay’s streaming adapter to read the input file a record at a time.
It parses each record and inserts it into the database table. The

197

Message Exchange Patterns

collaboration needs an Oracle Table OTD for the target table and a
User-defined delimited OTD for the input file.

public void receive
(com stc.connectors.jns. Message i nput
,com stc. csvAUDI T_TRAI L1967709979. Root v_csvAUDI T_TRAI L
, t bAUDI T_TRAI L. ThAUDI T_TRAI LOTD v_t bAUDI T_TRAI L
,com stc.connectors.jns. JMS WtoJMS
,com stc. eways. bat chext. Bat chLocal G BatchLocal File
,com st c. eways. bat chext . Bat chRecord G Bat chRecord)
t hrows Thr owabl e

G Bat chLocal Fil e. get Confi guration().setTargetFil eNanme
(input.get Text Message());

G Bat chLocal Fil e. get Confi guration().set TargetFi |l eNanel sPattern
(false);

/1 use stream ng frominput through record to output

G Bat chRecor d. set | nput St r eanAdapt er
(G BatchLocal File.getd ient().getlnputStreamAdapter());

int i =0;
byte[] baRecln = null;
long | Start = SystemcurrentTimeM | lis();

V_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L(). i nsert():
| ogger. debug("\n===>>> initied for insert");

iry{

whil e (G BatchRecord.get()) {
baRecl n = G Bat chRecord. get Record();
if (i >0) {
v_csVAUDI T_TRAI L. unmar shal FronByt es(baRecln);

v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . set DOC_APPLI CATI ON_CCDE
(v_csvAUDI T_TRAI L. get DocAppl i cati onCode());
v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . set DOC_I D
(v_csvAUDI T_TRAIL. getDocld());
v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . set CREATE_DATETI ME
(typeConverter.stringToTi mestanp
(v_csvAUDI T_TRAIL. get CreateDatetine().replaceAll
(T
, "yyyy-Mvdd hh:mmss", false, ""));
v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L().setU_ID
(v_csvAUDI T_TRAI L. getU d());
v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . set USER_I D
(v_csvAUDI T_TRAI L. getUserld());
v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . set ACTI ON_TYPE
(v_csvAUDI T_TRAI L. get Acti onType());

v_t bAUDI T_TRAI L. get DOC_AUDI T_TRAI L() . i nsert Row()
} else {
| ogger . debug("\ n===>>> Skipping first record");

if (i % 10000 == 0) {
| ogger. debug("\n" + i);
}

i ++;

}
WtoJMS. sendText (""" + --i + "|

+ (SystemcurrentTimeMIlis() - IStart) + " mlliseconds");
| ogger . debug

("\n===>>> done " + --i +" in"

+ (SystemcurrentTimreMIlis() - |Start)

+ " mlliseconds");

198

Message Exchange Patterns

} catch (Exception e) {
| ogger.error("Exception in the collab after processing "
+ i + " records", e);

}

—
g/_Book/ MessageExchangePatterns/DataStreaming/Batch2DBStreaming/jcdBatch2DBStrea
ming

The Connectivity Map, cmBatch2DBStreaming, looks like this.

W& b sve_jcdBatch2DEStreaming A Dﬁ}"b

anu - qTrignerDBProcess
Rule : |jchlatch2DElStreaming | m&

2
yTriggerBatch2DE
IriggerBatch2DE|gTriggerBatchRDE

“lImplemented Services Invoked Serices
5 WS input 2 [ZoovAll . w_csvA.
I3 @ thalUDI.. v_thAl. .

) M JM3 W_tDJ...
gt' Batchl . G Bate reaminglschct_%atchQDBStreamln chlLocalFile
a o G

cBatchLocalFile
38 BatchR.. G_Bate...

vwio_jodBdich2DEStreaming_gTriggerDEProcess

eammingsve_jcdBatch2DEStre: atchRecord

Ed
cBatchRecord

—
g/_Book/ MessageExchangePatterns/DataStreaming/Batch2DBStreaming/cmBatch2DBStrea
ming

Let’'s create the deployment profile, dpBatch2DBStreaming, build
and deploy. Before exercising the solution we must make sure the
database table is cleared of any data that might have been inserted
during the previous exercise. Unlike the eTL Collaboration, where
“truncate before use” property was set, we must clear the database
table explicitly.

SQL> truncate table wui.doc_audit _trail ;

Let’'s now exercise the solution by submitting a JMS text message
containing the name of the file we used in the previous example.

Once the process completes the database table contains all records
from the input file.

The eTL Collaboration developed in this section is a very simple
collaboration. It uses very little of the built-in eTL facilities for
joining tables, transformation, user-defined functions, built-in test
facility and others that make eTL much more suitable for bulk data
transformation and load than other means. Because of the
simplicity of the requirement the functionally-equivalent Java
Collaboration was constructed with ease and was quite simple. If
the eTL process was more complex, involving multiple source and
target tables, joins and complex transformations, the functionally-

199

Message Exchange Patterns

equivalent Java Collaboration or elnsight Business Process would
have been much more complex to develop and much less efficient
to execute.

10.12 Message Security

In some circumstances it may be necessary to ensure confidentiality
and integrity of messages that travel through the messaging
system. One or both of two methods are typically used to protect
messages in transit.

The more common and easier to relate to, because of its ubiquity, is
the method that secures the point-to-point channel over which
messages travel. Channel Security is typically provided by adding
the Secure Sockets Layer (SSL) to the TCP/IP Protocol-based
channels. Secure Sockets Layer [SSL] standard specifies how
encryption can be applied to all bytes travelling through a point-to-
point channel. It also specifies how End Points can authenticate
each other, exchange cryptographic material, choose encryption
algorithms and negotiate protocol version. In essence, and this is
trivialising the matter considerably, to complete establishment of a
Secure Session the two End Points perform a Cryptographic
Handshake, during which capabilities, cryptographic material and
credentials are negotiated and exchanged, before any payload data
is sent. If the SSL Handshake fails, no session is established and
the End Points do not exchange data. If the SSL Handshake
succeeds, the endpoints cooperate, for the reminder of the session,
in encrypting on send, and decrypting on receive, the byte stream
that represents the payload data. Java CAPS provides the SSL-
based Channel Security capability in the HTTP Client and the HTTP
Server eWay, and in the JMS Message Server implementation. See
21.4, “Secure Sockets Layer (SSL, TLS)”, for a comprehensive
discussion on SSL configuration in Java CAPS for solutions using
HTTP eWay and Web Services End Points.

The less common is the method that individually secures each
message. Snce encryption and digital signature attributes are
applied to the message itself a secured message can traverse
multiple channels and multiple components whilst preserving
security. The Secure Messaging Extension eWay, available in ICAN
5.0.5, is expected to re-appear mid 2007 in conjunction with the
release of the Sun B2B Suite 5.1, a successor to the eXchange
Integrator of the 4.x and 5.0. It is expected to support both the
Secure Multipurpose Mail Extensions (S/MIME) for encryption and
digitial signing, and the XML Digital Signatures and the XML
Encryption functionality. The SME eWay will provide easy means of
securing individual messages.

200

