
Page 1 of 19 

Java CAPS 6/JBI and OpenESB 
Using JBI, Note 4 

 
File to File, with Java logic using Java EE SE  

 
Michael Czapski, June 2008 

Rev. 1.1 

 
Release Notes 
Both illustrations on Page 13 and Page 14 were incorrect in the original release - 
WSDL name shown in the illustrations, wsdlEJBwithOTD.wsdl, should have been 
wsdlJavaLogic.wsdl. As a consequence some names were incorrect. Thanks to Juraj 
Kazda for spotting this issue. 

1 Introduction 
This document explores the ability of Java CAPS 6/JBI and OpenESB to expose and 
execute Java-based logic as a JBI service. It walks through the process of creation, 
deployment and execution of a simple File-to-File integration solution that reads an 
XML record from a text file, invokes java logic that operates on that record then 
writes the XML response record into a file. 
 
The focus is the practice of using JBI components not the theory of JBI. 
 
This document addresses the integration solution developers, not developers of 
Service Engines or Binding Components.  
 
The project does not use Java CAPS 6 Repository-based components, that’s why it is 
just as good for OpenESB exploration as it is for Java CAPS 6/JBI exploration. 
 
JBI (Java Business Integration) is not discussed to any great extent. JBI artifact names 
are used in discussion but not elaborated upon. Explanations are provided where 
necessary to foster understanding of the mechanics of developing integration solutions 
using JBI technologies in OpenESB and Java CAPS 6/JBI. 
 
Java CAPS 6 and OpenESB are two of a number of toolkits that implement the JBI 
specification (JSR 208). When I use an expression like “In JBI …” I actually mean 
“In JBI as implemented in Java CAPS 6 and OpenESB …”. The same things may 
well be implemented differently in other JBI toolkits. 
 
Java CAPS 6 “Revenue Release” is used and shown in illustrations. OpenESB can be 
used instead however the appearance of components shown in illustrations may vary 
somewhat.  
 
I use Windows to develop these solutions and make no effort to verify that the 
solutions will run on other platforms.  



Page 2 of 19 

2 WSDLs 
Java CAPS 6 and OpenESB use WSDL to define message structures and interactions 
between Binding Components (what in 5.x one would call OTDs and eWays or 
Adapters) and Service Units (what in 5.x one would call Java Collaborations and 
eInsight Business Processes). In 5.x WSDL was used for the same things but, unless 
one wanted to expose an eInsight Business Process as a web service, or consume a 
web service described by a WSDL, WSDL definitions were effectively invisible to 
the developer. This made the 5.x toolkit appear simpler to use, and conversely, made 
OpenESB and Java CAPS 6/JBI appear more complex and appear to require much 
deeper technical knowledge to work with when compared to Java CAPS 5.x.  
 
In JBI WSDL is used to provide definitions of payload message structures that are 
exchanged between components and, in case of Binding Components, to provide the 
means to configure the Binding Component as required by the solution.  

3 Create Project Group 04File2FileJavaEE 
As on previous occasions, let’s create a new project group to contain projects we will 
be building in this Note. The group will be called “04File2FileJavaEE”.  
 

Note 

Let’s make sure that the file system path, where the project group files will be 
located, does not contain spaces. If it does, we will have issues getting the 
XML Schema document import to work.  

 
Let’s right-click anywhere in the Projects tab and choose Project Groups -> New 
Group …  to start the wizard. Figure 3-1 shows the dialog box where project group 
name and file system directory path are specified. 
 

 
Figure 3-1 Creating a new Project Group 



Page 3 of 19 

4 Java logic 
Java logic will be implemented in a Java class annotated as a Web Service. Don’t 
panic – there is no SOAP over HTTP involved. The WSDL, which we will created, 
will consist of the Interface, or Abstract part, only and will be used, as mentioned in 
Section 2, to name the service’s operation and describe input and output messages. 
The service itself will be hosted in the JBI container and will be invoked by the NMR. 
 
Let’s create a new project, of category Enterprise, of type EJB Module, Figure 4-1, 
named emFile2FileJavaEE, making sure to select the correct project group folder, 
Figure 4-2. 
 
 

 
Figure 4-1 Enterprise -> EJB Module project 
 

 
Figure 4-2 Naming the project and choosing project group folder 
 



Page 4 of 19 

Since WSDL is the King, and WSDL uses XML for input and output messages, and 
using XSD built-in string data type is fairly uninspiring, let’s create in our EJB 
Module folder, emFile2FileJavaEE, an XML Schema document to describe a 
structure that is slightly more complex then the xsd:string. 
 
Let’s create a structure consisting of two element, elString, of type xsd:string and 
elInteger of type xsd:integer. Notation xsd:xxxx refers to XML Schema built-in data 
types. 
 
The steps to create a simple XML Schema with two elements is described and 
illustrated in Figures 4-3 through 4-12. 
 
Right-click on the name of the EJB Module, emFile2FileJavaEE, and choose New -> 
XML Schema … as shown in Figure 4-3. 
 

 
Figure 4-3 Choosing ot create a XML Schema 
 
Let’s name the Schema xsdTwoFields, as illustrated in Figure 4-4. 
 

 
Figure 4-4 Naming the new XML Schema 
 
Make sure the XSD Editor is in the Schema mode, that is that the Schema Tab is 
selected. Right click on the “Elements” node and choose Add Element … as 
illustrated in Figure 4-5. 
 



Page 5 of 19 

 
Figure 4-5 Choosing to add a new element 
 
Let’s name this element elTwoFieldsRoot and make sure to keep the radio button 
“Inline Complex Type” selected, as illustrated in Figure 4-6. 
 

 
Figure 4-6 Adding root element to the schema 
 
Click on names in successive columns, from left to right, until the “sequence” is 
shown, then right click on the “sequence” and choose Add -> Element. Figure 4-7 
illustrates this. 
 



Page 6 of 19 

 
Figure 4-7 Choosing to add an element to the sequence 
 
Name this new element elString, choose the Use Existing Type, scroll through the list 
of Built-In types and select “string”, as shown in Figure 4-8. 
 

 
Figure 4-8 Adding an element of type xsd:string 
 
Right-click on the “sequence” again and add another element, elInteger, using 
existing built-in type “integer”. Figures 4-9 and 4-10 illustrate this. 
 



Page 7 of 19 

 
Figure 4-9 Choosing to add another element 
 

 
Figure 4-10 Adding a xsd:integer type – this will become java.math.BigInteger 
 
The complete XSD Schema is shown in Schema mode in Figure 4-11 and in Source 
mode in Figure 4-12. 
 



Page 8 of 19 

 
Figure 4-11 XML Schema in Schema mode 
 

 
Figure 4-12 XML Schema in Source mode 
 
Our XML Schema is now ready. We can create a WSDL to describe the interface 
between the EJB Module we are creating and the rest of the world. 
 
Let’s create a new WSDL, wsdlJavaLogic, Figure 4-13, import the XML Schema we 
just created, Figures 4-14 and 4-15, then name the WSDL operation opJavaLogic, the 
input message sIStruct, and the output message sOStruc, Figure 4-16. Before 
completing the wizard we need to make sure that the input and output messages are of 
the correct type, elTwoFieldsRoot, which we obtained when we imported the XML 
Schema created earlier. Figures 4-17 and 4-18 illustrate the steps in choosing the type 
for the input message. The steps are the same for the output message, as is the 
message type. 
 

 
Figure 4-13 Choosing to create a new WSDL document 
 
 



Page 9 of 19 

 
Figure 4-14 Naming the WSDL and starting import of the XML Schema 
 

 
Figure 4-15 Choosing XML Schema to import 
 



Page 10 of 19 

 
Figure 4-16 Naming the operation and messages 
 



Page 11 of 19 

 
Figure 4-17 Choosing the message type for the input message 
 

 
Figure 4-18 Input message now has the correct type 
 
This completes configuration of the Abstract part of the WSDL. We are not interested 
in the Concrete part so we will complete the Wizard by clicking the “Finish” button, 
Figure 4-19. Clicking the “Next>” button would have lead us to the part of the wizard 
that aids in specification of the concrete part of the WSDL – we will not do that here. 
 



Page 12 of 19 

 
Figure 4-19 Completing the Abstract part of the wizard 
 
The process we have just gone through produced the interface specification to which 
our Java logic service will conform. 
 
Let’s now create the service implementation. 
 
Right-click on the name of the EJB Module, emFile2FileJavaEE, then choose News -
> Web Service form WSDL … as shown in Figure 4-20. 
 

 
Figure 4-20 Choosing to create a Web Service from WSDL 
 
Let’s name the service wsJavaLogic, browse to the WSDL we just created and choose 
it, click Open to select the WSDL then click Finish to complete the wizard and have 
the skeleton Java class created, as shown in Figures 4-21, 4-22 and 4-23. 
 



Page 13 of 19 

 

   
Figure 4-21 Naming the service and choosing the WSDL 
 

  
Figure 4-22 Completing the Web Service form WSDL wizard 
 
In Source mode, the skeleton Java class, with source reformatted for readability, will 
look similar to that shown in Figure 4-23. 
 



Page 14 of 19 

 
Figure 4-23 Java source of the new logic service 
 
Let’s add some trivial logic like convert the content of the string element elString, to 
upper case and add 10 to the value of the integer element elInteger . The logic is 
shown in Figure 4-24. 
 

 
Figure 4-24 Trivial processing logic 
 



Page 15 of 19 

One can easily imagine both much more complex message structures, possibly 
different for the input message and for the output message, ands much more complex 
logic that operates on these structures. The method is the same. 
 
Let’s build the EJB Module, emFile2FileJavaEE, by right-clicking on the module 
name and choosing Build, as shown in Figure 4-25. 
 

 
Figure 4-25 Choosing to build the module 
  
The Java logic module is now ready to use in a Composite Application, which will be 
developed next. 

5 File In to File Out with Java Logic 
The module developed in Section 4 is ready to be used in a Composite Application. 
Let’s create a simple composite application wherein a File BC reads the content of a 
file, which has to be an XML message conforming to the XML Schema also 
developed in Section 4. The EJB Module is a request/reply service so the File BC will 
have to be configured to both receive the content of a file to be used as input and to 
write the service response to a file, using a single File BC. 
 
Let’s create a new Composite Application project, caFiel2FileJavaEE. Use CAPS -> 
ESB -> Composite Application project type. This has been done in all previous Notes 
in this series so the specific steps will not be repeated. 
 
Let’s now drag the EJB Module, emFile2FileJavaEE, onto the CASA Editor canvas, 
to the Service Assembly’s JBI Modules ‘swim line’. The result should appear as 
shown in Figure 5-1. 
 

 
Figure 5-1 Adding EJB Module to the JBI Service Assembly 
 
Let’s now drag the File BC form the palette to the WSDL Ports swim line, as shown 
in Figure 5-2. 



Page 16 of 19 

 

 
Figure 5-2 Adding File BC to the Service Assembly 
 
Let’s Build the Composite Application project then click and drag from the Consume 
connector of the File BC to the Provide connector of the EJB module as shown in 
Figure 5-3. 
 

 
Figure 5-3 Connecting consumer to provider 
 
Let’s double-click on the caFile2FileJavavEE WSDL, created when we added the File 
BC to the Service Assembly, shown in Figure 5-4, to open it for configuration. 
 

 
Figure 5-4 File BC WSDL in the Composite Application project 
 
As on previous occasions, let’s select the Services -> casaService1 -> casaPort1 -> 
file:address node of the WSDL and configure the fileDirectory property to point to the 
file system directory where the input file will be found and where the output file will 
be written. Figure 5-5 illustrates this. 



Page 17 of 19 

 
Figure 5-5 Configuring file directory 
 
The input file will be different from the output file even though we are using the same 
File BC. Let’s configure the name of the input file. Let’s prefix the default name, 
test.xml, with the name of the composite application to obtain a unique name. Figure 
5-6 illustrates this. 
 

 
Figure 5-6 Naming the input file 
 
Let’s do the same to the output file, see Figure 5-7. 
 



Page 18 of 19 

 
Figure 5-7 Naming output file 
 
The composite application is now complete. Let’s build and deploy it. Since this was 
done in every Note so far the steps will not be repeated. 
 
The input file, caFile2FileJavaEE_test.xml, must exist and must contain valid XML 
Instance document conforming to the XML Schema, xsdTwoFields, developed in 
Section 4. Let’s create an instance document using NetBeans facilities. Locate the 
xsdTwoFields.xsd in project folder hierarchy emFile2FileJavaEE/Source 
Packages/<default package>, right-click its name and choose Generate Sample XML. 
See Figure 5-8. 
 

 
Figure 5-8 Choosing to generate a XML Instance Document 
 
Accept defaults in the dialog box that follows and modify the resulting XML Instance 
document to read as shown in Figure 5-9. 
 



Page 19 of 19 

 
Figure 5-9 XML Instance document with test data 
 
This document is created in the file system directory associated with the project 
group. We need it in the directory nominated as the input file directory in the File BC 
configuration, in this case C:\Temp\JC6JBI, and we need it to be named as specified 
in the file:message fielName property on the input side, in this case 
caFile2FileJavaEE_test.xml. Let’s copy the file from where it was created to the 
appropriate directory and rename it. Once the file is renamed it will be picked up 
within a second and processed. The result will be written to the file named 
caFile2FileJavaEE_output.xml in the same directory as the input file. 
 
Listing 5-1 shows the output of the run with the sample input shown in Figure 5-9. 
 
<elTwoFieldsRoot 
xmlns="http://xml.netbeans.org/schema/xsdTwoFieldsx"> 
<elString>THIS IS A TEST</elString> 
<elInteger>133</elInteger> 
</elTwoFieldsRoot> 
Listing 5-1 Output of execution with sample input from Figure 5-9 
 
The string element value was converted to upper case and the integer element value is 
10 more then the input was. 

6 Summary 
This document walked the reader, step-by-step, through the process of creating and 
exercising a Java CAPS 6/JBI (or OpenESB) basic File to File integration solution 
that used Java to implement transformation logic. The solution used only JBI and JEE 
components. It operated on a file containing a single XML record. It demonstrated 
how arbitrary Java logic can be created and incorporated into JBI Composite 
Applications.  
 
 


