
Java CAPS 6/JBI and OpenESB
Using JBI, Note 5

HTTP BC to SMTP BC, No BPEL

Michael Czapski, July 2008

Table of Content
1 Introduction..1
2 Create Project Group 05HTTP2SMTPNoBPEL_PG ..1
3 Create HTTP BC to SMTP BC Composite App..2
4 Exercise HTTP BC to SMTP BC Composite App ..9
5 Summary..12

1 Introduction
Someone asked a question along the lines of “Is it possible to develop a solution in
OpenESB where the HTTP BC receives a request and the SMTP BC uses it to send
electronic mail with no BPEL logic to tie the two together”. I though that the answer
was “Yes” but I felt I had to verify it. Vishnuvardhan Piskalaramesh from Sun, who is
looking after the SMTP BC, and Sherry Weng from Sun, who is looking after the
HTTP BC, helped along and here is the result.

This note describes, with illustrations, a mini integration solution wherein a
appropriately formulated HTTP GET request is used to submit an electronic mail to a
SMTP server, using the HTTP Binding Component and the SMTP Binding
Component, without the need to provide any transformation logic. This is another
example where a practical JBI-based integration solution can be constructed in
minutes.

2 Create Project Group 05HTTP2SMTPNoBPEL_PG
As on previous occasions, let’s create a new project group to contain projects we will
be building in this Note. The group will be called “05HTTP2SMTPNoBPEL_PG”.

Let’s right-click anywhere in the Projects tab and choose Project Groups -> New
Group … to start the wizard. Figure 2-1 shows the dialog box where project group
name and file system directory path are specified.

Figure 2-1 Creating a new Project Group

3 Create HTTP BC to SMTP BC Composite App
It is sometimes assumed that BPEL 2.0 process is necessary to route messages
between an inbound Binding Component and an outbound Binding Component. As
has been demonstrated in Java CAPS Field Technical Tips Notes JBI Note 3 and JBI
Note 2, it is not necessary to have a BPEL 2.0 process do the routing. NMR will
happily route between two Binding Components as long as no business logic is
required to transform messages as they travel between the source and the destination.

The Notes mentioned above used the File BC as the illustrative vehicle. It should be
easy enough to extrapolate to other BCs. To assist in the extrapolation this document
discusses the OpenESB solution that uses the HTTP BC as the source of messages
and the SMTP BC as the destination.

Let’s create a Composite Application Module, HTTP2SMTP_CA. Figures 3-1 and 3-
2 illustrate the major steps.

Figure 3-1 Choose Composite Application project

Figure 3-2 Name the project and nominate project folder

Let’s create a new WSDL, wsdlSMTPOut, for the SMTP BC and configure it with the
correct physical environment property values, including sender, receiver, etc.. Figures
3-3 through 3-6 illustrate the major steps.

Figure 3-3 Choose to create a WSDL document

Figure 3-4 Name the WSDL document

Figure 3-5 Add message parts

Figure 3-6 Nominate the Binding Component to use

Let’s configure the smtp:address node under the Services tree to point at the
appropriate SMTP Server and provide correct credentials. Figure 3- illustrates this.
The From and To addresses will come from the message so the Location property
seems to be superfluous. I configured it anyway.

Figure 3-7 Configuring address properties for the SMTP Server

The smtp:input property under the Bindings tree, is used to associate various
properties relating to message sending with the parts of the message used to provide
their values. Recall that the message in the WSDL we constructed for the SMTP BC
has four parts. sMessageOut will contain message body, sSubject will contain mail
subject text, sFrom will contain sender’s address and sTo will contain recipient’s
address. We configure message, subject, from and to properties by selecting the
corresponding message parts from the drop down. Figure 3-8 illustrates associatin of
message parts and properties. Should we wished to use CC and BCC addresses we
would have to provide appropriate message parts through which to supply values.

Figure 3-8 Associating message parts with configuration properties

To use the WSDL in the Service Assembly we load it.

Let’s load the SMTP WSDL Port into the Service Assembly Editor canvas by right-
clicking anywhere in the empty WSDL Ports swim line, selecting Load WSDL Port
… option, Figure 3-9, and selecting the only WSDL port available – that of the SMTP
BC WSDL, Figure 3-10.

Figure 3-9 Loading SMTP WSDL into the Service Assembly

Figure 3-10 Selecting WSDL Port

This places the configured SMTP BC on the Service Assembly Editor canvas, Figure
3-11.

Figure 3-11 SMTP BC on the Service Assembly canvas

Let’s now drag the HTTP BC onto the Service Assembly Editor canvas as shjown in
Figure 3-12.

Figure 3-12 Adding HTTP BC to the canvas

This creates a new WSDL in the Project Files folder as shown in Figure 3-13.

Figure 3-13 New WSDL in the process Files folder

Let’s connect the HTTP BC and the SMTP BC on the Service Assembly Editor
canvas by dragging from the HTTP BC’s Consume icon to the SMTP BC’s Provide
icon. Figure 3-14 illustrates this.

Figure 3-14 Connecting HTTP BC and SMTP BC

Let’s now configure the HTTP BC’s WSDL to provide the end point address
information as shown in Figure 3-15.

Figure 3-15 Configuring http:address location attribute to provide service end-point address

Let’s replace ${HttpDefaultPort} with an unused port number, say 58080.

Note that by default the HTTP BC will be configured for the HTTP GET request.

To enable the HTTP BC to work out which operation to invoke when a request arrives
we must also provide a value to the location attribute of the http:operation node of the
Bindings tree. Figure 3-16 calls out the relevant parts of the WSDL.

Figure 3-16 Adding http:operation location attribute value to the WSDL

Notice that the message structure, featuring the four message parts specified when
configuring the SMTP WSDL are ‘inherited’ in this WSDL by virtue of us connecting
the two BCs together. Take note of the names of these message parts – they will be
required to properly format the HTTP GET request that triggers processing.

Build and deploy the project.

4 Exercise HTTP BC to SMTP BC Composite App
To exercise the solution we built we can use a Web Browser to submit a properly
formatted HTTP GET request. The HTTP GET request is none other then the
Universal Resource Locator (URL) we provide as the address of the resource.

For the HTTP BC, in which the input message is a multi-part message, the URL must
be constructed using values provided in the HTTP BC WSDL.

The request URL consists of the content of the http:address node’s location attribute
value, followed by a forward slash, http:operation node’s location attribute value,
followed by a question mark, followed by a series of &-separated name-value pairs
wherein the name is the name of the message part and the value is the value to be
provided for that message part. Figure 4-1 highlights relevant parts of the WSDL.

Figure 4-1 Sources of data for the HTTP URL

Given the http:address location of “http://localhost:58080/casaService1/casaPort1”
and http:operation location of “email”, and message parts names “sMessageOut”,
“sSubject”, “sFrom” and “sTo”, the URL will be:

http://localhost:58080/casaService1/casaPort1/email?sMessageOut=mymessage&sSu
bject=mysubject&sFrom=user@email.server.com&sTo= user@email.server.com

Given the 1 to 1 correspondence between message parts of the HTTP BC and the
SMTP BC the value of the sMessageOut element will be used as the SMTP message
body, the value of the sSubject element will be used as the mail subject, the value of
the sFrom element will be used as the sender’s address and the value of the sTo
element will be used as the recipient’s address.

Certain special characters, to be included in the URL, must be encoded. RFC 3986,
“Uniform Resource Identifier (URI): Generic Syntax”, spells this out. See Percent-
encoding Wikipedia page, http://en.wikipedia.org/wiki/Percent-encoding, for more
accessible definition and a table of encoding sequences. This is important if you
intend to include spaces and special characters as values of sMessage and sSubject
elements.

Let’s provide the following URL to the web browser:

http://localhost:58080/casaService1/casaPort1/email?sMessageOut=
This%20text%20is%20supplied%20as%20email%20message%20body%20by%20pro
viding%20it,%20encoded,%20as%20the%20value%20of%20the%20sMessageOut%2

0element.%0D%0DYours%20truly%0D%0DMichael&sSubject=Test%20Message&s
From=KComilla@aus.sun.com&sTo=mczapski@aus.sun.com

Here %20 encodes spaces and %0D encodes carriage returns.

Figure 4-2 shows the Internet Explorer with the URL in the Address field.

Figure 4-2 URL in Internet Explorer

The web browser will complete the request with a blank page, since the service
implementation uses a One-way WSDL and does not return anything back to the
browser.

The server.log, when logging at the appropriate level is enabled for the HTTP BC and
the SMTP BC, may show messages similar to these shown in Figure 4-3.

Figure 4-3 Fragment of verbose log of request processing showing SMTP interaction

In an email client the message will look similar to what is shown in Figure 4-4.

Figure 4-4 Message in Microsoft Outlook

5 Summary
This document walked the reader, step-by-step, through the process of creating and
exercising a Java CAPS 6/JBI (or OpenESB) HTTP BC to SMTP BC solution that did
not use any logic component for transformation. Routing of messages was
accomplished using the Normalized Message Router. The solution used only JBI
components.

