
Java CAPS 6
Using JCA, Note 7

Batch Inbound-Triggered JCA (Non)Transacitonality

Michael Czapski, July 2008

Table of Contents
1 Introduction..1
2 Solution outline..1
3 Connection Pools and JNDI Resources ...1
4 Project Group and Project..2
5 MDB Logic ..2
6 Exercise the solution..7
7 Conclusion ...8

1 Introduction
In Note 6 we explored the transactional behavior of a JCA MDB invoked by a JMS Adapter
and orchestrating an Oracle JCA Adapter (a transactional end point) and a Batch Local File
JCA Adapter (a non-transactional end point). In this Note let’s explore the issue of
transactionality of a JCA Message-Driven Bean invoked by a non-transactional end point.

Let’s take the example from the “Java CAPS Basics: Implementing Common EAI Patterns
Companion CD” book, ISBN: 0-13-713071-6, Chapter 11 “Scalability and Resilience”,
Section 11.2 “Exception Handling”, subsection 11.2.1 “Exceptions in Java Collaborations”,
11.2.1.2 “Other Java Collaborations”. The book from which this section comes is available on
the Companion CD. Let’s re-work this example using Java CAPS 6 JCA Adapters.

2 Solution outline
This example illustrates exception processing behaviour involving a Batch Inbound Adapter-
triggered JCA Message-Driven Bean.

The Batch Inbound Adapter is designed to poll a directory for a file. When it finds a file that
matches the name, or the name pattern, it immediately renames the fie by prepending a GUID
to the original name then triggers the MDB and passes to it the original name of the file, the
current name of the file and the directory in which the file was found. This behavior prevents
other possible file pollers from getting hold of the file and gives the first comer exclusive
access to the file. The MDB is designed to take the name of the file as given and rename the
file to the original name with the suffix “~.in” appended, to indicate the file was read and
processed. To do this the MDB will use the Batch Local File JCA Adapter’s capability to
post-process the file by renaming or deleting it. To explore the transactional behavior the
MDB will explicitly throw an exception after it renames the file.

3 Connection Pools and JNDI Resources
The MDB will use a Batch Inbound JCA Adapter and a Batch Local File JCA Adapter.

Configuring the Batch Inbound Adapter’s _does not_ require Connection Pool or related
resources. All of the configuration information that this Adapter requires is provided through
the JCA MDB creation wizard dialog boxes and is changeable, after the MDB is created,
through the Java Collaborations node of the EJB Project where the JCA MDB is created.

We must have a Connection Pool to configure the Batch Local File JCA Adapter, whether
statically or dynamically. Because we will be configuring the Adapter dynamically we don’t
have to have a Connection Pool just for this solution. We can re-use any Connection Pool
created for a Batch Local File Adapter. One created for Note 6 in this series would do just
fine. In fact, this is what we will do in this Note. We will assume that the Batch Local File
Adapter Connection Pool, “BatchLocal-c/temp/jc6jca/jmstriggeredjca_nn.dat”, already exists
and let’s use it. The related JNDI Name reference, “jndi-BatchLocal-
c/temp/jc6jca/jmstriggeredjca_nn.dat”, also is assumed to exist.

4 Project Group and Project
As I am in a habit of doing, let’s create a Project Group to contain the projects that will form
part of this solution. Let’s call this project group Scalability_and_Resilience_BatchInbound-
Triggered_JCA_MDB.

In the newly created project group let’s create an Enterprise -> EJB Module project called
jcaBatchInbound_TriggeredJCA_EJBM. In this project we will create all other artefacts.
Figure 4-1 illustrates this.

Figure 4-1 Create and name the Enterprise -> EJB Module project

5 MDB Logic
We will develop the Message Driven Bean, jcaBatchInbound_TriggeredJCA, a step at a time,
with illustrations following.

Let’s start by creating a JCA MDB as shown in Figures 5-1 through 5-4.

Figure 5-1 Name the JCA MDB

Figure 5-2 Choose the Batch Adapter

Figure 5-3 Choose to edit Activation Configuration

Figure 5-4 Configure File and Directory names, Close and Finish

Figure 5-5 Boilerplate JCA MDB code

Once the wizard completes the JCA MDB code will be available for editing – see Figure 5-5.

Let’s now add the Batch JCA. Figures 5-6 through 5-8 illustrate the process.

Figure 5-6Drag the Batch JCA Adapter to the source window

Figure 5-7 Choose the BatchLocal OTD and click Next

Figure 5-8 Enter new method name, choose JNDI name and provide the name for the variable

Notice that the wizard added a new method, doRename, and added some boilerplate code that
causes that method to be invoked. Our “creative code” will go into this new method. Let’s
rename the arguments to the doRename method to make it appear like the corresponding
“receive” method in a Batch Inbound-triggered JCD would in 5.1. Let’s change the name
“data” to “input” and “G_BatchLocakFileOTD” to “G_BatchLocalFile”. Figure 5-9 show the
method and its signature.

Figure 5-9 receive method signature with all JCA Adapters included

To complete the MDB let’s add the slab of code from Listing 5-1 as the doRename method
body.
Listing 5-1

G_BatchLocalFile.getConfiguration().setTargetDirect oryName(input.getPathDirName());

G_BatchLocalFile.getConfiguration().setTargetDirect oryNameIsPattern(false);

G_BatchLocalFile.getConfiguration().setTargetFileNa me(input.getGUIDFileName());

G_BatchLocalFile.getConfiguration().setTargetFileNa meIsPattern(false);

G_BatchLocalFile.getConfiguration().setPostDirector yName(input.getPathDirName());

G_BatchLocalFile.getConfiguration().setPostDirector yNameIsPattern(false);

G_BatchLocalFile.getConfiguration().setPostFileName (input.getOriginalFileName()

+ ".~in");

G_BatchLocalFile.getConfiguration().setPostFileName IsPattern(false);

G_BatchLocalFile.getConfiguration().setPostTransfer Command("Rename");

G_BatchLocalFile.getConfiguration().setPreTransferC ommand("None");

G_BatchLocalFile.getClient().get();

(Logger.getLogger(this.getClass().getName())).warni ng

("\n===>>> Batch Inbound message with file details"

 + "\nGUID File Name: " + input.getGUIDFileN ame()

 + "\nOriginal File Name: " + input.getOrigi nalFileName()

 + "\nPath Name: " + input.getPathDirName()) ;

throw new Exception("I don't wish to do this ...");

Note what is happening. The input argument provides the components of the name of the file
that was found and that triggered this MDB. The original name, the current name and the
directory. We use these values to dynamically set configuration of the Batch Local File to
read the GUID-named file in the specified directory then to rename it to the original name

with the literal “~.in” appended. The GET operation of the Client() perform the actual
‘transfer’.

Once the transfer is completed we throw an exception to see what the container will do.

Build and deploy the project.

If you are interested in seeing what the MDB does at runtime enable verbose logging for
selected logger categories. For example set the following using the Application Server Admin
Console: Application Server -> Logging -> Log Levels, see Figures 5-10.

Figure 5-10 Locating logging configuration

STC.eWay.batch FINEST

6 Exercise the solution
Let’s create a file named “trigger_bin_0.txt.~in” in “c:/temp/jc6jca”. The directory comes
from the Batch Inbound configuration. The name is that which we specified in the Batch
Inbound configuration but with the “.~in” appended. This is to allow us time to add some
content to the file before the Batch Inbound JCA Adapter gets a chance to process it. Let’s
add some content and rename the file by removing the “.~in” suffix. Batch Inbound will find
the file on its next poll, rename it and trigger the MDB. Figure 6-1 show the log extract to that
effect.

Figure 6-1 Batch Inbound found the file and renamed it

Looking at the log further reveals trace of post-processing activities in which the file is
renamed. Figure 6-2 shows this.

Figure 6-2 Post-processing activities

Finally, the log shows the exception being thrown, Figure 6-3.

Figure 6-3 Trace of the exception

Note that the file was renamed explicitly in the MDB but it was not renamed back to the
original name on exception, as one would expect if the Batch Inbound was a transactional
resource capable of rollback. Had the Batch Local File Adapter not been used to rename the
file, the GUID-based file name, to which the Batch Inbound renamed the file when it found it,
would have remained. In EAI speak, the message would have been consumed and, because
the exception did not cause rollback, it would have been lost.

7 Conclusion
One lesson from this example is to design integration solutions so as to minimize message
loss. In this case the MDB triggered by the Batch Inbound JCA Adapter should have passed
the name of the file to a component that could deal with exceptions and could successfully
roll back a transaction on exception. Instead of manipulating the file (renaming it) the MDB
could send the file name and directory details to a JMS Queue. A component downstream
would process the file. Exceptions in that component would cause JMS rollback and
redevliery handling would be able to take care of inability to process the file without message
loss.

