
Java CAPS 6
Using JCA and JBI, Note 3

Batch Inbound, through Batch Local File to BPEL 2.0

Michael Czapski, July 2008

Table of Content
1 Introduction..1
2 Create Connection Pool and JNDI Reference..2
3 Create Project Group JCABatchProjects_PG ..4
4 Create EJB Module and OneWay WSDL..5
5 Create JCA Message-Driven Bean ..6
6 Create BPEL 2.0 Process ...17
7 Create a Composite Application ..25
8 Exercising the solution...28
9 Summary..28

1 Introduction
Java CAPS 6 has the 5.x compatibility infrastructure which allows one to import 5.x
projects right into Java CAPS 6, build, deploy and run without changes. One can also
develop repository-based projects in Java CAPS 6 – that’s the 5.x-style projects. This
is the old way of developing Java CAPS solutions – still good and valid.

If one were to decide to not use the old way there is the JBI infrastructure, which
allows development of solutions that use BPEL Service Engine, XSLT Service
Engine, IEP Service Engine, Java EE Service Engine, etc., and a variety of Binding
Components. The implication is that business logic is implemented in BPEL 2.0,
which is used to orchestrate other services and resources, including interaction with
external systems through Binding Components. This is the new way of developing
Java CAPS solutions – 100% compatible with the Open Source OpenESB project
since it uses the OpenESB project-developed container and components.

Someone might ask “so what happened to eGate?”. “eGate” meaning Java
Collaboration Definition-like logic components, eWays and the JMS messaging
backbone.

While the facility seems underadvertised/downplayed, Java CAPS 6 provides a
number of 5.1 eWay-based JCA Adapters and a moderately easy means of developing
JCA Message-Driven Beans that can use these adapters to implement JCD-like logic
components and, effectively, eGate-like solutions that do not use BPEL or the JBI
infrastructure.

This Note discusses and illustrates the implementation of a mixed Java CAPS 5.x-like
integration solution that retrieves a file from the local file system using JCA Adapters
and passes its content to a BPEL 2.0 process executing in the JBI container. This
requirement I have seen and heard of being implemented in 5.x many times by many
customers.

Most of the material in the first 16 pages of this Note is the same as in Note 2.

The JCA Message-Driven Bean, the piece of JCD-like Java logic, will be triggered by
a Batch Inbound Adapter (what one would have called the Batch Inbound eWay in
5.1), will read the content of the file using the Batch Local File Adapter (eWay) and
will send the payload as a string to a BPEL 2.0 Business Process, which will be
triggered by this message and will execute in the JBI container. The batch Inbound
Adapter will be configured to use a regular expression to match the name of the file.
Once it finds the file it will rename the file by prepending the GUID to the name and
will pass the new name, the original name and the directory path to the Java code.
This is exactly what the 5.1 Batch Inbound does. The JCA MDB will use the new
name, the original name and the directory path to dynamically configure the Batch
Local File Adapter to retrieve the file content and rename the file (post transfer) to the
original name with some string appended to indicate that the file was processed. This,
too, is exactly what one would do in a 5.1 JCD in the same circumstance. Once the
payload is available the JCA MDB will use the OneWay WSDL interface and the JBI
NMR to send it, as a String, to a BPEL 2.0 process. Both the JCA MDB and the
BPEL process will be a part of the same JBI Composite Application and will
communicate with one another using the Normalized Message Router (NMR).

2 Create Connection Pool and JNDI Reference
Before one can use the Batch Inbound and Batch Local File JCA Adapters one must
create and configure connection pools, one for each distinct directory+file
combination and a corresponding JNDI reference. If the Batch Local File Adapter is
to be dynamically configured the connection pool used for the Batch Inbound can be
re-used since directory and file property values will be set at runtime.

If the BatchInbound_generic resources already exist, perhaps because they were
created when working through Note 2, they can be reused and the following steps in
this section can be skipped.

Let’s create the connection pool for the Batch adapter. This will be a generic pool
used by both the Batch Inbound and the Batch Local File because the Batch Inbound
Adapter’s configuration is specified at the time the JCA MDB is created and the
Batch Local File Adapter we will be using will be configured dynamically from the
Java code.

Start the Application Server Admin Console and navigate to Resources> Connectors>
Connector Connection Pools. Click the New … button and configure properties for
Step 1 of 2 - Name: BatchInbound_generic, Resource Adapter: sun-batch-adapter,
Connection Definition: make sure to choose the
BatchLocalApplicationConnectionFactory. Figure 2-1 illustrates this configuration.

Figure 2-1 Configure pool name and adapter for which it is intended

Click Next and configure properties for Step 2 of 2 – leave all properties as they are.
Figure 2-2 illustrates some of the settings for Step 2.

Figure 2-2 Settings for Step 2

Click Finish.

The proceeding steps created a connection pool for the Batch Local Adapter. This
pool is good for generic Batch Inbound as well as a generic, dynamically configured
Batch Local File. As the pool was created an entry with the same name was added to
CAPS> Connector Connection Pools. As previously stated, the Batch Inbound is
configured at JCA MDB creation time and the Batch Local File will be configured
dynamically so there is no need to do anything to the CAPS> Connector Connection
Pool entry. Had we used a static configuration CAPS> Connector Connection Pool

entry would be the place to configure static property values like directory, file name,
pre- and post-transfer, etc..

The Bach Local File Adapter configuration wizard, used later, will require a JNDI
reference to the connection pool we just created. We must create this JNDI reference.

Let’s navigate to Resources> Connectors> Connector Resources and choose New …
Let’s name this reference jndiBatchInbound_generic and associate it with the
BatchInbound_generic pool we created earlier. Figure 2-3 illustrates this.

Figure 2-3 Create a JNDI reference to the connection pool

3 Create Project Group JCABatchProjects_PG
As on previous occasions, let’s create a new project group to contain projects we will
be building in this Note. The group will be called “JCABatchProjects_PG”.

If the project group already exists, perhaps because it was created when implementing
the solution described in Note 2, the following steps in this section can be skipped.

Let’s right-click anywhere in the Projects tab and choose Project Groups -> New
Group … to start the wizard. Figure 3-1 shows the dialog box where project group
name and file system directory path are specified.

Figure 3-1 Creating a new Project Group

4 Create EJB Module and OneWay WSDL
Create a new Enterprise -> EJB Module project,
BInboundThroughBLFToBPEL20_EJBM, making sure to pick the correct folder for
project files. This has been done before so no picture will be shown ☺

The JCA MDB we will create in the next section will interact with the BPEL 2.0
Process through the JBI NMR. To facilitate that interaction we must create a WSDL
interface document in which the abstract part defines the message to be sent and the
operation. Because the NetBeans IDE will not help us to create a Web Service Client
infrastructure unless the concrete part of the WSDL is also defined we will define the
concrete part including the binding and the service, pretending that it is a SOAP
service.

The entire payload, as a string, will be sent to the BPEL process so the message will
have one part of type xsd:string.

Let’s create a new WDL Document, name it wsdlPayloadToBPEL, name the
operation opSubmitPayload, make sure to change the type to One-Way operation,
accept the SOAP binding default and complete the wizard. Figures 4-1 through 4-?
Illustrate key steps in the process.

Figure 4-1 Initiate WSDL Wizard

Figure 4-2 Name the WSDL

Figure 4-3 Name operation, nominate its type and name the message part

Figure 4-4 Complete the Wizard

Since we will not actually implement the service at this point we don’t need to
concern ourselves with the end-point address.

5 Create JCA Message-Driven Bean
Create a new JCA Message Driven Bean, jcaBInboundThroughBLFToBPEL20.
Figures 5-1 and 5-2 illustrate the initial steps.

Figure 5-1 Choose JCA Message-Driven Bean

Figure 5-2 Name the bean and the package

Select the Batch JCA Adapter and configure its properties. Click on the ellipsis button
at the right of the Configuration field. Figures 5-3 and 5-4 illustrate the steps.

Figure 5-3 Choose Batch JCA Adapter.

Figure 5-4 Trigger configuration editor

Let’s configure the Batch Inbound properties as shown in Figure 5-5, click Close and
click Finish. This assumes that the project developed in Note 2 is not deployed,

otherwise the two Batch Inbound instances will compete for the same file. If this is
the case just change the name of the trigger file.

Figure 5-5 Batch Inbound configuration

The Java code shown in Figure 5-6 will appear.

Figure 5-6 JCA MDB template source

The Batch Inbound configuration can be modified through the right-click menu off
the Java Collaborations node under the EJB Module project tree. Figures 5-7 and 5-8
highlight key points.

Figure 5-7 Triggering the Edit JCA Configuration Dialogue Box

Figure 5-8 Accessing Inbound JCA Adapter Configuration

The skeleton MDB needs business logic to do something useful. The next step in the
process is addition of the Batch Local File JCA Adapter invocation.

Let’s drag the Batch JCA icon from the palette to the source code window inside the
receive method, as illustrated in Figure 5-9, choose the Batch Local File OTD, as
illustrated in Figure 5-10, invent and enter a method name and choose the JNDI
reference to the connection pool created at the beginning of the process in section 2,
as illustrated in Figure 5-11. Note that when choosing a JNDI reference it mat take
some time for the JNDI ‘tree’ to appear in the dialog box. There is no indication that
work is going on in the background. The dialogue box appears like that shown in
Figure 5-12. After a while it will change to look similar to that shown in Figure 5-13,
which indicates that the resource tree is ready to be expanded and pool reference can
be chosen. Until the usability fix is available just be patient.

Figure 5-9 Adding Batch JCA to the MDB

Figure 5-10 Choosing the Batch Local File OTD

Figure 5-11 Invent the method name and start the process of choosing JNDI Reference

Figure 5-12 Waiting for the JNDI resource list to be assembled

Figure 5-13 Choose JNDI Reference to the connection pool

Slabs of boilerplate code are added to the Java source. Figure 5-14 shows some of that
code.

Figure 5-14 Boilerplate code added by the Batch Local File wizard

Take note of the onBatchFileList method – this is the ‘onMessage’ method that is
invoked when a message is delivered to the MDB. The BatchAppconnMessage
parameter named “data” provides access to the Batch Inbound fields, much as the
“input” message in a Batch Inbound-triggered JCD would. Figure 5-15 illustrates this.

Figure 5-15 Batch Inbound message fields

Within the onBatchFileList method notice the _invoke_BLFGet(data) mthod
invocation. Recall that BLFGet is the method name we provided to the wizard when
adding the Batch Local File to the code. This method, see Figure 5-14, gives us a
“connected” batchOTD and invokes the BLFGet method with the Batch Inbound
message, data, and the batchOTD as parameters. Our “creative code” will go into that
method.

To make it easier to relate what we are doing to a JCD in 5.1 let’s rename the
parameters to the BLFGet to “input” and “G_BatchLocalFile”, where “input” is the
name that Java CAPS 5.x gives and “G_BatchLocalFile” is the name I use as a
convention.

The method signature now looks like that shown in Figure 5-16.

Figure 5-16 BLFGet method signature after parameter name changes

The action will be in the BLFGet method, which receives the Batch Inbound “input”
message and the Batch Local File “G_BatchLocalFile”.

As we would have done in the 5.1 JCD we can use the batch Inbound message fields
to get access to the original file name, the GUID file name and the directory path of
the file that Batch Inbound found. Figure 5-17 shows the code involved.

Figure 5-17 Getting data from the Batch Inbound message

Configuring the Batch Local File so that it can read the correct file, from the correct
directory, and rename it after it is read, is accomplished the same way it would have
been done in a 5.x JCD. Figure 5-18 illustrates this. We are using the GUID file name
as the name of the file to read and the directory name prvided by the Batch Inbound as
the directory where the file resides. The original file name, with the literal “.~in”
appended is the used as the name to which to rename the input file once it is read.
Finally, once the configuration is populated, we execute the get() method of the Batch
Local File OTD to bet the payload.

Figure 5-18 Dynamically configuring the Batch Local File and getting the payload

As stated at the beginning, the intention was to get the content of the file and and send
it, as a string, to a BPLE 2.0 Business Process.

Recall, from Section 4, “Create EJB Module and OneWay WSDL”, the WSDL we
created. It can be seen in Source Packages -> <default package> as
wsdlPayloadToBPEL.wsdl. Figure 5-19 shows this.

Figure 5-19 wsdlPayloadToBPEL.wsdl, created in Section 4

Using NetBeans facilities let’s create a Web Service Client reference. Figures 5-20
through 5-22 illustrate key steps in the process.

Figure 5-20 Trigger Web Service Client wizard

Figure 5-21 Find the ‘local file’ that contains the WSDL and select it

Figure 5-22 Finish the wizard

If you have difficulties locating the WSDL file right click on the WSDL file name in
the Source Packages -> <default package>, choose Proeprties and see where the file is
hiding.

After due activity, which is logged in the Output window, NetBeans adds a Web
Service Reference node tree to our project. Figure 5-23 illustrates this.

Figure 5-23 Web Service Reference created by NetBeans, based on the WSDL

To invoke the web service, or as will be the case in this project, to send a message to
the BPEL 2.0 process, let’s drag the web service operation, opSubmitPayload, from
the Web Service Reference tree into the Java source window following the line that
reads “G_BatchLocalFile.getClient().get();”. Figure 5-24 illustrates this.

Figure 5-24 Adding Web Service invocation to the Java source

NetBeans adds a slab of boilerplate code which needs formatting and modification,
see Figure 5-25.

Figure 5-25 Boilerplate code for web service invocation

All we need to do to pass the payload to the BPEL process, which we will develop
next, is to modify the statement that reads port.opSubmitPayload(…), as shown in
Figure 5.26.

Figure 5-26 Sending file payload, as string, to the BPEL process.

I used the expression “to the BPEL process”. This is a reflection of what this Note is
supposed to achieve rather then a reflection of what the code is doing. The service
implementation which is being invoked could be any service implementation, whether
JBI-based or not, whether Java or .NET, as long as it implemented the WSDL-
mandated interface.

To make sure all is well, let’s build this project, but not deploy it.

This is all that is required for a JCA MDB to be triggered by a Batch Inbound
Adapter, use the Batch Local File Adapter to read the content of a file and to send it to
a service implementation that complies with the WSDL we used.

6 Create BPEL 2.0 Process
Let’s create the BPEL 2.0 process which will receive the file payload, as string, from
the JCA solution we built in the previous section. The process will be a simple one. It
will receive the string and write it to a file using the File Binding Component (FILE
BC).

We start with a BPLE Module project, BInboundThroughBLFToBPEL20_BPELM ,
as illustrated in Figures 6-1 and 6-2.

Figure 6-1 Creating a BPEL Module project

Figure 6-2 Naming the module and choosing project location

To write to a file from a BPEL 2.0 process, as with anything to do with interaction
between a BPEL 2.0 process and the external world, requires a WSDL. This WSDL
will represent both the message structures exchanged between the BPEL process and
the File BC, and the configuration of the File BC.

Let’s create a WSDL Document, wsdlOutFile, as shown in Figures 6-3 through 6-6.
Make it a One-Way Operation with a one part message of type xsd:string, using the
FILE binding.

Figure 6-3 Start the New WSDL Document wizard

Figure 6-4 Name the WSDL document

Figure 6-5 One-Way Operation with a single part message of type xsd:string

Figure 6-6 Binding Type: FILE

Let’s configure the directory to which to write the file and the name of the file to
write. Figured 6-7 and 6-8 call out the key parts of the WSDL. Let’s name the
directory path “C:\Temp\JC6JCA” and the file “output_%d.out”, a name pattern.

Figure 6-7 Configuring directory path

Figure 6-8 Naming the file and indicating the name is a pattern

This provides the configuration of the outbound File BC.

With both WSDLs available, the WSDL we created to define the interface between
the JCA and the BPEL process, and the WSDL we created just now for the File BC,
we are ready to create a BPEL process.

Let’s create a BPEL Process, bpelProcessPayload, as shown in Figures 6-9 and 6-10.

Figure 6-9 Start the new BPEL Process wizard

Figure 6-10 Naming the BPEL process

From the Source Packages -> <default package> of the
BInboundThroughBLFToBPEL20_EJBM EJB Module project, let’s drag the
wsdlPayloadToBPEL WSDL and drop it onto the ‘target ball’ of the BPEL process as
shown in Figure 6-11.

Figure 6-11 Add web service interface to the BPEL process

While is is not necessary, I like to rename the default partner links. Figure 6-12
illustrates this. The partner link name will be plkInJCA.

Figure 6-12 Ranamed Partner Link

Let’s now add the outbound File BC WSDL to the process canvas as shown in Figure
6-13 and rename the partner link to plkOutFile.

Figure 6-13 Adding File BC WSDL to the process editor canvas

To receive a message and write it to a file we need a Receive activity, an Assign
activity which maps the payload from the output of the JCA to the input of the File
BC, and an Invoke activity, which will cause the write to take place. Let’s drag these
activities from the palette to the canvas. Figure 6-14 illustrates the addition of the
Invoke activity. The other activities were added the same way.

Figure 6-14 Adding the Invoke activity to the BPEL Editor canvas

Select the Receive activity and click the Edit button, as shown in Figure 6-15. This
will allow us to choose the partner and create a business process variable to contain
the message we will receive.

Figure 6-15 Edit properties of the Receive activity

Choose Partner Link (this is where having renamed partner links comes handy) as
shown in Figure 6-16 and click “Create …” button alongside the Iput Variable data
entry box and name the new variable vInPayload as shown in Figure 6-17.

Figure 6-16 Choose plkInJCA Partner Link for the receive side

Figure 6-17 Create and name Input Variable

Repeat the process for the Invoke activity, choosing the plkOutFile partner link and
naming the variable vOutPayload as shown in Figure 6-18.

Figure 6-18 Configuring the File BC partner link

Finally, let’s map the output of the JCA to the input of the File BC. Select the Assign
activity and click the Mapper Tab as shown in Figure 6-19.

Figure 6-19 Switching to Mapper to complete the Assign activity

Select the vOutPayload variable’s sOutPayload node in the Variables tree at the right
hand side, select the vInPayload variable’s sInPayload node in the Variables tree at
the left hand side and drag a line fro it to the sOutPayload at the left hand side as
illustrated in Figure 6-20.

Figure 6-20 Map output to input

The process is now complete. Switch back to Design mode and see the completed
process. It ought to look like that shown in Figure 6-21.

Figure 6-21 Complete JCA to File Business Process.

This process does not do anything useful. We developed this process to illustrate how
a JCA-based service can trigger a JBI-based BPEL process.

To make sure the process builds, let’s build it.

7 Create a Composite Application
This two modules, the EJB Module that contains the JCA project and the BPEL
Module that contains the BPEL process, will be joined as a JBI Composite
Application. Le’t create a SOA Composite Application Module,
BInboundThroughBLFToBPEL20_CA, as shown in Figures 7-1 and 7-2.

Figure 7-1 Choose SOA -> Composite Application project

Figure 7-2 Choose project name and location

Drag the BInboundThroughBLFToBPEL20_EJBM Module onto the JBI Modules
swim line of the Service Assembly Editor canvas as shown in Figure 7-2.

Figure 7-3 Add BInboundThroughBLFToBPEL20_EJBM module to the Service Assembly

Drag the BInboundThroughBLFToBPEL20_BPELM BPEL Module onto the JBI
Modules swim line of the Service Assembly Editor canvas as shown in Figure 7-3.

Figure 7-4 Add BInboundThroughBLFToBPEL20_BPELM Mod ule to the Service Assembly

Right-click the name of the Composite Application module,
BInboundThroughBLFToBPEL20_CA, and choose Build. Once the build process
completes yoy should see a Service Assembly drawn as shown in Figure 7-5.

Figure 7-5 Built Service Assembly.

The build process worked out connectivity between modules and added appropriate
Binding Components. Since a complete WSDL was used on the inbound side of the
BPEL process, the build process added a SOAP BC and connected it to the BPEL
module. Since the JAC Module uses the same WSDL it too was connected to the
BPEL Module. If we leave the Service Assembly as it is the BPEL Process will be
able to be triggered both by the JCA Module, as we intended, and by a Web Service
invocation. Since we don’t wish the BPEL module to be exposed as a Web Service we
simply select and delete the SOAP BC, the build the Composite Applciation module
again. The Service Assembly after removal of the SOAP BC is shown in Figure 7-6.

Figure 7-6 Finial Service Assembly

Notice that there is no indication of how the EJB Module is triggered. Only the
inspection of the module can tell as that.

Notice, too, that the communication between the EJB Module and the BPEL Module
will go over the Normalized Message Router. It will not be SOAP over HTTP even
though the WSDL we created at the beginning of this Note might suggest otherwise.

By adding both modules to the same JBI-based Composite Application we are
eliminating this inefficiency.

Let’s now deploy the Composite Application.

8 Exercising the solution
When the project is deployed the server.log, when appropriate logging level is
enabled for the appropriate logging category, will show text similar to what is shown
in Figure 8-1. Not the regular expression pattern, we specified for the Batch Inbound.

Figure 8-1 server.log trace from batch Inbound poll

Let’s create a file, with the name of trigger_0.txt.~in, with some content. Once the file
is ready, let’s change its name to trigger_0.txt. Within at most 15 seconds, which is
the polling interval we configured for the Batch Inbound, the file will be picked up,
renamed by prefixing the GUID to it, read, renamed to trigger_0.txt.~in and a file
with the name like output_0.out will be produced.

9 Summary
This document walked the reader, step-by-step, through the process of creating and
exercising a Java CAPS 6 mixed JCA- and JBI-based solution. All of this work was
done using JCA Adapters, EJBs in the JavaEE Service Engine, BPEL 2.0 Service Unit
in the BPEL Service Engine and a File Binding Component, all hosted in the JBI and
JEE Containers within the GlassFish Application Server.

