
Java CAPS 6
Using JCA, Note 6

JMS-Triggered JCA with Oracle and Batch Local File

Michael Czapski, July 2008

Table of Contents
1 Introduction..1
2 Solution outline..1
3 External Systems Preliminaries ...2
4 Connection Pools and JNDI Resources ...2
5 Project Group and Project..7
6 Database OTD and the MDB Logic...7
7 Exercise the solution..18
8 Conclusion ...22

1 Introduction
Rather then inventing an example to discuss and illustrate the use of the Oracle JCA Adapter
let’s build a solutions that uses the Oracle JCA Adapter and shows additional Java CAPS 6
facilities of interest.

Let’s take the example from the “Java CAPS Basics: Implementing Common EAI Patterns
Companion CD” book, ISBN: 0-13-713071-6, Chapter 11 “Scalability and Resilience”,
Section 11.2 “Exception Handling”, subsection 11.2.1 “Exceptions in Java Collaborations”,
11.2.1.1 “JMS-Triggered Java Collaborations”. The book from which this section comes is
available on the Companion CD. Let’s re-work this example using Java CAPS 6 JCA
Adapters.

2 Solution outline
This example illustrates exception handling involving a JMS-triggered JCA Message-Driven
Bean.

The MDB is designed to receive a JMS message, update a database table row with the value
of the text message, write the text message, together with the timestamp, to a file and finish.

When triggered, the MDB will log the invocation to the server.log. It will then attempt to
update a record in a database table using table EMP in the default Oracle’s sample schema
SCOTT. Finally it will attempt to write a record to a file using the Batch Local File JCA
Adapter. After each step, the MDB will have an opportunity to throw an exception. The input
message will contain one of the literals enumerated in Table 2-1, each of which allows the
MDB to execute a specific set of functionality before causing an exception.

Table 2-1 Message literals for exercising execution paths

S1 Throw exception after emitting a log message

S2 Throw exception after executing S1 followed by an update to a database table

S3 Throw an exception after executing S2 followed by write to a file

Any other literal will cause the MDB to complete without throwing an exception.

3 External Systems Preliminaries
Let’s ensure we have a record to update in the EMP table. Listing 3-1 illustrates the
commands used to ensure that the EMP table is ready for execution of the exercise, and their
output.

Listing 3-1 Clear and inspect EMP table in preparation for exercise execution

SQL> delete from scott.emp where ename = 'czapski';

1 row deleted.

SQL> insert into scott.emp (empno, ename, job, mgr , hiredate, sal,
comm) values (7777,'czapski','clerk',7777,'03/dec/8 1',1200,200);

1 row created.

SQL> commit;

Commit complete.

SQL> select * from scott.emp where ename='czapski';

 EMPNO ENAME JOB MGR HIREDATE SA L COMM DEPTNO
---------- ------- --------- ----- --------- ------ - ------- -------
 7777 czapski GOOD 7777 08/DEC/81 200 0 102 10

SQL>

4 Connection Pools and JNDI Resources
Since the MDB will use a JMS Queue, an Oracle JCA Adapter, and Batch Local File JCA
Adapter we must create and configure corresponding Connection Pools and related JNDI
references.

For the JMS JCA Adapter we could create a JMS Queue qJMSTriggeredJCA under
Resources -> Connectors -> Admin Object Resources, and the corresponding Queue
qJMSTriggeredJCA_DLQ for undeliverable messages but we don’t have to so we will not do
this. The JMS JCA Adapter Wizard allows us to use JNDI references to queues or to use
queue names directly. We will use queue names directly. You do as you think is best for you.

For the Oracle JCA Adapter we must create a Connection Pool under the Resources ->
Connectors -> Connector Connection Pools. Let’s call it “ora-lt-localhost-jcaps511-scott” to
indicate that it will be an Oracle DB Connection Pool, it will be configured to support Local
Transaction, the RDBMS instance is called jcaps511, is running on the localhost and the user
schema will be SCOTT. The Connection Pool in Resources -> Connectors -> Connector
Connection Pools does have provisions for configuring the host and the credentials. The
corresponding Connection Pool under the CAPS -> Connector Connection Pools does. As we
create the Resources -> Connectors -> Connector Connection Pools pool the corresponding
CAPS -> Connector Connection Pools gets created automatically. In addition, we will require
a JNDI Name corresponding to the connection pool. We will create it under the Resources ->
Connectors -> Connector Resources, name is “jndi-ora-lt-localhost-jcaps511-scott”, and
configure it to point to the pool named “ora-lt-localhost-jcaps511-scott” pool.

Let’s illustrate the steps.

Start the Application Server Admin Console and expand the Resources tree until the list of
Connector Connection Pools is displayed in the right hand pane, Figures 4-1 through 4-3
illustrate major steps.

Figure 4-1 Start the New Connector Connection Pool creation process

Figure 4-2 Name the pool, choose the adapter and the connection factory

Figure 4-3 Choose LocalTransaction for Transaction Support and Finish

Let’s now configure the database host, instance and credentials under the CAPS -> Connector
Connection Pools. Figures 4-4 and 4-5 illustrate major steps.

Figure 4-4 Click on the pool name

Figure 4-5 Configure host, port, SID and credentials, and Save

Finally, let’s create the JNDI Name that will be provided to the JCA configuration Wizard in
NetBeans. Figures 4-6 and 4-7 illustrate this.

Figure 4-6 Create a new Connector Resource reference

Figure 4-7 Name the JNDI reference and choose the correct pool
Pay close attention to the pool you are choosing. Alas, as it is at present, there may be a rather
large list of connection pools in the drop down.

This gives us the connection pool and the JNDI reference to the connection pool we need for
the oracle JCA Adapter we will be using. This connection pool resource can be reused in
other projects that use the same database instance, on the same host, with the same credentials
and that don’t mind sharing the connection pool.

For the batch local file JCA Adapter we also must create a Connection Pool under the
Resources -> Connectors -> Connector Connection Pools. Let’s call it “BatchLocal-
c/temp/jc6jca/jmstriggeredjca_nn.dat”, to indicate that it will be Batch Local File Connection
Pool, it will use a directory at c:/temp/jc6jca and the output file name will be
jmstriggeredjca_%d.dat, where %d will be replaced by a serial number at runtime. The
Connection Pool in Resources -> Connectors -> Connector Connection Pools does not have
provisions for configuring the director and file name. The corresponding Connection Pool
under the CAPS -> Connector Connection Pools does. As we create the Resources ->
Connectors -> Connector Connection Pools pool the corresponding CAPS -> Connector
Connection Pools gets created automatically. In addition, we will require a JNDI Name
corresponding to the connection pool. We will create it under the Resources -> Connectors ->
Connector Resources, name is “jndi-BatchLocal-c/temp/jc6jca/jmstriggeredjca_nn.dat”, and
configure it to point to the pool named “BatchLocal-c/temp/jc6jca/jmstriggeredjca_nn.dat”.

Since the process is identical to that we went through for the Oracle JCA Adapter only key
illustrations will be shown.

Figure 4-8 Name the new Connection Pool, choose the Adapter and the Connection factory

Figure 4-9 Configure target directory and file name

Make sure to set the Append property to “Yes”.

Figure 4-10 Create a new JNDI reference to the pool

This completes creation and configuration of all necessary connection pools and references.

5 Project Group and Project
As I am in a habit of doing, let’s create a Project Group to contain the projects that will form
part of this solution. Let’s call this project group Scalability_and_Resilience_JMS-
Triggered_JCA_MDB.

In the newly created project group let’s create an Enterprise -> EJB Module project called
jcaJMSTriggeredJCA_EJBM. In this project we will create all other artefacts. Figure 5-1
illustrates this.

Figure 5-1 Create and name the Enterprise -> EJB Module project

6 Database OTD and the MDB Logic
To have the MDB update the record we will create an Oracle table OTD, tblEMP, for the
SCOTT.EMP table. In Java CAPS 6 an Oracle OTD can be created two ways. It can be
created in the repository-based project and imported into a JCA MDB project. It can also be
created directly in the JCA MDB project. We will use the latter method.

Right-click on the name of the EJB Module project, jcaJMSTriggeredJCA_EJBM, choose
New -> Other …, choose SOA -> Oracle Otd Wizard and follow the process as instructed.
Figures 6-1 illustrates the step at this point.

Figure 6-1 Choose SOA -> Oracle Otd Wizard

The Oracle Otd Wizard is very similar to its 5.1 equivalent. Figures 6-2 through 6-12
illustrate the steps involved in creating an Oracle Table-based OTD called otdSCOTT_EMP
and its corresponding XML Schema definition.

Figure 6-2 Provide Database details

Figure 6-3 Choose tables/views/aliases

Figure 6-4 Choose to use fully qualified names and click Add …

Figure 6-5 Type EMP and click Search

Figure 6-6 Select the table and click Select …

Figure 6-7 Click OK

Figure 6-8 Click Next

Figure 6-9 Enter OTD name, check Create XSD and click Save As

Figure 6-10 Once you located the directory to which to write the XSD and named it click Next

Figure 6-11 Click Finish and wait for the OTD to be created

Figure 6-12 Notice one created in the Source Packaged folder

With the preliminaries over we can proceed to create the JCA Message-Driven Bean itself.

The Message Driven Bean, jcaJMSTriggeredJCA, shown in Listing 6-1, is triggered by the
JMS JCA Adapter and uses an Oracle JCA Adapter with a table OTD, tblEMP, and a Batch
Local File JCA Adapter. We will create this JCA MDB a step at a time, with illustrations
following the listing.

Listing 6-1 jcaJMSTriggeredJCA MDB receive method source

public void receive
 (com.stc.connectors.jms.Message input
 ,tblEMP.TblEMPOTD U_tblEMP
 ,com.stc.eways.batchext.BatchLocal W_BatchLocal File)
 throws Throwable
{
 logger.fine("\n===>>> Entered jcdJMSTriggeredJ CD");

 if (input.getTextMessage().equalsIgnoreCase("S 1")) {
 String sMsg = "Throwing exception on S1";
 logger.fine("\n===>>> " + sMsg);
 throw new Exception(sMsg);
 }

 U_tblEMP.getEMP().update("ENAME = 'czapski'") ;
 logger. fine ("\n===>>> Did select");

 boolean blHavNext = U_tblEMP.getEMP().next();
 U_tblEMP.getEMP().setJOB(input.getTextMessage());
 U_tblEMP.getEMP().updateRow();
 logger. fine ("\n===>>> After DB Update");

 if (input.getTextMessage().equalsIgnoreCase("S 2")) {
 String sMsg = "Throwing exception on S2 aft er DB Update";
 logger. fine ("\n===>>> " + sMsg);
 throw new Exception(sMsg);
 }

 String sTimestamp = "" + (new java.util.Date()) .getTime();
 String sPayload = sTimestamp + ":" + input.getT extMessage() + "\n";
 W_BatchLocalFile.getClient().setPayload(sPaylo ad.getBytes());
 W_BatchLocalFile.getClient().put();
 logger. fine ("\n===>>> After File PUT");

 if (input.getTextMessage().equalsIgnoreCase("S 3")) {
 String sMsg =
 "Throwing exception on S3 after DB Upd ate and File Write";
 logger. fine ("\n===>>> " + sMsg);
 throw new Exception(sMsg);
 }

 logger. fine ("\n===>>> Exiting normally with trigger "
 + input.getTextMessage());
}

Let’s start by creating a JCA MDB, jcaJMSTriggeredJCA, as shown in Figures 6-13 through
6-17.

Figure 6-13 Name the JCA MDB

Figure 6-14 Choose the JMS Adapter and the com.stc.connectors.jms.Message message

Figure 6-15 Name the Destination

Figure 6-16 Configure redelivery handling to have the message moved to DLQ on failure

Figure 6-17 Boilerplate JCA MDB code

Once the wizard completes the JCA MDB code will be available for editing – see Figure 6-
17. Notice the receive method with a single argument of type
com.stc.connectors.jms.Message, the type we selected when configuring the JCA Adapter
through the wizard, named “jmsOtdMessage”. Let’s rename this argument to “input”. Once

we do this the signature of the receive method will be identical to that which one would see in
a JMS-triggered Java Collaboration Definition in Java CAPS 5.x.

Let’s add the Oracle JCA Adapter. Drag the Oracle JCA from the palette to the source
window, as shown in Figure 6-18. It does not matter where in the source window one
completes the drag action.

Figure 6-18 Add the Oracle JCA Adapter – begin configuration

From the beginning of this section recall creating the Oracle Table-based OTD,
tblSCOTT_EMP. The Orale JCA configuration wizard requires us to specify the OTD which
to use. Choose the once created earlier, as shown in Figure 6-19, and click Next.

Figure 6-19 Choose tblSCOTT_EMP OTD

Accept the method name, receive, choose the JNDI reference to the Oracle Connection Pool,
jndi-ora-lt-localhost-jcaps511-scott, which was created earlier, name the Local Variable
U_tblEMP and click Finish. Figure 6-20 illustrates this.

Figure 6-20 Configure Oracle JCA Adapter

To keep the variable names the same as in the code in the book example let’s rename the
Oracle OTD name, which was mangled by the wizard, from U_tblEMPOTD to U_tblEMP, as
we intended all along. The receive method signature now looks like that shown in Figure 6-
21. Note U_tblEMP, as renamed from the wizrd-provided U_tblEMPOTD.

Figure 6-21 receive method signature with JMS and Oracle OTD arguments

Let’s now add the Batch JCA Adapter, making sure to rename the argument in the recveive
method signature from

Figures 6-22 through 6-24 illustrate the process.

Figure 6-22Drag the Batch JCA Adapter to the source window

Figure 6-23 Choose the BatchLocal OTD and click Next

Figure 6-24 Accept method name, choose JNDI name and provide name for the variable

Rename the wizard-provided argument name, W_BatchLocalFileOTD, to W_BatchLocalFile,
as we intended. You can keep the name but if you do the code in Listing 6-1 will have to be
modified to use the new variable name. The receive method signature, after re-formatting,
now looks like that shown in Figure 6-25.

Figure 6-25 receive method signature with all JCA Adapters included

To complete the MDB let’s add the slab of code from the method body in Listing 6-1 as the
receive method body. If you are transcribing Java CAPS 5.x code verbatim logger.debug(…)

and similar statements will be flagged as errors. This is because JCA MDBs use
java.uril.logging, rather then the jog4j method names, which were jog4j in ICAN 5.0 and
were emulated for compatibility in Java CAPS 5.1. Rename all occurrences of logger.debug
to logger.fine and logger.error to logger.sever.

Build and deploy the project.

If you are interested in seeing what the MDB does at runtime enable verbose logging for
selected logger categories. For example set the following using the Application Server Admin
Console: Application Server -> Logging -> Log Levels, see Figures 6-26.

Figure 6-26Locating logging configuration

jcaJMSTriggeredJCA FINEST
STC.eWay.batch FINEST
STC.eWay.DB.Oracle FINEST

If needs be, add logging properties with these names and values.

7 Exercise the solution
We will use the Enterprise Manager to inject messages into the solution to exercise different
logic paths. Our starting point is a database table with the record for ENAME = ‘czapski’
containing the value “clerk” in the JOB column and the directory with no output file. Listing
7-1 illustrates the SQL command and its output.

Listing 7-1 Select specific row from the EMP table

SQL> select * from scott.emp where ename='czapski';

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- -------- ------ ----- --------- ------- ------- ----------
 7777 czapski clerk 7777 03/DEC/81 200 200 10

Let’s first exercise the “happy path” by submitting a message with the contents “AA”. Figure
7-1 highlights notable points in the Enterprise Manager display that may assist in manually
submitting a message to a JMS queue. This message will not trigger an exception.

Figure 7-1 Manually submitting a message to a JMS queue

Once the MDB executes, the database table will be updated and the file with the timestamped
entry will be created. Listing 7-1 illustrates the content of the table row after the update.
Figure 7-2 illustrates the content of the file after execution of the project.

Listing 7-1 Updated EMP table

SQL> select * from scott.emp where ename='czapski';

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --- ----- --------- ------- - ------ ----------
 7777 czapski AA 7777 03/DEC/81 200 200 10

Figure 7-2 Content of the file after execution of the project

Let’s now submit a message containing the literal “S1”. The MDB will throw an exception
before the logic gets to database update and file write. Given that the JMS Adapter is
configured to try at most once then move the message to a Dead Letter Queue, we will see
one attempt at MDB execution. The expectation is that neither the database update nor the file
write will be executed, so there will be no changes in either resource.

The server.log shows an exception with the message being moved to a Dead Letter Queue.
The exception messages are shown in Listing 7-2.

Listing 7-2 Exception messages after submission of “S1” as a message

As expected, inspection of the table and the file shows no changes. The process failure
occurred before any changes could be made.

Let’s now submit a message with the literal “S2”. According to MDB’s logic the database
update will be executed, but the file write will not be executed. It is expected that even though
the update will have been executed there will be no change to the database table because the
transaction will have been rolled back. Indeed, the server.log fragment in Listing 7-3 shows
the log messages supporting this statement.

Listing 7-3 Exception messages after submission of “S2” as a message

Inspection of the database table shows no change.

Inspection of the output file shows no change either. The code section that would have
updated the file was never executed.

Finally, let’s submit a message with the literal “S3”. MDB logic dictates that the database
must be updated and a record must be written to a file before throwing an exception. Since the
file is not a transactional resource, even if the exception is thrown and the database update is
not committed, the file write will still succeed.

The server.log fragment in Listing 7-4 shows the execution trace with both the database
update and file write messages.

Listing 7-4 Exception messages after submission of “S3” as a message

As expected, the database was not changed.

Inspection of the file shows that it was updated.

8 Conclusion
One lesson from this example is to place invocation of nontransactional resources after
invocation of transactional resources if logic permits. Another lesson is to consider breaking
up logic into transactional and nontransactional units to minimize the complexity of exception
handling.

A solution designer can take advantage of the JMS redelivery handling to handle exceptions
at a MDB level. The built-in JMS redelivery mechanism can be utilized to overcome transient
exception-causing conditions, such as temporary database unavailability, without requiring
explicit logic in MDBs. The designer must, however, consider side-effects arising out of
access to nontransactional resources, to minimize the adverse impact of retry attempts on
these resources.

If the MDB does not throw an exception, the message that triggered it will be consumed and
the transaction that spans the MDB will complete. If the MDB handles exceptions that arise
during its execution, and does not rethrow any, the message that triggered it will also be
consumed.

