
Java CAPS, OpenESB, GlassFishESB
Providing Policy-driven Web Services Security support

using an XML Security Gateway
Michael.Czapski@sun.com

February 2009

Contents
1. Abstract ..1
2. Introduction..2
3. Securing Web Services - Discussion ...3
4. Solution Schematics...9
5. Logging and Tracing..12
6. Preliminaries ..13
7. Build Repository-based Web Service Provider ...17
8. Build Repository-based Web Service Consumer...21
9. Exercise Consumer and Provider...27
10. Add a Gateway to the Mix...29
11. Add a VPN Client to the Mix ..37
12. Miscellaneous Gateway Service ..41

12.1 Logging, Auditing and Alerting...41
12.2 XML Schema Validation ...46
12.3 Policy Versioning...49
12.4 Service Availability Policies..51
12.5 Threat protection..51

13. Using the Gateway to Secure Web Services..52
13.7 Propagation of Polices to the VPN Client..52
13.8 Digital Signing...61
13.9 Encryption..69
13.10 Authentication..76

14. Summary..77
15. Appendices...77

15.1 Obtain the Layer 7SecureSpan XML Gateway ...77
15.2 Configure the SecureSpan XML Gateway ..79
15.3 Install and Configure the SecureSpan VPN Client83
15.4 Install certificates for the VPN Client and the Gateway..............................88
15.5 Create Java CAPS Environment ..93
15.6 Obtain and use the Apache TCP Mon..94

1. Abstract
Securing web services, to be invoked over the Internet, is both essential and difficult.
Using appropriate tools and technologies makes it easier to accomplish the task.
Developer-dependent solution, where security is embedded directly into consumers
and providers, is inflexible and labour-intensive. Gateway-based solutions are more
flexible, more dynamic and easier to manage. In this note Java CAPS 6-based web
service consumer and provider pair are developed. The solutions are exercised first
without, then with the web services security gateway. This enables demonstration of
how web services can be secured, how policies can be developed and propagated and

how WS-Security-mandated XML markup can be dealt with outside the development
shop. The Layer 7 SecureSpan XML Gateway, and its oft forgotten companion, the
SecureSpan VPN Client, are used to explore the topic. The reader should be able to
acquire enough knowledge to obtain and deploy the SecureSpan XML Gateway, and
to use its basic functionality to implement gateway-mediated secure web services
solutions.

2. Introduction
Securing web services, to be invoked over the Internet, is both essential and difficult.
Using appropriate tools and technologies makes it easier to secure web services as
certain development environments, like NetBeans, provide checkbox-style interface
for enabling web services security for certain kinds of web services. Other kinds of
web service, for example JBI-based or Java CAPS 6 Repository-based web services,
are more difficult to secure because the tooling support is less developed or less
feature-rich. Securing web services at build time, as implied above, has certain
advantages and certain disadvantages. Most notable disadvantages are the need to re-
build and re-deploy each service if the security policy changes, and the reliance on
developers to implement and maintain security policies in a fragmented and variable
manner. Removing the need for developers of services to deal with service security is
one way to address the major disadvantages of developer-dependent security policy
implementation. By exploiting the properties of the HTTP protocol, Web Services
security and other non-functional requirements can be abstracted to a Proxy
component. This component, a Security Gateway, intercepts service requests, applies
or parses security information, decorates or parses service responses, enforces SLAs,
maintains policies and policy versions, implements firewall functionality and provides
a variety of other services.

In this Note I am discussing, with examples, a Gateway-based secure web services
solution for Sun Java CAPS-based services. Both the Web Service Provider and the
Web Service Consumer are built. The invoker consumes the service provided by the
provider. Both are built and deployed as plain, unsecured web service components.
The Gateway and the VPN Client are added as intermediaries and various security
policies are developed, deployed and illustrated by inspection of message exchange
between the consumer and the provider.

I am using Java CAPS 6 Repository-based web services because these have fewer
Web Services Security features supported out of the box. Provision of web services
security for Repository-based web services is harder; therefore the benefits of using a
webs services security gateway are much more clear cut. EJB-based and JBI-based
web services can take advantage of the Metro stack directly so the benefits of using a
security appliance are less obvious but still significant. This will be discussed further
in sections dealing with the SecureSpan XML Gateway.

The Layer 7 SecureSpan XML Gateway is the gateway I picked to develop and
deploy secure web services solutions discussed in this Note. Sections 15.1, “Obtain
the Layer 7SecureSpan XML Gateway”, 15.2, “Configure the SecureSpan XML
Gateway” and 15.3, “Install and Configure the SecureSpan VPN Client”, deal with
obtaining, installing and initially configuring the Gateway. The gateway will be used
and certain of its features exercised in examples which will be discussed in various

sections in this Note. It may be appropriate to skip over and work through sections
15.1, 15.2 and 15.3, before continuing.

Note that I am not associated with Layer 7 Technologies, I am not writing this Note
on their behalf, and I am not a Layer 7 SecureSpan Gateway expert. I spent some time
with the documentation and the product. What I have seen convinced me that it may
be worthwhile to write about some of the possibilities and some of the obvious
advantages of deploying a security gateway to protect web services. Some of the
secure web services solutions that are called for nowadays are much easier to
implement, and much easier to manage, when using a web security gateway. There
are other vendor’s gateway products on the market and likely offer these and other
services that may be of invaluable for an enterprise. Layer 7 SecureSpan Gateway is
the one I had access to. From my perspective any other gateway product should
provide at least the same kind of flexibility and benefits that the SecureSpan XML
Gateway does.

In the Note I will discuss web services security topics to set the context, discuss
solution to be developed, walk through creation of the service provider and service
consumer, configuration of the gateway and VPN Client infrastructure and a series of
iterations of policy creation and testing.

3. Securing Web Services - Discussion
In Java CAPS 6 Update 1 one can construct at least three kinds of web services –
EJB-based web services, JBI-based web services and Repository-based web services.
Depending on how the services are designed, and in what environment the services
execute, they can be considered “secure” or not “secure”. In some circumstance
service security is critical to its viability; in others it is a luxury. Providing the
appropriate level of “security” to a service may be easy or difficult, depending on a
number of factors. Not the least of these factors is the designer’s knowledge of the
web services security standards, and the means available in the tooling to assist in
implementing standard security mechanisms.

Why would we care if the service invocation is “secure”? That would depend on what
the consequences of the message exchange being seen or altered by third parties
might be. The likelihood that third parties can see or alter message exchange is also
an important factor. The more likely an authorised activity is, and the more severe the
consequences of such an activity, the more important it is to secure the message
exchange, and the greater the complexity of security measures that need to be taken.

Let’s assume that the service is to be invoked over the Internet and that the
consequences of message exchange being seen or altered are severe.

Let’s discuss what is meant by security in the context of web services, discuss
security characteristics of various kinds of Java CAPS-based web services and
introduce the concept of a security gateway.

One can “secure” a web service by requiring the use of WS-Security Standard-
supported XML Digital Signatures, XML Encryption, Username Token, Timestamp
Token, SAML Token, etc., individually or in combination. By requiring and using
different combinations of security tokens one obtains varying degrees of “security”.

Digital Signatures, more specifically XML Digital Signatures used in securing SOAP
messages, are used to ensure integrity of messages on the wire, that is, facilitate
detection of message alteration in transit. They are also used to convey authenticity of
messages. The entire message or selected parts of the message can be digitally signed.
The reason one would digitally sign parts of the message rather then the entire
message is typically cost. If only certain parts of the message must be protected from
tampering and must be guaranteed to be authentic then signing selected parts of the
message will minimise the high resource consumption typically associated with
cryptographic operations.

Conveyance of authenticity relies on the properties and use patterns of key pairs in
public key cryptography. Both keys of the pair are generated at the same time. The
two keys are related in such a way that one cannot be derived from the other and that
plaintext encrypted with one can only be decrypted with the other. One of the keys,
the private key, is kept confidential by the party that owns the key pair. The other key,
the public key, embedded in a “certificate” which guarantees its authenticity and
integrity, is distributed to any party with whom secure communication will be
undertaken. Public Key Infrastructure (PKI) is the means of guaranteeing public key
authenticity and integrity through issuance and revocation of “certificates’, and
possibly distribution of public keys (certificates). There is a great deal more to all this
but for the purpose of this discussion it is enough to say that if the owner of the
private key encrypts some plaintext and sends it to the recipient, the recipient will be
able to decrypt it only with sender’s public key, to which he/she has ready access.
Because of the properties of the key pair the recipient knows that only the “other” key
of the pair could have been used to encrypt the plaintext that he/she just decrypted.
Because the “other” key, the private key, is supposed to be kept secret by its owner
the recipient assumes that only the owner of the private key could possibly have
encrypted the plaintext. This guarantees message authenticity.

Encryption, and specifically XML Encryption used in securing SOAP messages, can
be used to ensure message integrity and protect confidentiality of information on the
wire. Either the entire message or selected parts of the message can be encrypted for
the same reasons that an entire message or selected parts of a message would be
digitally signed. If the encrypted parts of the message are tampered with, decryption
will fail and the recipient will conclude that the message was tampered with. The
confidentiality of the message is guaranteed in a way similar to authenticity guarantee
when using digital signatures. By encrypting the message with a public key of the
recipient, the sender of the message ensures that only the recipient, the holder of the
private key of the key pair, can possibly decrypt the message. This allows anyone to
send a confidential message to the owner of the private key regardless of where there
was a prior communication between them.

Using a Timestamp Token allows the infrastructure to reject messages that are “too
old”, combating “message reply” attacks, but only if it can be guaranteed that the
timestamp itself cannot be modified without detection. By itself the Timestamp Token
is pretty useless as a security device. In combination with Encryption or Digital
Signature its integrity can be guaranteed and it can be used for message reply
detection.

The Username Token, whether with a plaintext password or a digest password, can be
used to provide user credentials for authentication. Much as the Timestamp Token,
Username Token cannot be trusted unless it is protected from eavesdropping. XML
Encryption must be added to the mix to ensure that the Username Token can not be
intercepted and subsequently used for rouge access to resources that require
authentication.

Whether to use specific WS-Security tokens, what combination of tokens, what token
attribute values are appropriate, etc., is typically subject to organisation’s security
policies. Configuring a web service consumer or a web service provider to
use/support/require specific security tokens is the application of security policies.

Web Services security policy-mandated tokens are conveyed as part of the SOAP
message using the SOAP Header extension mechanism. Different SOAP Header
components convey different security policy tokens. I will not discuss this in details.
It will suffice to say that whatever means we use to apply security to SOAP messages,
these means will add/modify SOA Headers, in many cases very extensively.

When developing EJB-based web services one can use the NeBeans IDE facilities to
specify security policies to use for a particular web service. An example of this,
Figure 3-1, shows specification of the Username Token using the NetBeans
checkboxes and dropdown menus.

Figure 3-1 Adding Service Security – Username Token

Figure 3-2 shows the dialogue box used to specify the parts of the request message to
which to apply encryption and/or which to digitally sign.

It is quite easy to specify security policies for EJB-based web services using the
NetBeans IDE but it must be borne in mind that this is a design-time specification. To
apply this security policy, or any changes to this security policy, it is necessary to
build and deploy the service. To see what security policy is to be applied to this
service one must have access to the development environment to look at the
configuration files. The onus is on the web service developer to apply appropriate
security policies and to maintain them as organisational policies change.

Figure 3-2 Specifying message parts to sign and/or encrypt

For JBI-based web services a subset of web services security policies can be specified
using graphical means, another subset requires manual modification of the service
WSDL and others are not supported at this time. As is the case with applying web
services security policies to EJB-based web services, applying web services security
policies to the JBI-based webs services is a design-time activity. The service, or its
configuration, must be modified, then the service assembly must be built and
deployed for the policy change to take effect. Similarly, access to development
environment and development knowledge are required to determine what policy is
used for which service. The onus is again on the web service developer to apply
appropriate security policies and to maintain them as organisational policies change.

Repository-based web services are the hardest to secure programmatically. They offer
the fewest graphical configuration options and require development of SOAP handlers
for anything not provided through the graphical interface.

Java CAPS 5.x and Java CAPS 6 Repository-based web services use the JAX-RPC
technology with support for WS-Security 1.0 (2004). For Java CAPS 5.x there is no
way to directly provide JAX-WS-based WS-Security 1.1 support using SOAP
handlers since JAX-WS requires the GlassFish Application Server runtime
infrastructure and Java CAPS 5.1 applications are not supported on GlassFish. Java
CAPS 6 Repository-based web services are deployed to the GlassFish Application
Server so JAX-WS-based WS-Security can be provided through the SOAP handlers.

The EJB-based web services wrappers can be used to secure Repository-based web
services, much the same way as providing MTOM support for Repository-based
services, which I discussed in my Blog in entries “Java CAPS 6 Update 1 - Invoking

MTOM Web Service using Java CAPS Classic Web Service Client” -
http://blogs.sun.com/javacapsfieldtech/entry/java_caps_6_update_1 and “Java CAPS -
Exposing MTOM-capable Java CAPS Classic Web Service” -
http://blogs.sun.com/javacapsfieldtech/entry/java_caps_exposing_mtom_capable.
Again, access to development environment and development knowledge are required
to determine what policy is used for which service. The onus is again on the web
service developer to apply appropriate security policies and to maintain them as
organisational policies change.

All of this requires a developer to add security code to the services at build time,
however little or much the IDE helps. It requires the developer to have some
knowledge of security. It requires services to be modified, re-built and re-deployed for
any policy changes to take effect. It does not offer central audit and control unless
such is custom built and programmatically invoked from each service. Specific
development activities must be undertaken to support service lifecycle management
like versioning or retirement. Specific infrastructure must exist to support differential
service levels, service virtualisation, protocol conversion or security zone traversal.

For few services, the developer-dependent security policy application may be
acceptable. For many services, it becomes very hard to manage.

The reason for this Note is to discuss a Gateway-based approach to securing web
services. This approach addresses all the issue that have been mentioned so far and,
while it adds a couple of issues not present in the developer-dependent approach, it is
superior in my opinion for enterprises with more then a few services that need
securing.

The basic idea is that a developer develops a “plain” web service, that is one where no
security policies are embedded at build time, and this service is deployed to the local
infrastructure. A “web services security gateway”, which understand web services
security, performs auditing, authentication, service versioning, XML transformation,
and whatever other activities can be profitably deployed to a gateway, is put in front
of the service to mediates access to it. This can be done because web services are
merely SOAP (XML) messages traversing a channel that is HTTP-based and HTTP
facilitates the use of proxy and forwarding infrastructure. A service consumer sends
the secure request to the Gateway. The Gateway invokes the plain service, gets the
response and passes it to the consumer. Neither the consumer nor the provider is
aware that it is dealing with the other through an intermediary. The intermediary, the
gateway, consults the security policy defined for each service and processes requests
and responses as might be required. For inbound requests, the Gateway verifies that
the request conforms to the security policy, for example is encrypted, is signed, has
Username Token, etc., decrypts the request (if encrypted), verifies digital signature (if
signed), validates credentials against its own or 3rd party Authentication infrastructure
(if credentials are provided), validates Timestamp (if present), strips all security-
related headers and forwards the plain request to the actual service that implements
the business functionality. When the service response reaches the Gateway it adds
security headers as required, for example adds a Timestamp, and digitally signs and
encrypts the response if required by the policy. It then returns the response to the
original invoker.

The developer of the service does not have to have any knowledge of webs services
security as he/she does not have to deal with it. Security policies can be handed over
to security people to define and enforce since they are the logical people to own the
security gateway. Being externalised, security policies can be easily changed and can
be dynamically applied without any changes to the service implementation or the need
to build or deploy the service. With the right kind of a gateway other facilities, such as
auditing, runtime governance and SLA definition and enforcement, are available. The
right kind of Gateway will be standards-compliant and will be maintained such that it
is always current as technology and standards evolve.

It is worth remembering that two parties are involved in a web service-based message
exchange. Both parties must agree on the security polices to use, and their security
implementations must be standards-compliant and compatible. As a piece of
infrastructure separate from the service delivery infrastructure, the gateway has a
monetary and logistical cost associated with it, not just for the enterprise that deploys
it but also for the parties who are intended to use the services. When exposing secure
services for consumptions by multiple third parties, an organisation effectively forces
the would-be consumers to make an investment in their own web services security-
capable infrastructure. They must either deploy a security gateway, or add security
requirement to the client development projects, or find some other way to deal with
invocation of secure web service. For small target organisations this can be a
considerable obstacle so the enterprises embarking on the journey must consider the
flow-on effects on others of securing their own services. The right kind of a gateway
solution may have a small-footprint proxy component, or an API library, which will
be able to be distributed to the would-be service invokers to facilitate their use of
secure web services to minimise the cost and the complexity of the task.

Typically one would deploy a Gateway in one’s enterprise to secure web services
being exposed to others, and to secure invocation by our clients of other parties’
services that require securing. One assumes that these other parties have their own
web services security infrastructure that takes care of the other end of the service
invocation/provision. It is implied that the invoking party somehow “knows” the
security policy to use for our secure service and that we somehow “know” the security
policy for the other party’s service which we need to invoke.

Imagine we have to change a security policy applicable to a particular service. With
the gateway we will be working with it is easy for us, as will see later. Whether it is
equally easy for the service consumers depends to a huge extent on what technology
they use for web service security. If they use the developer-dependent method,
discussed earlier, they are in for more development work every time we need to
change the policy. If there are many consumers the logistics of changing policy may
become quite complex and may take a considerable amount of time. If the security
policy change is a consequence of a security vulnerability in the service protected by
the original policy, we may have to knowingly run vulnerable services in order to
allow our service consumers to upgrade their capabilities to accommodate the new
policy we wish to introduce.

Let’s say that we are a dominant player, with the resources to procure and deploy a
web services security gateway, and we expose secure web services for consumption
by other parties. Let’s further say that the would-be consumers of our secure web

services don’t have the size and resources that would justify procurement of a fully-
fledged webs services security gateway of their own. If we are a good citizen with
resources to spare, for example a government department or a major supplier, we
could offer the consumers of our service access to a VPN Client proxy or an API, on
some basis. This would make it easy for even the smallest consumer to use our
services, however secure.

4. Solution Schematics
In this Note we will not discuss the topic of securing Java CAPS web services which
does not involve a Gateway. This is because this Note is about the use of the Gateway
for the purpose. Securing EJB-based web services has been discussed extensively and
a fair bit of material on the topic is publicly available. Securing JBI-based web
services has been discussed to a much lesser extent, consistent with the age of the JBI
technology, but material is publicly available trough the OpenESB Project site, open-
esb.dev.java.net. I have some material on securing Repository-based web services
using JAX-RPC in my Blog, in entry entitled “Java CAPS 5.1, Implementing WS-
Security 1.0 (2004) with JAX-RPC” at
http://blogs.sun.com/javacapsfieldtech/entry/java_caps_5_1_implementing.

To give us a good idea of what is supposed to happen the solution schematic diagrams
show the components of the solution and the stages in which they will be developed,
installed, configured and exercised. The ultimate solution is shown in Figure 4-1.

Figure 4-1 Secure Web Services solution to be built and deployed in this Note

In Stage 1 we will implement and deploy the Repository Web Service Provider,
Figure 4-2, Section 7, “Build Repository-based Web Service Provider”.

Figure 4-2 Stage 1 - Repository-based Web Service Provider

In Stage 2 we will implement and deploy the Repository Web Service Consumer,
Figure 4-3, Section 8, “Build Repository-based Web Service Consumer”.

Figure 4-3 Stage 2, Repository-based Web Service Consumer

In Stage 3 we will test the Provider and the Consumer together, Figure 4-4, and trace
on-the-wire message exchange, Figure 4-5.

Figure 4-4 Stage 3 – Testing the Consumer and Provider

Figure 4-5 Trace on-the-wire message exchange

In Stage 4 we will add the SecureSpan XML Gateway to the mix, Figure 4-6, test the
Repository Web Service Consumer using the SecureSpan XML Gateway-mediated
method of invocation and observe the on-the-wire message exchange.

Figure 4-6 Stage 4 – introducing the SecureSpan XML Gateway as an intermediary

Finally, in Stage 5 we will add the SecureSpan VPN Client, Figure 4-1, and will
spend a deal of time dynamically configuring various security policies, exercising the
solution and observing the on-the-wire message exchanges.

5. Logging and Tracing
To watch what is happening on-the-wire from the GlassFish Application Server
perspective, as web services consumers and providers exchange SOAP messages, add
the following properties to the Application Server->Logging->Log Levels-
>Additional Properties.

com.stc.bpms.bpelImpl.runtime FINEST
com.stc.eways FINEST
com.stc.wsclient FINEST
com.stc.wscommon FINEST
com.stc.wsserver FINEST
STC.eGate.CMap.Collabs FINEST
STC.eWay.HTTP.client FINEST
STC.eWay.HTTP.server FINEST

com.stc.wsxxxxxx apply to Repository-based Web Services.

When done, re-start the application server to have the changes take effect.

Since the SecureSpan XML Gateway and the SecureSpan VPN Client will modify
SOAP Requests after they have left the Repository-based Web Service Consumer and
before they are received by the Repository-based Web Service Provider, and SOAP
Responses will similarly be modified outside the control of the GlassFish Application
Server, we will configure the solution to use the TCP Mon as an additional

intermediary. Section 15.6, “Obtain and use the Apache TCP Mon”, discusses how to
get hold of the TCP Mon and how to configure it for different use. We will repeat
configuration information at the time we add the TCP Mon to the solution for
message exchange tracing.

6. Preliminaries
Note that, in the environment I used for this Note, all default TCP ports, changeable
during Java CAPS 6 Update 1 installation, are modified by the addition of 30000, so
8080 (default HTTP port) becomes 38080, and so on.

Let’s beging by creating a project group, WSSecGate, and pointing it at a convenient
file system directory. Once the project group is created, let’s create a new BPEL
Module Project, WSSecGateCommon, to contain out XML Schema and WSDL
documents. When doing so let’s make sure the correct path to the directory that will
contain our artefacts is selected.

Let’s create a New -> XML Schema, MoneyOrder. Figure 6-1 illustrates a step in the
process.

Figure 6-1 New XML Schema, namespace urn:Sun:Michael:Czapski:XSD:MoneyOrder

Once the skeleton is created, let’s open it in the XSD Editor, switch to the Source
mode and replace the whole thing with the XML Schema shown in Figure 6-2.

Figure 6-2 MoneyOrder XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="urn:Sun:Michael:Czapski:XSD:Mon eyOrder"
 xmlns="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="MoneyOrderReq">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="OrderDetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="dateT ime" type="xs:dateTime"/>
 <xs:element name="seq" type="xs:nonNegativeInteger"/>
 <xs:element name="total " type="xs:decimal"/>
 <xs:element name="fee" type="xs:decimal"
 minOccurs=" 0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SenderDetails" mi nOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="custo merName" type="xs:string">
 </xs:element>
 <xs:element name="drive rLicenseNumber"
 type="xs:st ring" minOccurs="0">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="CreditCardDetails " minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="cardT ype" type="xs:string">
 </xs:element>
 <xs:element name="nameO nCard" type="xs:string">
 </xs:element>
 <xs:element name="cardN umber" type="xs:string">
 </xs:element>
 <xs:element name="secur ityCode" type="xs:string">
 </xs:element>
 <xs:element name="valid Until" type="xs:string">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ReceipientDetails ">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="famil yName" type="xs:string">
 </xs:element>
 <xs:element name="given Name" type="xs:string"
 minOccurs=" 0">
 </xs:element>
 <xs:element name="stree tAddress" type="xs:string">
 </xs:element>
 <xs:element name="cityT own" type="xs:string">
 </xs:element>
 <xs:element name="state Province" type="xs:string">
 </xs:element>
 <xs:element name="posta lCode" type="xs:string">
 </xs:element>
 <xs:element name="count ry" type="xs:string"
 minOccurs=" 0">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MoneyOrderRes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderDetails">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="dateT ime" type="xs:dateTime"/>
 <xs:element name="seq" type="xs:nonNegativeInteger"/>
 <xs:element name="total " type="xs:decimal"/>
 <xs:element name="order Status" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="SenderDetails" mi nOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="custo merName" type="xs:string">
 </xs:element>
 <xs:element name="drive rLicenseNumber"
 type="xs:st ring" minOccurs="0">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Let’s create an Abstract WSLD document, MoneyOrder, that will represent the
interface to the MoneyOrder service we will build next. Right-click on the name of
the WSSecGateCommon project and choose New->WSDL Document. Name the
document MoneyOrder, set the Target Namespace, keep the WSDL Type as Abstract
and click Next, as shown in Figure 6-3.

Figure 6-3 Start creation of the MoneyOrder WSDL

Change Operation Name to opMoneyOrder, name the Input and Output messages,
choose the data types from the XML Schema and Finish. Figure 6-4 illustrates part of
that process.

Figure 6-4 Name the operation, and name and type the input and output messages

To make the WSDL more interoperable we will create a variant of it in which the
XML Schema is inlined, rather then being included from an external schema
document.

Copy the MoneyOrder.wsdl and paste it with the new name of
MoneyOrderInlined.wsdl. Open the XML Schema document, switch to source mode,
select all except the first line and copy to the clipboard. Figure 6-5 illustrates this.

Figure 6-5 Select all but the first line in the XML Schema and copy to clipboard

Open the MoneyOrderInlined.wsdl, switch to source mode, select the three line
starting with <xsd:schema … and finishing with </xsd:schema>, them paste the
content of the clipboard, expected to be the XML Schema document’s content, in
their place. Figure 6-6 highlights the lines to select and replace with the content of the
XML Schema MoneyOrder.xsd.

Figure 6-6 Select schema import statements

Check and Validate XML, as shown in Figure 6-7. Format the document with
Alt+Shift+F or a right-click menu option.

Figure 6-7 Check and Validate XML in the resulting WSDL document

This gives us the XML documents we will use in constructing the web service
provider in the next section.

7. Build Repository-based Web Service Provider
Let’s create a New Project->CAPS->ESB->CAPS Repository-based Project, named
WSSSecGateProvider. The path to the option is shown in Figure 7-1.

Figure 7-1 Create a New CAPS Repository-based Project

Let’s import the web service definition from the MoneyOrderInlined.wsdl file. Before
we do, let’s copy the file system location of the WSDL document. Righ-click on the
WSDL name, choose Properties, copy to the clipboard the value of the All Files
property. This is shown in Figure 7-2.

Figure 7-2 Copy the value of the All Files property to the clipboard.

Import Web Service Definition into the WSSSecGateProvider project. Figure 7-3
points out the menu options.

Figure 7-3 Start the WSDL Import wizard

Accept default Location Type of File System and click Next.

Paste the document location path into the File Name text box and press Enter. Until
you do, the Next button will be inaccessible. Figure 7-4 illustrates this dialogue box.

Figure 7-4 Paste the document location and press Enter

Press Next, Next, Next then Finish. The MoneyOrderInlined WSDL will be imported
into the Project as shown in Figure 7-5.

Figure 7-5 MoneyOrderInlined WSDL imported

Let’s now create a new Business Process, bpWSSSecGateProvider, drag the
opMoneyOrder operation onto the canvas and choose to “Implement the operation”,
as shown in Figure 7-6.

Figure 7-6 Implement the operation

Connect the activities, add a business rule between the Request and the Reply
activities and map as shown in Figure 7-7.

Figure 7-7 Map data from the Request to the Reply

Create a Connectivity Map, cmWSSSecGateProvider, drag the business process onto
the connectivity map editor, add a Web Service External Application, connect and
save. Figure 7-8 shows the completed connectivity map.

Figure 7-8 Completed Connectivity Map

If you have not done so, branch out at this point and create a Java CAPS
Environment, as described in section 15.5, "Create Java CAPS Environment“, before
continuing.

To this Environment we will now add the SOAP/HTTP Web Service External System
… container, Figure 7-9, and configure it with the address, port and servlet context,
Figure 7-10. The menu options are New->SOAP/HTTP Web Service External System
…, off the CAPS Environment under the WSSecGateEnv environment.

Figure 7-9 Add WSSecGateProvider SOAP/HTTP Web Service External System (Server)

Figure 7-10 Configure SOAP/HTTP Web Service External System

Switch back to the Projects Tab and create a new Deployment Profile,
dpWSSSecGateProvider using the WSSecGateEnv Environment. Figure 7-11
illustrates a step in the process.

Figure 7-11 Deployment Profile using the WSSecGateEnv Environment

Automap the objects, build and deploy the solution. When building, you will be asked
whether to publish the WSDL to UDDI. Allow this to happen.

The Repository-based Web Service Provider is not ready. Let’s proceed to the
Repository-based Web Service Consumer.

8. Build Repository-based Web Service Consumer
Let’s create a New Project->CAPS->ESB->CAPS Repository-based Project, named
WSCSecGateConsumer.

Let’s switch to the Java CAPS UDDI Browser servlet, typically accessible through
http://{GlassFishHost}:{GlassFishAdminPort}/CAPSUDDI/uddibrowse.jsp, click on
the WSDL URL to view the WSDL and copy the WSDL URL to the clipboard.
Figure 8-1 and Figure 8-2 illustrate the process.

Figure 8-1 Locate the WSDL URL for the Repository-based Web Service Provider

Figure 8-2 Copy WSDL URL to the clipboard

Right-click the name of the project, WSCSecGateConsumer, and choose New->Web
Service Definition. Specify Location Type as URL, paste the WSDL URL into the
URL text box, click the Add button and click Next as shown in Figure 8-3.

Figure 8-3 Specify WSDL URL for the WSDL location

Click Next, Next and Finish, to complete the import process. The WSDL object will
appear inside the project. Figure 8-4 illustrates the project with the WSDL.

Figure 8-4 Newly imported WSDL object

Right-click on the name of the project, WSCSecGateConsumer, and choose New-
>Business Process. Name the process bpWSCSecGateConsumer.

The process will be invokes using a JMS TextMessage and will send the service
response as a JMS TextMessage to a JMS Queue, with a time-to-live set to a couple
of minutes so we have the time to look at the message but don’t have to worry about
clearing old messages from the Queue.

Let’s expand the CAPS Components Library hierarchy through the Enterprise Service
Bus and JMS nodes and drag the send and the receive services onto the business
process editor canvas. Figure 8-5 illustrates this,

Figure 8-5 Add JMS receive and send services

Drag the opMoneyOrder operation from the project artefacts tree onto the business
process canvas and choose to “Invoke …”. Figure 8-6 illustrates this.

Figure 8-6 Add the opMoneyOrder service to the canvas and choose “Invoke …”

Connect all activities, add business rules to map request and response and map the
request. Mapping in Figure 8-7 is not particularly clear. Table in Figure 8-8 spells out
the mapping rules.

Figure 8-7 Business process activities connected, with mapping rules for the Request

Figure 8-8 Mapping rules for opMoneyOrder request
Source Destination
Function “get current time” sMoneyOrderReq->OrderDetails->dateTime
Message->TextMessage sMoneyOrderReq->OrderDetails->seq
Literal “1000” sMoneyOrderReq->OrderDetails->total
Literal “Jan Kowalski” sMoneyOrderReq->SenderDetails->customerName
Literal “American Express” sMoneyOrderReq->CreditCardDetails->cardType
Literal “Jan Kowalski” sMoneyOrderReq->SenderDetails->nameOnCard
Literal “1111-111111-1111” sMoneyOrderReq->SenderDetails->cardNumber
Literal “1111” sMoneyOrderReq->SenderDetails->securityCode
Literal “10/12” sMoneyOrderReq->SenderDetails->validUntil
Literal “Smith” sMoneyOrderReq->ReceipientDetails->familyName
Literal “33 Berry Street” sMoneyOrderReq->ReceipientDetails->streeAddress
Literal “North Sydney” sMoneyOrderReq->ReceipientDetails->cityTown
Literal “NSW” sMoneyOrderReq->ReceipientDetails->stateProvince

Literal “2060” sMoneyOrderReq->ReceipientDetails->postalCode
Literal “Australia” sMoneyOrderReq->ReceipientDetails->country

Use the XSDOperation->marshal function to obtain the XML string version of the
web service response to send to the outbound JMS Queue, and configure a time-to-
live property to 120000 milliseconds. Figure 8-9 illustrates the mapping and points
out the dropdown where the marshal function is hiding.

Figure 8-9 Map response to a JMS TextMessage

With the business process ready, let’s create a Connectivity Map,
cmWSCSecGateConsumer, drag the Web Service External Application connector,
and two JMS Queue objects – qWSCSecGateConsumerIn and
qWSCSecGateConsumerOut, connect and save. Figure 8-10 shows the expanded
connectivity map.

Figure 8-10 Connectivity Map, cmWSCSecGateConsumer

To deploy this project we need an additional SOA/HTTP Web Service External
System Client container in the CAPS Environment. Let’s switch to the Services Tab,
expand the CAPS Environments, WSSecGateEnv and add the container,
WSCSecGateConsumer – see Figure 8-11.

Figure 8-11 Add SOAP/HTTP Web Service External System (Client) container

Start the UDDI Browser Web UI, click on the WSDL associated with the
WSSecGateEnv, bpWSSecGateProvider process, scroll down to the soap:address tag
and copy to the clipboard just the servlet context. We need this context to configure
the Client Container. Figure 8-12 highlights the servlet context.

Figure 8-12 Copy servlet context to clipboard

Switch back to NetBeans, right-click the WSCSecGateConsumer container in the
WSSecGateEnv Environment and configure as shown in Figure 8-13, changing host
and port to suit your environment, if necessary.

Figure 8-13 Configure the WSCSecGateConsumer container

Switch back to the Projects Tab in NetBeans, create a New -> Deployment Profile,
dpWSCSecGateConsumer for the CAPS Environment WSSecGateEnv, automap,
build and deploy.

9. Exercise Consumer and Provider
Let’s now exercise the solution, with the consumer directly invoking the provider, by
submitting a message to qWSCSecGateConsumerIn and observing the response in
qWSCSecGateConsumerOut using the Java CAPS Enterprise Manager.

Figure 9-1 Response message in qWSCSecGateConsumerOut

Indeed the request was submitted and the response was returned.

To observe what is happening on-the-wire, we will add the TCP Mon to the solution
and modify the service consumer to connect to the provider via the intermediary.
Figure 9-2 illustrates the configuration.

Figure 9-2 Configuration with TCP Mon

If you have not already done so, obtain and “install” the TCP Mon. Section 15.6,
“Obtain and use the Apache TCP Mon”, discusses how to obtain and configure the
tool.

Change the working directory to the location of the tcpmon.bat (if on Windows) and
start TCP Mon with the following command:

C:> cd C:\tools\tcpmon-1.0-bin\build
C:> tcpmon.bat 8081 localhost 38080

Click on the “Port 8081” Tab. This is where the request and response will appear.
Check the XML Format checkbox, Figure 9-3, to get the XML pretty printed.

Figure 9-3 Enable pretty printing of XML

Switch to the NetBeans IDE, Services Tab, CAPS Environment, WSSecGateEnv and
edit properties of the WSCSecGateConsumer, see Figure 9-4. Change Port number
from 38080 to 8081, save, switch to project Tab, and build and deploy the project
WSCSecGateConsumer using the dpWSCSecGateConsumer deployment profile.

Figure 9-4 Change port number to 8081

Once the modified consumer project is deployed use the Java CAPS Enterprise
Manager to submit a message to the inbound queue, check the outbound queue for the
response then switch to TCP Mon and look at the request and the response through it.

The response, following submission of a JMS TextMessage containing the numeral
111, is shown in Figure 9-5.

Figure 9-5 Response to a message containing numeral 111

Part of the request and the response, as seen by TCP Moon, is shown in Figure 9-6.

Figure 9-6 Part of the request and the response in TCP Mon

Note that no SOAP Headers are present in either the request or the response.

10. Add a Gateway to the Mix
Let’s add the SecureSpan XML Gateway to the mix. The schematic of the solution is
shown in Figure 10-1.

Figure 10-1 Solution that includes the SecureSpan XML Gateway

If you have not done so already, branch out to sections 15.1, “Obtain the Layer
7SecureSpan XML Gateway” and 15.2, “Configure the SecureSpan XML Gateway”
to install and configure the SecureSpan XML Gateway so it is ready to be used as we
work through this section.

Assuming the Gateway has been installed and configured, start it.

The gateway will run, for me, on the host ssg.aus.sun.com. Figure 10-2 shows host
and port assignments for the components of the solution. These reflect my
environment. Your environment will use different host names and, likely, different
port numbers.

Figure 10-2 Host and port assignments

Stop the TCP Mon client and start it, using the new host and port number for the
target host. Figure 10-3 shows the command line.

Figure 10-3 Start the TCP Mons and point it at the SecureSpan XML Gateway

We have not yet configured the gateway to recognise the web service provider and to
redirect requests to it. Let’s submit the JMS message to the consumer and observe
message exchange in the TCP Mon window. As was to be expected, the gateway
returns a SOAP Fault. Figure 10-4 show the exchange.

Figure 10-4 SOAP Fault from the Gateway

Note that I reformatted the text associated with the status attribute of the policyResult
node so it could fit into the picture and be readable.

To allow the consumer and the provider to communicate we must “introduce” the
provider to the Gateway. Let’s start the browser-based SecureSpan Manager. The
URL for me will be https://ssg.aus.sun.com:8443/ssg/webadmin.

Let’s click the “Publish SOAP Web Service” “button”, see Figure 10-5.

Figure 10-5 Click the Publish SOAP Web Service “button”

Start the UDDI Browser web interface, navigate to the WSDL for the provider and
copy WSDL URL to the clipboard. We will need it to configure the service in the
Gateway. Remember that the SSG Gateway runs on its own host so any references to
“localhost” will have to be replaced with the Fully Qualified Domain Name (FQDN)
of the host to which the web service is actually deployed. For me this will be
mcz02.aus.sun.com. Also make sure that the Gateway host can resolve the FQDN of
the web service host. If it cannot then you will need to use the IP address or modify
the Gateway hosts file to add this web service host to it. Note also that if you modify
the hosts file it will be revert on reboot of the SSG.

Paste the WSDL URL into the text box, see Figure 10-6, modify the host name if
required, and click Next.

Figure 10-6 Make sure to use the FQDN of the host on which the web service runs

Note the controls for enabling channel encryption, authenticated access and
permissions, Figure 10-7. Leave Allow Anonymous Access enabled and click next.

Figure 10-7 Access control controls

Make sure that the web service end point URL is resolvable from the gateway. The
original URL used localhost for the host name. It must be changed to the FQDN of
the host that hosts the web service, see Figure 10-8. Note, also, that the gateway can
provide credentials, if the service requires them.

Figure 10-8 Make sure the web service endpoint URL is correct and resolvable by the Gateway

Notice that the service was added, a default policy allowing anonymous access to the
service was created and a warning to that effect was produced, Figure 10-9.

Figure 10-9 Anonymous web service was configured

Note, too, attributes of the service, displayed in the service name Tab –
MoneyOrderInlined_Service (v1, active). Just from this string one surmises that the
SecureSpan Gateway can a) version services, and b) activate/deactivate service
(enable/disable access) per service version.

By default the SSG expects the service request to use the servlet context of /ssg/soap.
Clearly, only one of these can be defined at a time. To allow support services with
different servlet contexts and additional configuration step is required. In the SSG
Manager UI expand the node tree under the Services Tab, Services @
ssg.aus.sun.com:8443 (or the FQDN of your Gateway instance), right-click on the
name of the service and choose Service Properties, as shown in Figure 10-10.

Figure 10-10 Edit service properties for the new service

Click the HTTP Tab, check the “Custom resolution path” radio button and paste the
entire servlet context configured in the WSCSecGateConsumer SOAP/HTTP Web
Service External System container used to deploy the consumer. Figure 10-11
illustrates the SSG Service Properties HTTP Tab where the Custom resolution path is
configured. Figure 10-12 shows the source of that servlet context, for cross reference.

Figure 10-11 Configuring Custom resolution path through the SSG Service Properties

Figure 10-12 Source of the servlet context

Let’s switch to TCP Mon and click the “Remove All” button in the TCP Mon UI to
clear old requests and responses. The reason for this is that if the HTTP Keep-alive is
set, as it seems to be by default in Java CAPS, multiple requests and responses will
show up in the same windows, making it hard to figure out which response belongs to
which request.

The route to the service has been configured in the gateway. Let’s submit a message
to the consumer and see message exchange. Figure 10-13 shows it in TCP Mon.

Figure 10-13 SOAP Re1quest and Response on-the-wire, with SSG mediation

As we can see the addition of the SecureSpan Gateway to the solution and defintion
of a plain routing policy does not add security or cause issues for non-secure service
consumers.

Let’s add a simple security policy to see what will happen. Let’s switch to the SSG
Manager, select the MoneyOrederInlined_Service service so that it is displayed in the
right-hand pane, in the Assertions Tab expand Policy Assertions->Access Control and
drag the Encrypted Username Token policy assertion onto the canvas and drop it
above the Route policy. Figure 10-14 illustrates the process.

Figure 10-14 Add Encrypted username Token policy assertion

With the assertion added, click the Save and Activate “button” as shown in Figure
10-15. This will propagate changes to the Gateway. Next request, which is submitted
to the gateway, will be required to contain the Username Token SOAP Headers.

Figure 10-15 Save and Activate new policy

Let’s test the service to see what response we will get, since the consumer does not
provide Username Token.

The Gateway returned SOAP Fault saying “Authentication Required” as shown in
Figure 10-16. We modified the policy for the service at the Gateway. This policy now
requires the consumer to provide a Username Token. We did not have to either
modify the service or build and deploy it. The policy was dynamically applied and
took effect for the very next request.

Figure 10-16 SOAP Fault with Authentication Required from the Gateway

11. Add a VPN Client to the Mix
Let’s add the SecureSpan VPN Client to the mix. The schematic of the solution is
shown in Figure 11-1.

Figure 11-1 Solution with the SecureSpan VPN CLient

We will configure the WSCSecGateConsumer SOAP/HTTP Web Service External
System container to forward requests to the VPN Client as though it was the host
actually hosting the service. The VPN Client is expected to run on locahost and by
default listens on port 7700. The port can be changed. The host can not.

If you have not done so yet, follow the steps in section 15.3, “Install and Configure
the SecureSpan VPN Client”, before continuing with this section.

We need to start and/or configure the components shown in Figure 11-2, with all but
two already configured.

Figure 11-2 Host and port assignments

Let’s start the SecureSpan VPN Client, click on the Properties button, switch to
Network Tab.

We need to configure the port number to which the VPN Client will connect, the
“Gateway custom port” and the “Gateway IP Address”. The last two we will modify
only because we have the TCP Mon as an intermediary. If the VPN Client was
connecting directly to the Gateway, as would normally be the case, we would keep the
“Gateway uses standard ports” and “Lookup IP Address in DNS” properties checked
– the default.

Check the “Gateway Requires Custom Ports” checkbox and provide the port number
on which the TCP Mon is listening, for me 8081, as shown in Figure 11-3. In normal
circumstances we would not do this as we would not be running the TCP Mon to
snoop on the wire. At any rate, if the SSG was running on a different port this is
where we would specify this different port.

If using an intermediary like a TCP Mon, as we are doing in this exercise, we need to
tell the VPN Client to which host to forward requests. Click the “Use the following IP
addresses” radio button, click Add and enter 127.0.0.1, for localhost. This will
redirect requests to localhost:8081, which is where the TCP Mon is listening for
requests. If we did not use the TCP Mon we would not need to make this
modification.

Figure 11-3 Specify custom port and custom label

Let’s now modify the WSCSecGateConsumer SOAP/HTTP Web Service External
System so that it points to the VPN Client rather then to the TCP Mon, as it currently
does if you followed the steps thus far. Figure 11-4 illustrates the properties. Build
and deploy the project.

Figure 11-4 Point the consumer at the VPN Client

Let’s ask the VPN Client to show what it sees. Open up the SecureSpan VPN Client
UI by clicking on the icon in the System Tray, pull down the Windows menu and
select the “Recent Message Traffic” option.

Now that all the components of the infrastructure are running, let’s Remove All from
the TCP Mon, submit a test message to the appropriate JMS Queue using the
Enterprise Manager, and observe what is exchanged between the VPN Client and the
SSG.

The request, and the response, indicate that all was well, see Figure 11-5.

Figure 11-5 Success

Switch to the VPN Client’s Recent Message Traffic window and take a look at the
messages that were exchanged. Figure 11-6 shows one of the messages in the right-
hand window and the message exchange in the left-hand window.

Figure 11-6 One of the messages (from server) in the Recent Message Traffic VPN Client window

We have a functioning configuration with consumer requests being passed off to the
SecureSpan VPN Client, from there to the TCP Mon, from there to the SecureSpan
XML Gateway (on a separate host), from there to the service provider. If all is well,
responses travel in the opposite direction.

Consider what would happen if the service was not defined in the SSG or the
consumer’s request did not contain security information required by the gateway. As
you would expect the Gateway would reject the request and send a SOAP Fault
message back to the consumer. We have seen this behaviour earlier, when submitting
a request from the consumer directly to the Gateway, when it did not have the service
defined.

12. Miscellaneous Gateway Service

12.1 Logging, Auditing and Alerting
The SecureSpan Gateway supports logging and auditing, which includes configurable
logging sinks and other facilities.

To make it easier for me to see what is going on, and to show it in the Note, I
downloaded and installed a Kiwi Syslog Server for Windows as an evaluation – see
http://www.kiwisyslog.com/. I configured the Gateway to log all it knows about to
that destination. Configuration of logging sinks is accessed through the Manage drop-
down, see Figure 12-1.

Figure 12-1 Activating Manage Log Sinks functionality

The Syslog configuration I used logs all there is to be logged, see Figure 12-2. Syslog
Settings I use are shown in Figure 12-3. Note the FQDN of the Syslog host.

Figure 12-2 Configuration of the Syslog sink, Base Settings

Figure 12-3 Configuration of the Syslog Settings

All this is to enable me to discuss and illustrate logging and auditing directives that
can be added to the policies in the Gateway.

Let’s drag the Audit Assertion to the Policy editor window then double-click the
policy assertion and check the “Save request XML” and “Save response XML”, see
Figure 12-4. Note other logging and auditing assertions which you can add to the
policy.

Figure 12-4 Add and configure Audit Assertion

Let’s exercise the solution by submitting a JMS message, as we have done before.
Figure 12-5 show the Kiwi Syslog Server window with the messages sent out from
the Gateway.

Figure 12-5 Syslog output in the Kiwi Syslog Server window

Figure 12-6 shows the messages in a readable form. Note, starting at the bottom and
going toward the top, that a new policy was activated, VPN Client request was
rejected due to outdated policy then the re-submitted request was processed.

Figure 12-6 Message detail

This is something you can watch to see what is going on in a brief format.

The Audit Assertion, which we added to the policy and configured to save request and
response XML, causes audit events to be written to the audit database. To access audit
events, drop down the SSG Manager’s Monitor … drop down and select Gateway
Audit Events, as shown in Figure 12-7. A new window will open.

Figure 12-7 Choose Gateway Audit Events

For each policy evaluation that has Audit Assertion, there will be an audit entry. If
save request and response XML is selected the request and response will be saved.
Figure 12-8 shows the request XML for the service invocation.

Figure 12-8 Request XML in the Gateway Audit Event window

Let’s revert to a policy consisting solely of the “Route to” assertion then add “Fault
Level” and “Send Email Message” assertions from the “Logging, Auditing and
Alerts” group. The policy looks like that shown in Figure 12-9.

Figure 12-9 Policy with Fault Level and Send Email Alert assertions.

Right-click the Override SOAP Fault assertion and modify its properties to “Full
Detail”, meaning provide verbose fault information. Right-click the “Send Email
Alert” and configure the properties. At minimum specify the host and port for the
SMTP Server which will receive email messages from the gateway, the recipient
address, and perhaps a constant string in the body of the message. The message body
in Figure 12-10 uses a number of context variables to obtain and embed certain
information about the request and the environment in which it is being processed.

Figure 12-10 Configure email alert properties

“Save and Activate” the policy, submit a JMS message and check the email. An alert
message should have been sent. I received an alert shown in Figure 12-11.

Figure 12-11 Email alert

There are a number of options for logging and auditing of policy evaluation and
request and response processing. Email notifications can be sent to alert operational
staff of events of interest, both normal and abnormal. Consult the vendor
documentation for information on how to configure these facilities. Logging, auditing
and alert assertions can be added at various places in a policy to see which policy
alternatives are evaluated, to log information about requests and responses, and to
provide audit trial of service invocation.

12.2 XML Schema Validation
In addition to security services, digital signatures, encryption authentication and
suchlike, the Gateway can be employed to deal with certain kinds of XML-borne
threats like XML Injection, malformed XML, buffer overflow, deep recursion and
similar. One of the means of ensuring that rouge SOAP requests and responses do not
make their way too deeply into the infrastructure is XML Schema validation.

Let’s revert to the policy version in which only the “Route to …” assertion exists,
expand Policy Assertions->Threat Protection, drag the Validate XML Schema
assertion to the canvas above the Route To assertion and click the “Extract from
WSDL” button in the dialogue box that appears. See Figure 12-12.

Figure 12-12 Get hold of the XML Schema to use for validation

Choose the entire schema, Figure 12-13, and click OK. We could have chosen the
request only or the response only.

Figure 12-13 Choose entire schema

By placing the Validate XML Schema assertion before the Route to assertion we are
getting the gateway to validate the request before it is submitted to the back-end
service. Let’s also add the Validate XML Schema after the Route to assertion to have

the response validated before it is passed on. Use the same steps as before making
sure to place the assertion after the Rout to assertion. Click the “Save and Activate”
button, submit the JMS message and observe request and response messages in the
TCP Mon, in the VPN Client’s Recent Message Traffic window and in the SSG
Manager’s Monitor Audit Events window. Notice that noting was added to the request
and nothing was added to the response. The request was processed successfully. No
new audit events in the Gateway Audit Events window.

Let’s add a digital signature assertion to break schema conformance. Let’s expand the
Policy Assertions->XML Security node tree, drag Sign Request Element to the Policy
editor window and drop it above the Validate Message Schema assertion. Double-
click the new assertion, click on the Web Service Operations ->opMoneyOrder
operation and click on the <ns:SenderDetails> node. This will cause the selected
element to be digitally signed. In order to successfully sign a message or a part of a
message, a WSS Signature Access Control assertion has to be added before the Sign
Request Element assertion. Let’s add that assertion, Figure 12-14. Click the “Save and
Activate” button. Submit a JMS message and observe the results.

Figure 12-14 Choose request element to sign

Request processing failed. The offending fragment of the request in TCP Mon is
highlighted in Figure 12-15.

Figure 12-15 Additional attributes on the signed element in the request body

The response, in TCP Mon, says “Bad Request”, see Figure 12-16.

Figure 12-16 Bad Request

The message is pretty generic and pretty meaningless. Because I added a sign element
assertion I suspect that this is what caused the problem, but was it? Let’s add a
“Logging, Auditing and Alerts” -> “Fault Level” assertion at the beginning of the
policy, double-click on the assertion, change fault level to “Full Details” from the
drop down menu, click OK, click “Save and Activate” and submit another JMS
message to test the outcome.

The SOAP Fault in the TCP Mon window, reformatted for better readability, is quite
clear in that it says exactly what the issue is - Figure 12-17. Attribute wsu:Id, which is
added to the request body to identify the part of the message which was signed, was
not catered for by the original request schema. Whatever the reason, the request does
not conform to the schema and is rejected with a SOAP Fault being returned to the
sender.

Figure 12-17 Schema validation error

Schema validation can be added for requests and responses. Of specific note is the
Fault Level assertion, which help identify the issues by providing greater level of
detail in the SOAP Fault returned to the consumer.

12.3 Policy Versioning
Let’s briefly explore policy versioning. The policy consists of a single Route to
assertion, as shown in Figure 12-18. In my case the policy version is v43. I modified
the policy a fair bit as I was working my way through various examples.

Figure 12-18 Policy with the Route to assertion

Let’s add an “Encrypted Username Token” “Access Control” assertion, and a “Fault
Level” “Logging, Auditing and Alerts” assertion above the “Route to” policy
assertion, then click “Save and Activate”. Figure 12-19 shows the new policy. Policy
version went up to 44.

Figure 12-19 Modified policy

Right click on the service name in the Services Tab and choose Revision History, as
shown in Figure 12-20.

Figure 12-20 Choose Revision History

Policy revision 44, shown in Revision History, Figure 12-21, is active and looks like
the policy that we just configured. If we choose version 43 of the policy, Figure
12-22, and click “Set Active”, the old policy will be activated. Note that this policy
does not require “Encrypted Username Token”.

Figure 12-21 Version 44, Active policy

Figure 12-22 Version 43 policy activated

Clicking Clear Active, when the active policy is enabled, disables the policy
completely, see Figure 12-23. Attempt at invocation of the service with no active
policy will fail with a SOAP Fault, Figure 12-24, being returned to the consumer.

Figure 12-23 No active policy

Figure 12-24 SOAP Fault resulting from an attempt to invoke a service with no active policy

Let’s activate policy version 44, “Route to ….” assertion only, for future experiments.

Policies can be developed over time. Different versions of the policy can be active at
different times. Services can be disabled by making sure that no policy is active for
the service. This is a part of what some call “Runtime Service Governance”.

12.4 Service Availability Policies
Service Availability assertions provide for specification of such Quality of Service
and Availability policies as Time/Day Availability, IP Address Range, Throughput
Quotas and Rate Limits, Figure 12-25. Judicious use of one or more of these
assertions, for all services the Gateway handles, can provide for enforcement of
Service Level Agreements. It can do so by preventing access to specific services from
specific addresses and address ranges, limiting access to non-essential services,
throttling request processing for non-premier services, regulating bandwidth use by
heavy bandwidth users and ensuring higher-priority, premium services receive
appropriate resource allocation.

Figure 12-25 Service availability assertions

12.5 Threat protection
Supplementing service availability assertions are the Threat Protection assertions.
Most notable of these, from the web service security perspective, are Request Size
Limit (prevent buffer overflow and denial of service attacks arising out of attempts to
process excessively large requests), Document Structure Threats (preventing
deliberately malformed XML from overwhelming XM processing machinery and

potentially causing rouge XML to be processed), WSS Reply Protection (preventing
intercepted messages from being re-submitted by rogue senders to cause repeated
submission of given data (withdraw the same amount from the same account several
times, for example) and Validate XML Schema (preventing submission of non-
conformant messages potentially breaking request processing machinery).

Figure 12-26 Threat Protection Assertions

13. Using the Gateway to Secure Web Services
In the next few sections we will explore application of various security policies,
interaction between the SecureSpan VPN Client and the SecureSpan XML Gateway
and SOAP Headers used to convey the security information called for by the specific
policies. We will use the infrastructure which we finally have deployed. We will not
be modifying either the consumer or the provider. We will be working with the
Gateway and will be applying policy changes dynamically. This is what the whole
thing is about - being able to secure services without having to refer to a developer or
to re-deploy the service provider or the service consumer.

Note that while we have a Java CAPS Repository-based Web Service consumer and
Web Service Provider, we could equally well have a JBI-based consumer and
provider, an EJB-based consumer and provider or a combination of both. The gateway
does not care. As mentioned, the reason I chose Repository-based technology was to
demonstrate that sophisticated, secure web services solutions can be built, with the aid
of a Gateway, regardless of the capabilities of the technology used to develop
providers and consumers.

13.7 Propagation of Polices to the VPN Client
The SecureSpan VPN Client can be statically configured with the security policy
applicable to a web service protected by the SecureSpan Gateway. The policy can be
exported using the SSG Manager and imported into the VPN Client. Naturally,
changes to the policy require it to be exported, distributed to the consumers and
imported into the VPN Client for use. There are good reasons to use static policies. I
will not go into them here.

The SecureSpan VPN Client can also be configured to dynamically obtain the security
policy of a service protected by the SecureSpan XML Gateway. This makes policy
propagation automatic and transparent to the service consumer. This is what I find so
attractive about the VPN Client.

Let’s look at a scenario that demonstrates dynamic policy propagation from the
Gateway to the VPN Client.

Let’s switch to the SecureSpan VPN Client UI, assumed to be running. Let’s open the
properties and switch to the Service Policies Tab. If the steps were followed as given
in this Note, there should be no policies being cached, see Figure 13-1.

Figure 13-1 No policies cached by the Client

Because the policy defined for the WSSSecGateProvider service protected by the
Gateway only contains the routing rule, Figure 13-2, there is no requirement for the
client to deal with security decorations either on requests or on responses. The
Gateway merely relays requests and responses.

Figure 13-2 Policy with just the routing rule

Let’s switch to the SSG Manager and select our service so the policy appears in the
right hand pane, as shown in Figure 13-2.

In the top left pane let’s expand the Access Control node and look at the various ways
in which access control can be imposed over the service. There are quite a number of
methods, as shown in Figure 13-3. Let’s start simple; drag the “HTTP Basic”
assertion form the list onto the right-hand pane and drop it above the route rule. This
is shown in Figure 13-3.

Figure 13-3 Adding HTTP Basic Access Control Assertion to the policy

Let’s now “Save and Activate” the changed policy, as illustrated in Figure 13-4.

Figure 13-4 Save and Activate the policy

Note that the new version of the policy was created and that a message is warning us
that the credentials are collected but not validated - Figure 13-5. I will not go into the
identity providers and similar matters. The SecureSpan documentation, Layer 7
personnel and Layer 7 partners can help you configure these things if you decide to
buy the product. My purpose here is to demonstrate how dynamic policy change is
propagated to the VPN Client and used by the client to invoke the protected service.

Figure 13-5 Warning about a potential issue with the policy

Let’s switch to the TCP Mon and Remove All to clear the deck, as it were.

Let’s now switch to the VPN Client, open Properties, switch to Service Policies Tab
and confirm that no policy is cached there, then click OK to dismiss the Properties
window.

Let’s now submit a message to the inbound JMS Queue, much as we have done
before, confirm that there is a response in the outbound queue, then switch to TCP
Mon and look at the message exchange. Because the services have the HTTP Keep-
alive turned on multiple requests and responses appear in the same windows. Look
carefully at the requests window to identify where the first request ends and the next
begins. The first request, extracted form the TCP Mon window, is shown in Figure
13-6. This is a policy discovery request. The VPN Client asked the Gateway for the
policy to use to decorate the actual web service request.

Figure 13-6 First Request – policy discovery
POST /ssg/policy/disco HTTP/1.1
Content-Type: text/xml; charset=utf-8
User-Agent: Jakarta Commons-HttpClient/3.0.1
Host: ssg.aus.sun.com:8081
Transfer-Encoding: chunked

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.o rg/soap/envelope/">
 <soap:Header>
 <L7a:MessageID
xmlns:L7a="http://www.layer7tech.com/ws/addr">http: //www.layer7tech.com/uuid/41dadd6ab
e75aa610f1bf730729b6e17</L7a:MessageID>
 <L7a:ServiceId
xmlns:L7a="http://www.layer7tech.com/ws/addr">10158 08</L7a:ServiceId>
 </soap:Header>
 <soap:Body>
 <wsx:GetPolicy
xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/03/me x"></wsx:GetPolicy>
 </soap:Body></soap:Envelope>

To make it easy to follow I am showing requests and responses in the order they have
been sent. The response to the policy discovery request is shown in Figure 13-7.

Figure 13-7 Policy discovery response – the policy
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/xml
Transfer-Encoding: chunked
Date: Thu, 19 Feb 2009 08:57:34 GMT

12dc
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.o rg/soap/envelope/">
 <soap:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://do cs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut ility-1.0.xsd" actor="secure_span"
soap:mustUnderstand="1">

 <wsu: Timestamp wsu:Id="Timestamp-4-9863b4d75fb6db844260e7465f132b 36">
 <wsu:Created>2009-02-19T08:57:34.701756 387Z</wsu:Created>
 <wsu:Expires>2009-02-19T09:02:34.701Z</ wsu:Expires>
 </wsu:Timestamp>
 <wsse: BinarySecurityToken EncodingType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message- security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/ oasis-200401-wss-x509-token-profile-
1.0#X509v3" wsu:Id=" BinarySecurityToken-0-
b09596a4ffadd42ff0e4d37cb5312889">MIICFjCCAX+gAwIBAgIIAIhey9DpmxQwDQYJKoZIhvcNAQEFB QAw
HzEdMBsGA1UEAwwUcm9vdC5zc2cuYXVzLnN1bi5jb20wHhcNMDkwMjE3MTQzNDM0WhcNMTEwMjE3MTQ0NDM0Wj
AaMRgwFgYDVQQDDA9zc2cuYXVzLnN1bi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAJMsd30S24w+
IKgDIpA3liwG+gjwKlV5I5PyvzbtoELVu8jFdhGUoeqv6/i5NjY kFZdhkXrV8J4pCWJJ6yF+jaicoBH3AhXjEf
Ul7xcFKMrXtTq5AFt74ksFVn2Aet8Tbt49ctvzFLnHgDNqPUhtr SSmINXKRVARQ/V9An+4WgovAgMBAAGjYDBe
MAwGA1UdEwEB/wQCMAAwDgYDVR0PAQH/BAQDAgXgMB0GA1UdDgQWBBQjMiqQNEcOo7Jxbpjl8vekmL/pTjAfBg
NVHSMEGDAWgBTLSXPwBjWtZ+uHPxe1vZoL9rospjANBgkqhkiG9w0BAQUFAAOBgQB7rkS45X6rwC8IRAQK9try
+by4C6XID2ZsUX+KXYCcUpWwEHCSVo/Z9+JBHdIkPaeWBMB1zilIXguXYwZSNpSmbMFXivBzNDnOqoyhfBK3Tn
5/LdKGNdBJrg4lfZH1Ww4k814fsZ+LZPsNCv5DjgxfPSs/kNWPF c7WkaiqWylxbA==</wsse:BinarySecurit
yToken>
 <ds: Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"></ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http: //www.w3.org/2000/09/xmldsig#rsa-
sha1"></ds:SignatureMethod>
 <ds:Reference URI="#Body-1-ab8bf4d52 e02a26b8b1b2ee414ca8d6a">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>+d1QRlnWih40e8cBs 7Pu8bnqz/E=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#PolicyVersion-2- 87788f709f148454caa6ffbdcbb38cf5">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>78Nn7ftRAJ25eJKQx utN/dnLM60=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#RelatesTo-3-af2a 924c154c6a1d492cd1a13caf2c9e">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>AA65CE8TcLpsQbV0m kqb7xwgOBI=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#Timestamp-4-9863 b4d75fb6db844260e7465f132b36">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>o7QuF4MTGn7x7LCB2 wSJiCFdE64=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>b5hlacocWWiiatVzGd7DoaRdbd+3RusY bsYHS8kKGUK2TQUvCsR+kpE+JIo6+eb6Vcs
kn0c1KdPIdBDbbFdHHUAQOMtYpjyp0uTboehVGhMUlhm/Qfvtj2 6V6SjDs+ZY7Cs6EXVa5jJaZo4aUzsRyXZ76
2ISmrKRzF5r7b8cRaA=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI ="#BinarySecurityToken-0-
b09596a4ffadd42ff0e4d37cb5312889" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-pr ofile-1.0#X509v3"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 <L7a:RelatesTo xmlns:L7a="http://www.layer7te ch.com/ws/addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd" wsu:Id="RelatesTo-3-
af2a924c154c6a1d492cd1a13caf2c9e">http://www.layer7 tech.com/uuid/41dadd6abe75aa610f1bf
730729b6e17</L7a:RelatesTo>
 <L7a:PolicyVersion xmlns:L7a="http://www.laye r7tech.com/ws/addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd" wsu:Id="PolicyVersion-2-
87788f709f148454caa6ffbdcbb38cf5">1015808|4244eb4ed 3642eeb58b5a3372e5ec398</L7a:Policy
Version>
 </soap:Header>
 <soap:Body xmlns:wsu="http://docs.oasis-open.org /wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="Body-1-ab8bf4d5 2e02a26b8b1b2ee414ca8d6a">
 <wsx:GetPolicyResponse xmlns:wsx="http://sche mas.xmlsoap.org/ws/2004/03/mex">
 <wsp:Policy xmlns:L7p="http://www.layer7te ch.com/ws/policy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/po licy">
 <wsp:All wsp:Usage="Required">
 <L7p:HttpBasic></L7p:HttpBasic>
 </wsp:All>
 </wsp:Policy>
 </wsx:GetPolicyResponse>
 </soap:Body></soap:Envelope>

There is a great deal to be said about the response, much more then I am prepared to
write about. The high points are:

• SOAP Body carries the actual policy (Useage=Required, HttpBasic)
• SOAP Body is signed using the XML Digital Signature
• RSA SHA1 digest algorithm is used to get the checksums of the parts signed
• Signature covers: soap:body, wsu:Timestamp, wsse:BinarySecurityToken,
• X.509 Certificate is embedded in the header (binary security token)

Because this is a security policy the gateway digitally signs the critical components of
the policy to ensure that if it is tampered with in transit it will be obviously invalid
and will be rejected. The two messages were exchanged between the VPN Client and
the Gateway transparently to the service consumer and the service provider.

Once the VPN Client obtained the policy it was able to modify the original request so
that it satisfies the policy expected by the gateway. Figure 13-8 shows the request
with the HTTP Basic Authentication header added. The Base64-encoded string
contains the username:password combination obtained from the VPN Client
configuration – admin:L7.Ap4y0u&me. Connect to http://base64-decoder-
online.ewebdev.com/, or another online Base64 decode service, and convince yourself
that this is indeed the case.

Figure 13-8 Actual service request decorated according to policy
POST /ssg/soap HTTP/1.1
User-Agent: L7 Bridge; Protocol v2.0
SOAPAction: "urn:Sun:Michael:Czapski:WSDL:MoneyOrde r/MoneyOrderPortType/opMoneyOrder"
L7-Original-URL: http://localhost:7700/WSSSecGatePr ovider/MoneyOrderPortTypeBndPort
L7-policy-version: 1015808|4244eb4ed3642eeb58b5a337 2e5ec398
Content-Type: text/xml; charset=utf-8
Authorization: Basic YWRtaW46TDcuQXA0eTB1Jm1l
Host: 127.0.0.1:8081
Content-Length: 1188

<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Body>
 <ns0:MoneyOrderReq xmlns:tns="urn:Sun:Michael :Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-19T08:58:09.218Z< /tns:dateTime>
 <tns:seq>5432</tns:seq>
 <tns:total>1000</tns:total>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns:cus tomerName>
 </tns:SenderDetails>
 <tns:CreditCardDetails>
 <tns:cardType>American Express</tns:car dType>
 <tns:nameOnCard>Jan Kowalski</tns:nameO nCard>
 <tns:cardNumber>1111-111111-111111</tns :cardNumber>
 <tns:securityCode>1111</tns:securityCod e>
 <tns:validUntil>10/12</tns:validUntil>
 </tns:CreditCardDetails>
 <tns:ReceipientDetails>
 <tns:familyName>Smith</tns:familyName>
 <tns:streetAddress>33 Berry Street</tns :streetAddress>
 <tns:cityTown>North Sydney</tns:cityTow n>
 <tns:stateProvince>NSW</tns:stateProvin ce>
 <tns:postalCode>2060</tns:postalCode>
 <tns:country>Australia</tns:country>
 </tns:ReceipientDetails>
 </ns0:MoneyOrderReq>
 </env:Body></env:Envelope

Finally, the response from the service provider is the same as we would have gotten
with the original policy in place, see Figure 13-9.

Figure 13-9 Service response
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/xml;charset=utf-8
Content-Length: 665
Date: Thu, 19 Feb 2009 08:57:34 GMT

<env:Envelope xmlns:env="http://schemas.xmlsoap.org /soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Body>
 <ns0:MoneyOrderRes xmlns:tns="urn:Sun:Michael :Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-19T08:58:09.218Z< /tns:dateTime>
 <tns:seq>5432</tns:seq>
 <tns:total>1000</tns:total>
 <tns:orderStatus>true</tns:orderStatus>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns:cus tomerName>
 </tns:SenderDetails>
 </ns0:MoneyOrderRes>
 </env:Body></env:Envelope>

Let’s now turn out attention to the VPN Client’s Service Policy cache, accessible
through Properties->Service Policy Tab, see Figure 13-10.

Figure 13-10 Cached Service Policy

Selecting the policy in the “Services with Cached Policies:” list shows the policy in
the Associated Policy pane. As is clearly seen the “Require HTTP Basic
Authentication” policy, which we originally set for this service in the Gateway, has
been propagated to the VPN Client. Note that checking the checkbox in the Lock
column will prevent this policy form being automatically updated.

Let’s click the Edit button to see the parts of the request that are used to search the
policy cache for the applicable policy, Figure 13-11.

Figure 13-11 Request components used to identify applicable policy

Let’s turn our attention to the VPN Client’s Recent Message Traffic window, which
should have been open since the previous test. It will show something similar to what
appears in Figure 13-12. Exploring the messages leads us to discover that the VPN
Client submitted an undecorated request (it was not aware of a security policy being
enforced by the gateway), the gateway returned the policy, the VPN Client cached it
in the cache, decorated the request according to the requirement of the policy and
submitted it again. The Gateway, having sent the request to the provider and having
obtained the response, returned the provider’s response, which the VPN Client
returned to the consumer.

Figure 13-12 Messages exchanged between the VPN Client and the Gateway

No modification to either consumer or provider was required to add a security policy
and have it take effect. The SecureSpan VPN Client was automatically provided with
the security policy, having tried and having failed to submit the original request, used
it to decorate the request and resubmitted the request, all without either the consumer
or the provider being aware of the interactions.

To make it clearer, let’s switch to the SSG Manager and change the policy so it
requires WS Security username Token instead of the HTTP Basic Authentication
header.

Let’s add WSS Username Token Assertion from the Access Control Assertions.
Figure 13-13 shows the new policy in the SSG Manager window.

Figure 13-13 New policy assertion

“Save and Activate” the policy, clear the TCP Mon window and submit a message to
the inbound JMS Queue, as before. Observe the response in the outbound JMS Queue.
Take a look at the message exchange in the TCP Mon window. Take a look at the
Service Policy Cache at the VPN Client. Take a look at the VPN Client Recent
Message Traffic window.

In VPN Client Properties -> Server Policies observe the updated policy. Figure 13-14
shows the updated policy that requires WS Token Basic Authentication decoration.

Figure 13-14 WS Token Basic Authentication policy was propagated to the VPN Client

As before, the VPN Client sent a request to the Gateway, the Gateway - having
concluded that the message does not comply with the policy - rejected it and sent the
new policy. The VPN Client re-decorated the request in compliance with the new
policy and sent it again to the Gatewy. This time the Gateway accepted the request,

obtained the response and returned the response to the consumer. Figure 13-15 show
the message exchange as seen by the VPN Client in the left hand pane and the re-
decorated request in the right-hand pane. The request now carries a SOAP:Header
with the wsse:Security section that provides the wsu:Timestamp and
wsse:UsernameToken stanzas in accordance with WS-Security standard and the
dictates of the security policy.

Figure 13-15 SOAP Header with wsse:Security section

As before, no modification to either the consumer or the provider was required to add
a security policy and have it take effect. The SecureSpan VPN Client was
automatically provided with the updated security policy. Having tried and having
failed to submit the original request, the VPN Client used the new policy to decorate
the request and resubmitted the request, all without either the consumer or the
provider being aware of the interactions.

13.8 Digital Signing
If you have not already installed private keys and certificates at the Gateway and the
VPN Client, branch out to Section 15.4, “Install certificates”, before resuming here.

Let’s add a requirement to digitally sign the body of the message. Switch to the SSG
Manager, select the service so the policy is shown in the right-hand pane. Remove any
assertions you may have except for the “Route to” assertion, or revert to the version of
the policy which consists of just that one assertion.
Add “Fault Level” assertion from the “Logging, Auditing and Alerts” assertion group
and configure it to log at “Full Detail”. Expand the “Authorization Assertions” group
and drag the “Encrypted Username Token” to above the “Route to” assertion.

Expand the “Policy Assertions”->”XML Security” assertions group. Drag the “Sign
Request Element” assertion onto the Policy canvas, dropping it before the “Route to
…” assertion, Figure 13-16.

Figure 13-16 Add Sign Request Element assertion

Right-click the policy assertion, select “Sign XML Element” Properties option,
choose the soap:Body node (the default) and click OK, Figure 13-17. The assertions
will be processed in order, so the Username Token will be added to the soap:Header
then the soap:Body will be signed.

Figure 13-17 Choose soap:Body to sign

“Save and Activate” the policy, submit a JMS Message to trigger the solution, then
observe the messages in the VPN Client’s Recent Message Traffic windows and the
TCP Mon window.

The VPN Client’s Recent Message Traffic windows shows that the policy was
updated, Figure 13-18, as we expect.

Figure 13-18 Policy was updated

The SOAP Request, sent to the Gateway, has a great deal of XML markup added,
Figure 13-19. The soap:Header is particularly large and complex.

Figure 13-19 SOAP Request, decorated to satisfy policy requirements
POST /ssg/soap HTTP/1.1
User-Agent: L7 Bridge; Protocol v2.0
SOAPAction: "urn:Sun:Michael:Czapski:WSDL:MoneyOrde r/MoneyOrderPortType/opMoneyOrder"
L7-Original-URL: http://localhost:7700/WSSSecGatePr ovider/MoneyOrderPortTypeBndPort
L7-policy-version: 1015808|3b0be71db26c6296e1a20f12 79caf93c
Content-Type: text/xml; charset=utf-8
Host: 127.0.0.1:8081
Content-Length: 7045

<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://do cs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut ility-1.0.xsd" actor="secure_span"
env:mustUnderstand="1">
 <wsu:Timestamp wsu:Id="Timestamp-3-734e717 31195ce05d607e2234c873b14">
 <wsu:Created>2009-02-21T21:59:26.825790 865Z</wsu:Created>
 <wsu:Expires>2009-02-21T22:04:26.825Z</ wsu:Expires>
 </wsu:Timestamp>
 <xenc:EncryptedKey xmlns:xenc="http://www. w3.org/2001/04/xmlenc#"
Id="EncryptedKey-0-002e2f086b947eaf9efa52ef0a9a9123 ">
 <xenc:EncryptionMethod Algorithm="http: //www.w3.org/2001/04/xmlenc#rsa-
1_5"></xenc:EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3 .org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier EncodingType= "http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message- security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-x509-token-profile-
1.0#X509SubjectKeyIdentifier">IzIqkDRHDqOycW6Y5fL3p Ji/6U4=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>HWOUNnjV3Y9iUQZFrBNu8FTCiHMazG3nS dMTpF7fJdcru6re8bI7W8+RNVT+IrLxtVAN
fbQESGW7uuIYZta426r6KgOW/B8CKf6AMfIDHd/Q5DyYilhnmnY 8x3bN0ekMy4yuQkB4/knlPi2v77taYCs5wZ
b/hBglYtydDKVK9ZE=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedKey>
 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Sig-1-aea7c649c407516859d9ec3550 1478a1"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#EncryptedKey-0 -002e2f086b947eaf9efa52ef0a9a9123"
ValueType="http://docs.oasis-open.org/wss/oasis-wss -soap-message-security-
1.1#EncryptedKeySHA1"></wsse:Reference>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>4weOHai+hmn2v1iLfVGYFg==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Enc-5-fda45802545986ae65fcb7582a 19595c"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">

 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#EncryptedKey-0 -002e2f086b947eaf9efa52ef0a9a9123"
ValueType="http://docs.oasis-open.org/wss/oasis-wss -soap-message-security-
1.1#EncryptedKey"></wsse:Reference>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>SRMA5w6cUN+RZh0mhcoeqw==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <xenc:ReferenceList xmlns:xenc="http://www .w3.org/2001/04/xmlenc#">
 <xenc:DataReference URI="#EncryptedUser nameToken-6-
9b15dab0c1c95e713006a3238cefd733"></xenc:DataRefere nce>
 </xenc:ReferenceList>
 <EncryptedData xmlns="http://www.w3.org/20 01/04/xmlenc#"
Id="EncryptedUsernameToken-6-9b15dab0c1c95e713006a3 238cefd733"
Type="http://www.w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="http://www .w3.org/2001/04/xmlenc#aes128-
cbc"></EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3 .org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#DerivedKey- Enc-5-
fda45802545986ae65fcb7582a19595c"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <CipherData>

<CipherValue>tWJGsQ0cXbtXK4Jb3xsuuBxxjQAD3VS2153OTX gj+usoyAv8P1eAbSp4n7z8t8mjwJyHsVBse
TdXuYDRL5Sv67yraNKRllBgXzGDblRbUhlKfbHjiUbHw7yQyr1t Hj3LXVkeN40iEDGO8oF76COlWoIq/OvWzrO
7a3tmJ83W3bZgUDRmYzHZ4BtRItd7H6HelUDc43EB68vZ5dKobm qtmtZWYzQ69Dzo42p+RPOpS0SnC/t+A3Bx6
LSEwutwshtFSIQ7OmGDifIDLU3Kvcy19s5sf2y+9w5QOjhN2dSp w5Y7d5krsSnMBx67mh4liLVal0awAqOTrRK
aARw7ekEIF6aVE/vgelKVAmt+FL7TEpu9sp8l5ki/+pFerlTJ+N 3DytPWNQLbDnUBiQiwdg3A0bwLcPnOU2ysu
BMmoceKjjYIuMNzcWAs6H3Rm7ERwl88EoVhNakBlSASlGg32Zd0 br+9xqFPwnOTkh8e5j+pOP4BFPtYs0rL79T
s4Gs/5CkoRSDV4/Y144LaZ2HTXsvYH+6D0mSWSZ4vElI7UwgPDI e6bEnZHdLwHFt02PG4Rl0WfjsZ6/WyK45rb
Znd534So76fehGeUinQH0W1PRQYIqE=</CipherValue>
 </CipherData>
 </EncryptedData>
 <ds:Signature xmlns:ds="http://www.w3.org/ 2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"></ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http: //www.w3.org/2000/09/xmldsig#hmac-
sha1"></ds:SignatureMethod>
 <ds :Reference URI="#Body-2-5db1a984d58eeca6d5a5ffa38f66665b">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>v6Y+HypefqIX6+t+G P0ByhfgUWE=</ds:DigestValue>
 </ds:Reference>
 < ds:Reference URI="#Timestamp-3-734e71731195ce05d607e2234c873b14">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>5NfzRwAQ/JSaU4WJf c5QROillL0=</ds:DigestValue>
 </ds:Reference>
 < ds:Reference URI="#UsernameToken-4-88a798d55fc9ed6fccf5819f658edf6e">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>4sY85e+nxse6LVM9O 8jHz6mx010=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>oLOm80C+kANcANkDAeas YlKv/38=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>

 < wsse:Reference URI="#DerivedKey-Sig-1-
aea7c649c407516859d9ec35501478a1"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </env:Header>
 <env:Body xmlns:wsu="http://docs.oasis-open.org/ wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="Body-2-5db1a984d58eeca6d5a5ffa38f66665b">
 <ns0:MoneyOrderReq xmlns:tns="urn:Sun:Michael :Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-21T22:00:36.812Z< /tns:dateTime>
 <tns:seq>11</tns:seq>
 <tns:total>1000</tns:total>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns:cus tomerName>
 </tns:SenderDetails>
 <tns:CreditCardDetails>
 <tns:cardType>American Express</tns:car dType>
 <tns:nameOnCard>Jan Kowalski</tns:nameO nCard>
 <tns:cardNumber>1111-111111-111111</tns :cardNumber>
 <tns:securityCode>1111</tns:securityCod e>
 <tns:validUntil>10/12</tns:validUntil>
 </tns:CreditCardDetails>
 <tns:ReceipientDetails>
 <tns:familyName>Smith</tns:familyName>
 <tns:streetAddress>33 Berry Street</tns :streetAddress>
 <tns:cityTown>North Sydney</tns:cityTow n>
 <tns:stateProvince>NSW</tns:stateProvin ce>
 <tns:postalCode>2060</tns:postalCode>
 <tns:country>Australia</tns:country>
 </tns:ReceipientDetails>
 </ns0:MoneyOrderReq>
 </env:Body></env:Envelope

There is a great deal to this markup. I will not go into the details. There is material
available on XML Encryption and XML Digital Signatures, not to mention the
OASIS standards which dictate how the WS-Security markup is constructed and how
it looks like. Notable, in bold and italics, are references to the parts of the SOAP
Request which receive “special attention”. For example the soap:body has a wsu:Id
attribute added. This attribute associates a unique ID with this part of the message.
Scanning up from that spot in the listing we get to the “ds:Reference URI="#Body-2-

5db1a984d58eeca6d5a5ffa38f66665b" ”, nested within the “ds:Signature” tag. This
particular tag specifies that the document element identified with this identifier
(soap:body in this case) is one of the elements that has been signed. Scanning through
ds:Reference tags allows us to discern that Timestamp Token and Username Token
are also signed. Notice that where we can see the Timestamp Token further up in the
message we cannot see the Username Token, This is because it is encrypted as
dictated by the “Require Encrypted UsernameToken Authentication” policy assertion.
Rest easy, it dwells somewhere inside the <EncryptedData>…</EncryptedData > tag.
Note that the soap:body, and all it contains, is plainly visible. We only require
signature over the body, not encryption. Note, too, that soap:body markup was
modified by the addition of wsu:Id attribute and the related namespace definition.

Let’s briefly look at the SOAP Response returned from the Gateway. Figure 13-20
shows the response.

Figure 13-20 Service response
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/xml;charset=utf-8
Content-Length: 1091

Date: Sat, 21 Feb 2009 21:59:30 GMT

<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://do cs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut ility-1.0.xsd" actor="secure_span"
env:mustUnderstand="1">
 <wsu:Timestamp>
 <wsu:Created>2009-02-21T21:59:30.157221 331Z</wsu:Created>
 <wsu:Expires>2009-02-21T22:04:30.157Z</ wsu:Expires>
 </wsu:Timestamp>
 </wsse:Security>
 </env:Header>
 <env:Body>
 <ns0:MoneyOrderRes xmlns:tns="urn:Sun:Michael :Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-21T22:00:36.812Z< /tns:dateTime>
 <tns:seq>11</tns:seq>
 <tns:total>1000</tns:total>
 <tns:orderStatus>true</tns:orderStatus>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns:cus tomerName>
 </tns:SenderDetails>
 </ns0:MoneyOrderRes>
 </env:Body></env:Envelope>

Note that a soap:header with an unsigned wsu:Timestamp was added by the Gateway.
We could look at that header to see if the message is a reply message (timestamp
expired) but without a valid digital signature we cannot tell whether the timestamp
was tampered with, so we cannot trust the timestamp anyway.

So much for the Request-modifying policy. Let’s now look at the response, which
may be just as important as the request and my require signing. Let’s add a “Sign
Response Element” assertion after the “Route to” assertion, that is after the request
was sent to the back-end service and the response is received from it. We would like
to sign the Timestamp token to detect reply attacks and to sign the whole response.
Let’s drag the ”Add Signed Timestamp to Response” and the “Sign Response
Element” assertions from the “XML Security” node tree onto the Policy editor
canvas, then click the “Save and Activate” button. Figure 13-21 illustrates the policy.

Figure 13-21 Signing assertions for the response

Let’s submit a JMS message and observe the request and the response in the TCP
Mon window and in the Recent Message Traffic window.

Note the policy update in the Recent Message Traffic window, Figure 13-22.

Figure 13-22 Updated policy at the VPN Client

Note the signed response which includes the signed Timestamp Token, Figure 13-22.

Figure 13-23 Signed response from the VPN Client Recent Message Traffic window
Server: Apache-Coyote/1.1
Content-Type: text/xml;charset=utf-8
Content-Length: 4862
Date: Sun, 22 Feb 2009 02:10:58 GMT

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
 xmlns:env="http://schemas.xmlsoap.org/soap/enve lope/"
 xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrd er"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <wsse:Security actor="secure_span" env:must Understand="1"
 xmlns:wsse="http://docs.oasis-open.org/ wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.o asis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">
 < wsu:Timestamp wsu:Id="Timestamp-3-d39ecea4b4999317d2f906b66dcdf373">
 <wsu:Created>2009-02-22T02:10:58.81 6630754Z</wsu:Created>
 <wsu:Expires>2009-02-22T02:15:58.81 6Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis-ope n.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.o rg/wss/2004/01/oasis-200401-wss-
x509-token-profile-1.0#X509v3" wsu:Id="BinarySecuri tyToken-0-
8b6a587696215983bef66b2181607998">MIICFjCCAX+gAwIBA gIIAIhey9DpmxQwDQYJKoZIhvcNAQEFBQAw
HzEdMBsGA1UEAwwUcm9vdC5zc2cuYXVzLnN1bi5jb20wHhcNMDkwMjE3MTQzNDM0WhcNMTEwMjE3MTQ0NDM0Wj
AaMRgwFgYDVQQDDA9zc2cuYXVzLnN1bi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAJMsd30S24w+
IKgDIpA3liwG+gjwKlV5I5PyvzbtoELVu8jFdhGUoeqv6/i5NjY kFZdhkXrV8J4pCWJJ6yF+jaicoBH3AhXjEf
Ul7xcFKMrXtTq5AFt74ksFVn2Aet8Tbt49ctvzFLnHgDNqPUhtr SSmINXKRVARQ/V9An+4WgovAgMBAAGjYDBe
MAwGA1UdEwEB/wQCMAAwDgYDVR0PAQH/BAQDAgXgMB0GA1UdDgQWBBQjMiqQNEcOo7Jxbpjl8vekmL/pTjAfBg
NVHSMEGDAWgBTLSXPwBjWtZ+uHPxe1vZoL9rospjANBgkqhkiG9w0BAQUFAAOBgQB7rkS45X6rwC8IRAQK9try
+by4C6XID2ZsUX+KXYCcUpWwEHCSVo/Z9+JBHdIkPaeWBMB1zilIXguXYwZSNpSmbMFXivBzNDnOqoyhfBK3Tn
5/LdKGNdBJrg4lfZH1Ww4k814fsZ+LZPsNCv5DjgxfPSs/kNWPF c7WkaiqWylxbA==</wsse:BinarySecurit
yToken>
 <wssc:DerivedKeyToken

wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1"
 wsu:Id="DerivedKey-Sig-1-ff0125610c 14fba9d6cb029757007283"
xmlns:wssc="http://schemas.xmlsoap.org/ws/2004/04/s c">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType=" http://docs.oasis-
open.org/wss/oasis-wss-soap-message-security-
1.1#EncryptedKeySHA1">ltjdYTuqK36yOwLJjtcGTpYeQq8=< /wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation >
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>Zg6TEFsTmwiig7Cxj+/ctA= =</wsse:Nonce>
 </wssc:DerivedKeyToken>
 <ds:Signature xmlns:ds="http://www.w3.o rg/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-s ha1"/>
 < ds:Reference URI="#Body-2-e73e82aaf3dfff2bdb9555ee958d5bd5">
 <ds:Transforms>

 <ds:Transform Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/ >
 <ds:DigestValue>o2eT8i8BoKb drHyt2nXYIfGv5ck=</ds:DigestValue>
 </ds:Reference>
 <ds :Reference URI="#Timestamp-3-d39ecea4b4999317d2f906b66dcdf373">
 <ds:Transforms>
 <ds:Transform Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/ >
 <ds:DigestValue>69tXhPwfJLL G9znuyFUAxJV6hEg=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#RelatesTo-4 -13cab008f1a75678b3f4465b1d3b222f">
 <ds:Transforms>
 <ds:Transform Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/ >
 <ds:DigestValue>wXIrqag1sHX DP32cOXuERXpTJAQ=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>2znrlFjqL5KS6+kv K9D7eOCNoTY=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference
 URI="#DerivedKey-Sig-1- ff0125610c14fba9d6cb029757007283"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 <L7a:RelatesTo
 wsu:Id="RelatesTo-4-13cab008f1a75678b3f 4465b1d3b222f"
 xmlns:L7a="http://www.layer7tech.com/ws /addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd">http://www.layer7tech.com/uuid/2fc26406f98 914b9fdb2738010a4e3d7</L7a:RelatesT
o>
 </env:Header>
 <env:Body wsu:Id="Body-2-e73e82aaf3dfff2bdb9555ee958d5bd5"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd">
 <ns0:MoneyOrderRes xmlns:tns="urn:Sun:Micha el:Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-22T02:11:12.9 37Z</tns:dateTime>
 <tns:seq>44</tns:seq>
 <tns:total>1000</tns:total>
 <tns:orderStatus>true</tns:orderSta tus>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns :customerName>
 </tns:SenderDetails>
 </ns0:MoneyOrderRes>
 </env:Body>
</env:Envelope>

Note the ds:Reference URI values showing the parts of the message that were
included in the signature, and the wsu:Id attributes that attach unique IDs to these
parts of the message. Now the Timestamp Token can be trusted if the digital signature
is valid.

Note that both the request and the response are conveyed as plaintext. Anyone,
snooping on the wire, can see what the credit card information is and what the order
status is. We have not been using explicit encryption of the message body up to this
point.

Note how much markup gets added to each message to satisfy these kinds of non-
functional requirements.

13.9 Encryption
Digital signatures are there to protect message integrity (make sure the message has
not been altered in transit) and to convey authenticity of the sender, assumed to be the
same as the signer of the message (only the specific signer could have signed the
message).

As noted before, the message body is still transmitted in the clear. Given that the
request conveys credit card information it would probably be a good idea to protect
this information from eavesdroppers. To do this we can encrypt the message.

Let’s add “Encrypt Request Element” to the policy just before the “Route to”
assertion and “Encrypt Response Element” at the end of the policy, Figure 13-24.

Figure 13-24 Add Encryption policy assertions

The reason we are adding encryption after signing is because the assertions are
processed in order and their effect is cumulative. It makes sense to encrypt signed
message rather then the sign encrypted message, though there may be circumstances
where signing after encryption is appropriate. Let’s “Save and Activate”, submit a test
message and observe the messages exchanged between the VPN Client, which applies
security to the request and strips security form the response, and the Gateway, which
processes security of the request and decorates the response according to the security
policy.

As before, the policy was updated at the VPN Client, Figure 13-25. The client now
knows how to decorate the request and how to process the response.

Figure 13-25 Updated VPN Client policy

The request, leaving the client and arriving at the Gateway, now has encrypted
sosap:body, Figure 13-26.

Figure 13-26 Signed and Encrypted Request
<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://do cs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut ility-1.0.xsd" actor="secure_span"
env:mustUnderstand="1">
 <wsu:Timestamp wsu:Id="Timestamp-3-a8029d1 e21ee34605c3ca4404f239504">
 <wsu:Created>2009-02-22T03:12:57.869403 078Z</wsu:Created>
 <wsu:Expires>2009-02-22T03:17:57.869Z</ wsu:Expires>
 </wsu:Timestamp>
 <xenc:EncryptedKey xmlns:xenc="http://www. w3.org/2001/04/xmlenc#"
Id="EncryptedKey-0-e3c890e9f648982de5f6d375967129c7 ">
 <xenc:EncryptionMethod Algorithm="http: //www.w3.org/2001/04/xmlenc#rsa-
1_5"></xenc:EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3 .org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier EncodingType= "http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message- security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-x509-token-profile-
1.0#X509SubjectKeyIdentifier">IzIqkDRHDqOycW6Y5fL3p Ji/6U4=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>aGsrdYSj6E1LLhQ9oZO1uphxZ9v06fdLn Lb3GwyJIApYE5hqjMiv63T3aZ633KLU28Av
pk1m6A8btUqLBOm5wB0+jpzrbqT1+tJjDzkCEBnNaG6tKOYO8sP YgA3YjzpwrTaDGXE1BRiunLZL2QqjgCeqRL
mutDb+8j4KwjatTjQ=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedKey>
 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Sig-1-2fee7bc234c4140a6305d0c0fe 89e115"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#EncryptedKey-0 -e3c890e9f648982de5f6d375967129c7"
ValueType="http://docs.oasis-open.org/wss/oasis-wss -soap-message-security-
1.1#EncryptedKeySHA1"></wsse:Reference>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>INay0bvIBPu8OaxkIfHEFg==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Enc-6-4c458bc9cc36bdb7a2583f0cc5 134edc"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#EncryptedKey-0 -e3c890e9f648982de5f6d375967129c7"
ValueType="http://docs.oasis-open.org/wss/oasis-wss -soap-message-security-
1.1#EncryptedKey"></wsse:Reference>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>djCSWD1zEoe8piE4EL0bzw==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <xenc:ReferenceList xmlns:xenc="http://www .w3.org/2001/04/xmlenc#">
 <xenc:DataReference URI="#Body-7-
407af680717c88917a1e521995f9ff63"></xenc:DataRefere nce>
 <xenc:DataReference URI="#EncryptedUser nameToken-8-
a56260c6ae446d13cd9617b934208f5f"></xenc:DataRefere nce>
 </xenc:ReferenceList>
 <EncryptedData xmlns="http://www.w3.org/20 01/04/xmlenc#"
Id="EncryptedUsernameToken-8-a56260c6ae446d13cd9617 b934208f5f"
Type="http://www.w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="http://www .w3.org/2001/04/xmlenc#aes128-
cbc"></EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3 .org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#DerivedKey- Enc-6-
4c458bc9cc36bdb7a2583f0cc5134edc"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>

 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <CipherData>

<CipherValue>YLR5o1mfxo1rgHopdObPs3HgU0WLL3/dAX7bNS m/ICXp3nxyIzqQr2jQUO+3FH20YFxE20KIm
YlajlxSZqknqlxsJwIKd53PbdRxR5uvcYzC+/D0iRRlE8lR3o+l SdZaW+k3eXrWLM84cx4roLiZzSvYln35GHD
w/NLDftD6Id+ryvUzrN4zs6KpWvAbeT2oQxdrmHOZrDT4sMAQ1l ptQv8Uz9u4iyQazWaumuJPNfLYz8si0lQW8
6N4zcvvAKzw6W/VWFkbA1ztHqvdxAkeVtzhtNTCu65Lwy9aHGg2 EWPOFQ0hdZy7AhV5RvM/h24xxfoo5VI7pp/
rK5SJYdBMg0ymY4UInfD55Lh27xKRpbbCGA0JipR56trpY6YZRt H+f1EGR/E6t3BHikfdqBuMLcBOkTfo8pXXN
Lh+MztAHcsqBVfFIzY4iUjlyPO/C1cUeqoHCWp1BtfvWest9jfY vz9g2eEMJ21RwQIYeQUE/8pnZL2X/vX9x5C
2xSFF93cH6SDKBv7ysfP+T2KD23uqMIyXJPBQJZFu1nuB2sRxpg hBtDD4Aif5TbFqH3lXbs/I6qgjXjX+eZnSl
tfW6TsnQ2W4i9aIZSpWl5maLnKi7TE=</CipherValue>
 </CipherData>
 </EncryptedData>
 <ds:Signature xmlns:ds="http://www.w3.org/ 2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"></ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http: //www.w3.org/2000/09/xmldsig#hmac-
sha1"></ds:SignatureMethod>
 <ds:Reference URI="#Body-2-1a7557683 9089d6f506d869e3e2795ad">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>ZLlSXFCjztNK3+gKj 8oGzPtfIIM=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#Timestamp-3-a802 9d1e21ee34605c3ca4404f239504">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>mLqHRZVnxm5kmJqnx gCA8dfRExk=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#UsernameToken-4- b20548729ac444a733c9fcab804e2b4c">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>TBNbt7YG7yAJVhF0f DVJDI2Nouo=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#MessageID-5-14f4 5cb1e26805d106b5122a8d181911">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>C4HTRIwGd+dSe3CJE UABxKCkU+g=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>2bHgqyl4aIdqX4lbJ4Y3 Vqmxm9E=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#DerivedKey- Sig-1-
2fee7bc234c4140a6305d0c0fe89e115"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 <L7a:MessageID xmlns:L7a="http://www.layer7te ch.com/ws/addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd" wsu:Id="MessageID-5-
14f45cb1e26805d106b5122a8d181911">http://www.layer7 tech.com/uuid/758de6e6fef32f106e7c3
0c5b1ec415b</L7a:MessageID>
 </env:Header>
 <env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="Body-2-1a75576839089d6f506d869e3e2795ad">
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#" Id="Body-7-
407af680717c88917a1e521995f9ff63" Type="http://www.w3.org/2001/04/xmlenc#Content">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-
cbc"></EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:Reference URI="#DerivedKey-Enc-6-
4c458bc9cc36bdb7a2583f0cc5134edc"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/security/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <CipherData>

<CipherValue>Nccyfx/m2LRzWTDM04KvbCayfmsdzlmireCE9NDUN3gRF0rabaoFIX8uI5sk/5u52880HSYLa
AWjQPbU9BEWxH0lA2PnTTAzwTDn0nHzt9iw+19hNDV2LzQVkLuL9SwQ3Lag8l1bR78PSwn6yP6iuj3IElcgSZ2
EXx4OjBzCL5oGyEZzHgvaZ5s7W5UrRi7dFb+C3TdUa3kciNDIrvcVH0xFY7mSBSl1ul5QC+oIw2US1K9rzyHY4
s77uHU+QJx2sLqtnVScCMqxuaBb0ZBVKjf8qwTwUYY5kDBoSP2a20lGmq29UxqtKr8zfLyNEInTnxs2xaYW3B2
Z/3Z8++xu81jAdSHUNl6yp/U8cBADhbvlHum+ESz/Z3zCSCKRnigkxbdbKNRLld3QOpDD81O//aYLxr9myDSKE
o2ocdGgcXGaVCz2KmbPVlxXNF0OOEMXWOi5TsQnA14gKG0Q3pcl/Q1i1l1IpmYzi786Yp33RNdCkMLGtEvgIDD
KoqNj6HEdLZeJYijnMCjJyFFX4kcoOa96nLOkTvvFOIsPF5CMmkL8f2hUaTbYQn2IyQgoxNeI0H9Hz3WxM6fjC
jJ0YAJTcqKp7AZwonXGvPe6UckGVxElMQ8/jhk7LT1YLiqEJHralQ62dJ5Zae0tc6V+GtzTozVUtzy8gGhM/De
7QYbz6OaFQztBaVJ9Vzf81dB08iAM6hUIT9OgmoxKLFNdDyINf21mEZLr1Xl1ZqB9f23nhjTawzRQYn5In/Ool
MbMqSw+AY29nKuZFUbza5XSbg502OgkAhpKuWkzfoSWDuGtA4oFUfvI0Xo0JBjYIL4GrfW9VHUv8o5uQ7Y0AcT
yetH7ak2d/zlKorznDRl7nQkzZBr2k5szGYMmQHqfue94FH8B5sVWT+b4KAfXySnWCsfQTidetE+7x79Mqiq4q
o0qHJPCpBJh1WiYHxLd4vvVNPt8keZVMcVxCV1cWeNguNFckAn2oz1G9tEfvAZ7LYJln4BjH0eWa6l/p8Sn2ZT
Dtc1S3b+1fG5DN6I170XEqq4Hfx9m7APJft7PqVMC/yfJEwHC+KIMcapeSw5ys1bq02NIs0FJibhr9Grvp58v2
Ep9d0wPsOdzV0XK4G3IgxQznrlaPsG8ZlntYGvmXm2WcDcMUXmqrWFLeg0MAzg8Pukf3i1UfZiJANM4vWD8zEW
lrBc=</CipherValue>
 </CipherData>
 </EncryptedData>
 </env:Body></env:Envelope

Note that the content of the soap:Body element was replaced with the EncrypetdData
element. Event with the base64-encoded encrypted data in the soap:Body, which
makes the soap:Body 30% larger, the soap:Body is now less then 1/6th of the request
size. WS-Security adds a tremendous amount of overhead both in terms of the on-the-
wire data and in terms of processing resources required to decorate the message and to
process WS-Security-mandated markup. ECO-friendly this is not.

Let’s take a look at the Response message, Figure 13-27.

Figure 13-27 Response message
<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope /"
xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrder"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis- open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://do cs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut ility-1.0.xsd" actor="secure_span"
env:mustUnderstand="1">
 <wsu:Timestamp wsu:Id="Timestamp-3-2d4855e 7faabb02d141fcab66182496c">
 <wsu:Created>2009-02-22T03:12:57.977813 322Z</wsu:Created>
 <wsu:Expires>2009-02-22T03:17:57.977Z</ wsu:Expires>
 </wsu:Timestamp>
 <wsse:BinarySecurityToken EncodingType="ht tp://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message- security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-x509-token-profile-
1.0#X509v3" wsu:Id="BinarySecurityToken-0-
b7075f001bd857f17101e337d95bea08">MIICFjCCAX+gAwIBA gIIAIhey9DpmxQwDQYJKoZIhvcNAQEFBQAw
HzEdMBsGA1UEAwwUcm9vdC5zc2cuYXVzLnN1bi5jb20wHhcNMDkwMjE3MTQzNDM0WhcNMTEwMjE3MTQ0NDM0Wj
AaMRgwFgYDVQQDDA9zc2cuYXVzLnN1bi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAJMsd30S24w+
IKgDIpA3liwG+gjwKlV5I5PyvzbtoELVu8jFdhGUoeqv6/i5NjY kFZdhkXrV8J4pCWJJ6yF+jaicoBH3AhXjEf
Ul7xcFKMrXtTq5AFt74ksFVn2Aet8Tbt49ctvzFLnHgDNqPUhtr SSmINXKRVARQ/V9An+4WgovAgMBAAGjYDBe
MAwGA1UdEwEB/wQCMAAwDgYDVR0PAQH/BAQDAgXgMB0GA1UdDgQWBBQjMiqQNEcOo7Jxbpjl8vekmL/pTjAfBg
NVHSMEGDAWgBTLSXPwBjWtZ+uHPxe1vZoL9rospjANBgkqhkiG9w0BAQUFAAOBgQB7rkS45X6rwC8IRAQK9try
+by4C6XID2ZsUX+KXYCcUpWwEHCSVo/Z9+JBHdIkPaeWBMB1zilIXguXYwZSNpSmbMFXivBzNDnOqoyhfBK3Tn
5/LdKGNdBJrg4lfZH1Ww4k814fsZ+LZPsNCv5DjgxfPSs/kNWPF c7WkaiqWylxbA==</wsse:BinarySecurit
yToken>

 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Sig-1-3d1f7642ed2e35b8d16ee28994 c5803e"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http: //docs.oasis-open.org/wss/oasis-
wss-soap-message-security-
1.1#EncryptedKeySHA1">+DB5vPMbQE6c16F2s2Ugugnjs4E=< /wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>F6Oc+OSZ+Lv2SK27AUOPlg==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <wssc:DerivedKeyToken xmlns:wssc="http://s chemas.xmlsoap.org/ws/2004/04/sc"
wsu:Id="DerivedKey-Enc-5-9b8a940de8109092a4f7a3852c a3ede1"
wssc:Algorithm="http://schemas.xmlsoap.org/ws/2004/ 04/security/sc/dk/p_sha1">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http: //docs.oasis-open.org/wss/oasis-
wss-soap-message-security-
1.1#EncryptedKeySHA1">+DB5vPMbQE6c16F2s2Ugugnjs4E=< /wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 <wssc:Generation>0</wssc:Generation>
 <wssc:Length>16</wssc:Length>
 <wssc:Label>DerivedKey</wssc:Label>
 <wsse:Nonce>HyspdcQdokoQz1vXYvqHIw==</w sse:Nonce>
 </wssc:DerivedKeyToken>
 <xenc:ReferenceList xmlns:xenc="http://www .w3.org/2001/04/xmlenc#">
 <xenc:DataReference URI="#Body-6-
3aa8cac38960dfb513448c5714acb5a2"></xenc:DataRefere nce>
 </xenc:ReferenceList>
 <ds:Signature xmlns:ds="http://www.w3.org/ 2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm ="http://www.w3.org/2001/10/xml-
exc-c14n#"></ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http: //www.w3.org/2000/09/xmldsig#hmac-
sha1"></ds:SignatureMethod>
 <ds:Reference URI="#Body-2-4a11add2a ef920c8281fc81ead115e67">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>Fkm/cCRt9LaSCbSCm ZWZgl3WB9I=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#Timestamp-3-2d48 55e7faabb02d141fcab66182496c">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>xhXHXpPytbGttSp0u UYZAUhWpcs=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#RelatesTo-4-8c1e e4c1e306c3882c9383a4f7322635">
 <ds:Transforms>
 <ds:Transform Algorithm="http: //www.w3.org/2001/10/xml-exc-
c14n#"></ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod>
 <ds:DigestValue>WMUCqYBXzdMy3Q9BJ fHyLsgQZZE=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>fjaVFhOyldFJS/Pdi8Xk 1B6Lcng=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#DerivedKey- Sig-1-
3d1f7642ed2e35b8d16ee28994c5803e"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 <L7a:RelatesTo xmlns:L7a="http://www.layer7te ch.com/ws/addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd" wsu:Id="RelatesTo-4-

8c1ee4c1e306c3882c9383a4f7322635">http://www.layer7 tech.com/uuid/758de6e6fef32f106e7c3
0c5b1ec415b</L7a:RelatesTo>
 </env:Header>
 <env:Body xmlns:wsu="http://docs.oasis-open.org/ wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="Body-2-4a11add2 aef920c8281fc81ead115e67">
 <EncryptedData xmlns="http://www.w3.org/2001/ 04/xmlenc#" Id="Body-6-
3aa8cac38960dfb513448c5714acb5a2" Type="http://www. w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="http://www.w3 .org/2001/04/xmlenc#aes128-
cbc"></EncryptionMethod>
 <dsig:KeyInfo xmlns:dsig="http://www.w3.or g/2000/09/xmldsig#">
 <wsse:SecurityTokenReference xmlns:wsse ="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-se cext-1.0.xsd">
 <wsse:Reference URI="#DerivedKey-Enc -5-
9b8a940de8109092a4f7a3852ca3ede1"
ValueType="http://schemas.xmlsoap.org/ws/2004/04/se curity/sc/dk"></wsse:Reference>
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 <CipherData>

<CipherValue>z+Pzh7GNe2CqhJGz1u/k01mShYdYYYyrp69q32 Lk2IJCBnk9qxlsn9ZLp1BYe//WSVJ2K4GsQ
GqadH13XlfJOK5YRJ/jnSJ7ouz/yBldAB0LWS3Xo3FOonR70fRc z4RDZltjRunBu2ryDi06LfKZlQxzayqf6ty
HGH5oirvU8krKcNOeXTnPjPKMKlD/SU5e80lON4JjKF+OJpre6L gDS1kHgeUFPWpatcjLzNbX3APdbcATOpoxg
fl/hQc9/njuxJavnh8iTAL2fclUraPhh58PD/uKJaE2SZnjzAMi NRHW4RlELiZTqKkFrTVg0Ho50k42enoPmni
Jc0Pn6IUoss5SZSQ5T32x8JcXLYT58hAzL/shY3Vvwx0dqa0PTw rebJSzTurRAfYCsHoUUQHBxww/1Dbn2XawS
DD+8sOpBFFDYRV0plY16BXN6S/THTSOPYYQgve/RAtD+1qCDcZGfRDBp3AQBnAzNputze+uPaHjiuR75Wl5vqg
iEXuEFYss</CipherValue>
 </CipherData>
 </EncryptedData>
 </env:Body></env:Envelope>

The increase in size and complexity is even more glaring in the response, which when
undecorated is fairly small, Figure 13-28.

Figure 13-28 Undecorated Response
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:enc="http://schemas.xmlsoap.org /soap/encoding/"
 xmlns:env="http://schemas.xmlsoap.org/soap/enve lope/"
 xmlns:ns0="urn:Sun:Michael:Czapski:XSD:MoneyOrd er"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e">
 <env:Header>
 <L7a:RelatesTo
 wsu:Id="RelatesTo-4-8c1ee4c1e306c3882c9 383a4f7322635"
 xmlns:L7a="http://www.layer7tech.com/ws /addr"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd">http://www.layer7tech.com/uuid/758de6e6fef 32f106e7c30c5b1ec415b</L7a:RelatesT
o>
 </env:Header>
 <env:Body wsu:Id="Body-2-4a11add2aef920c8281fc8 1ead115e67"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/o asis-200401-wss-wssecurity-utility-
1.0.xsd">
 <ns0:MoneyOrderRes xmlns:tns="urn:Sun:Micha el:Czapski:XSD:MoneyOrder">
 <tns:OrderDetails>
 <tns:dateTime>2009-02-22T03:13:58.3 12Z</tns:dateTime>
 <tns:seq>12</tns:seq>
 <tns:total>1000</tns:total>
 <tns:orderStatus>true</tns:orderSta tus>
 </tns:OrderDetails>
 <tns:SenderDetails>
 <tns:customerName>Jan Kowalski</tns :customerName>
 </tns:SenderDetails>
 </ns0:MoneyOrderRes>
 </env:Body>
</env:Envelope>

Have you noticed the wsse:BinarySecurityToken tag and its base64-encoded content?

Let’s copy the entire base64-encoded text between the quotation marks from the
response message, create a new text document named cert.crt, paste the content of the

clipboard into this document, Figure 13-29, save the document and double-click the
document (on Windows) to open it.

Figure 13-29 Base64-encoded content of the BinarySecurityToken

The context of the token is the X.509 certificate of the signer of the message, the
ssg.aus.sun.com, in PEM format, Figure 13-30.

Figure 13-30 ssg certificate

The signer’s certificate is embedded in the message so that the recipient can confirm
authenticity of the message by verifying the digital signature. It is very nice of the
sender to include the certificate but secure installation would not trust this certificate
anyway but rather they would use their own copy of the sender’s certificate, obtained
out-of-band, to thwart potential man-in-the-middle attacks.

We cannot do the same to the request message because the binary security token,
which carries the base64-encoded certificate of the signer, was encrypted as part of
the Username Token and related tags.

13.10 Authentication
We already dealt with authentication in an oblique way by adding Encrypted
Username Token and HTTP BASIC Authentication assertions in the examples earlier.

There are a number of assertions which can be used to convey and require sender
authentication. Some notable ones, in the list in Figure 13-31, are HTTP Basic
Authentication (which is not rally a WS-Security-related method), WSS Username
Token Basic and the Encrypted Username Token (which are WS-Security tokens),
and WSS Signature which conveys authentication information using the properties of
the public cryptosystem key pairs (private keys are held by the owners, public keys
are embedded in X.509 certificates and can be used to verify digital signature
prepared using private keys).

Figure 13-31 Access Control assertions

Other assertions, like XPath Credentials, provide support for conveyance of
credentials using non-standard means, for example through embedding credential
information in XML message bodies.

Since some of the authentication assertions are used in policies elsewhere there will
be no additional example here.

14. Summary
In the Note I discussed web services security topics to set the context, discussed a
Java CAPS Repository-based web services solution, walked through creation of the
service provider and service consumer, configured the SecureSpan XML Gateway
and the SecureSpan VPN Client infrastructure and walked through a series of
iterations of policy creation and testing.

There is a great deal more to the SecureSpan XML Gateway. The discussion in this
Note merely introduces some of the kinds of solutions possible with the aid of a
gateway and mentions only some of the benefits of using a gateway-mediated web
services security solutions, as distinct form developer-mediated ones.

15. Appendices

15.1 Obtain the Layer 7SecureSpan XML Gateway
Layer 7 Technologies, http://www.layer7tech.com, the maker of the Layer 7
SecureSpan XML Gateway and associated software, offer a VMware image of the
SecureSpan XML Gateway for a time-limited trial. To request a trial license and
software download, go to http://www.layer7tech.com/xmltrial.html, register and wait
to be contacted.

Once you submitted your request, an acknowledgement similar to the one shown in
Figure 15-1 will appear.

Figure 15-1 Acknowledgement of trial request

Within a business day, or so, you will receive an email, similar to that shown in
Figure 15-2.

Figure 15-2 Example email follow up

Once you establish contact with a Layer 7 representative, you will be asked a few
questions intended to determine how best to satisfy your request. Depending on which
part of the World you live in you may be put in touch with a Layer 7 partner, who will
be expected to set you up with the download link and provide you a trial license for a
15 or 30 day trial, and perhaps assist you with the trial. If you eventually decide to
invest in the product, this Layer 7 partner will most likely be helping you out with the
planning and implementation.

When the trial request is processed you will receive an email much like the one shown
in Figure 15-3. The URL and credentials will be specific to you.

Figure 15-3Download and license link email

Following the link, and logging in with the credentials provided, will lead to a page
containing download links for the SecureSpan XML Gateway Appliance VMware
image, the SecureSpan XML Gateway Manager and product documentation.

Figure 15-4 SecureSpan XML Gateway trial download page

Note that the download page does not list the SecureSpan VPN Client, which will be
required to complete the end-to-end scenario discussed in this Note. I asked Layer 7
Support for the VPN Client distribution and the download page was modified to
include the links for the SecureSpan VPN Client and the Manual that goes with it.

If you don’t see the VPN Client then you will need to ask for it.

I encourage you to view the SecureSpan Overview presentation to get a good feel for
the purpose of the tool and the kinds of issues they are intended to address.

Unzip the archives to the convenient directories and get familiar with the instructions
in the “SSG_VMware_User_Manual.pdf”. See section 15.2, “Configure the
SecureSpan XML Gateway”, for a discussion and additional instructions.

15.2 Configure the SecureSpan XML Gateway
To use the VMware Image of the SecureSpan XML Gateway appliance you will need
a WMware Player, a VMware Workstation or a VMware Server. VMware Player,

downloadable from http://www.vmware.com/download/player/, is free to download
and use.

SecureSpan XML Gateway version 4.6.5-3, VMware Image distribution, comes as a
ZIP archive with the name of SSG_4.6.5-3_base_appliance_32bit.zip. You will need
on the order of 3Gb of disk space to unzip and start the appliance. The appliance
requires 768Mb of memory to be allocated to it so you will need at least 1.5Gb of real
memory in the Host.

Unzip the archive to a convenient directory and start the appliance by, on Windows,
double-clicking the SSG_32bit_VirtualAppliance_v46.5.vmx VMware configuration
file.

For these who care, the important bits of VMware configuration are shown in Figure
15-1.

Figure 15-5 Important VMware configuration settings
memsize = "768"
guestOS = "rhel4"
ethernet0.connectionType = "bridged"
scsi0:0.present = "TRUE"
scsi0:0.fileName = "SSG_32bit_VirtualAppliance_v46. 5.vmdk"

Consult instructions in the “SSG_VMware_User_Manual.pdf”, which was provided
as part of the trial download, to start and configure the Layer 7 SecureSpan XML
Gateway Appliance – see also notes below.

When you login as a ssgconfig or a root user you will be forced to change the
password. The password rules are fairly restrictive. I found that a password like
L7.App4y0u&me works for me.

On first boot I was asked whether I wish to remove the network adapter and, when I
said Yes, to configure a new network adapter, to which I said Yes as well. In effect,
by default the RedHat Linux distribution appears to be trying figure out what kind of
network interface the guest has and configure it.

Login as ssgconfig user and configure networking – option 1. When done reboot the
machine - option 5.

When running the option 1 network configuration I provided a FQDN of
ssg.aus.sun.com. I found that after reboot the hostname and FQDN were not correctly
configured and Option 2 did not work for me. This may or may not happen to you. I
fixed my problem by adding directive “domain” to the /etc/resolv.conf, specifying the
domain name I was using and getting rid of the “search” directive. Your mileage may
vary. At any rate, this is not something I can help with. If you cannot get the ssgconfig
to work you may need to contact Layer 7 support for assistance.

Login as ssgconfig user and run option 2.
When running option 2, SecureSpan Configuration Wizard, one is asked, at a point in
the process, to provide a root password – this does not seem to be the Unix root user’s

password. Pressing Enter without specifying root password worked for me. When
asked for a SSL Keystore password I provided “sslkey”

Reboot the appliance (option 5) when finished.

If you needed to modify your resolv.conf so that your domain name was properly
recognised, see earlier, you will need to repeat the process after running option 2
because the resolv.conf is re-generated so your changes got lost.

Once the appliance is up and running again you can perform a ping test using a web
browser. Start a web browser and enter the URL https://ssg:8443/ssg/ping
A security warning will show up the first time around. I used the Mozilla Firefox so
my warning looked like that shown in Figure 15-6.

Figure 15-6 Security warning in Mozilla Firefox

I created and exception. Once done, I was asked for a username and password (HTTP
BASIC Authentication). Having not created any users so far I provided “root” as the
username and Unix root’s password as the password. I received a blank page with the
words “503 Unlicensed”. This is not unexpected as I have not yet provided the license
key to the Gateway. At any rate, the gateway is up and talking to me, however rudely.

Login to the SecureSpan WebAdmin Console using a Web Browser with a URL like:
https://ssg:8443/ssg/webadmin. Provide admin as the username and password as
password. Once you are through the several security-related dialogue boxes you will
be told that there is no license installed, Figure 15-7, as is to be expected since it has
not been installed yet.

Figure 15-7 No license

Click Yes and follow the prompts to locate and install the license key XML file which
you should have received with your trial download links.

Figure 15-8 Click Install License

Figure 15-9 Acknowledge license installation

When done, the browser window will display the SecureSpan Manager Home page,
much as is shown in Figure 15-10.

Figure 15-10 SecureSpan Manager

Exit the browser and start it again. Connect again to the Gateway to start the Gateway
Manager. You will be asked to change your password from “password” to something
else. Beware, the password rules for this password are different form the password
rules used to set the root password on Unix. The password I suggested for the Unixs
root and ssgconfig accounts, L7.App4y0u&me, will not work because one of the rules
says “can’t have two or more the same consecutive characters”. I dropped one “p”
from the password and it worked so my Gateway Manager uses the password of
“L7.Ap4y0u&me”.

15.3 Install and Configure the SecureSpan VPN Client
We will have two cooperating “sites”. One site will use the SecureSpan XML
Gateway and the other site will use the SecureSpan VPN Client. Both sites could use
the Gateway but that would require more resources then my notebook can provide so
only one Gateway will be installed.

If you are on a Unix platform, which includes Linux platforms, have read of the
appropriate section in Chapter Six of the Installation and Maintenance Manual
(Appliance Edition).

You should have SecureSpan VPN Client distribution downloaded. I use the one for
Windows, which comes as a Windows Installer named “SecureSpan XML VPN
Client 4.6.5 Installer.exe”.

My environment for this Note is Microsoft Windows so anything I write about, that
has an OS dependency, pertains to Windows.

Start the installer in the usual Windows manner. Accept the License Agreement,
nominate the target directory, and click Install. You will be asked whether you would
like the VPN Client to run as a Windows Service – I chose to not install it as a
service.

When the installation is finished you will get an entry, in your programs list, pointing
to the SecureSpan XML VPN Client user interface. Figure 15-13 illustrates this.

Figure 15-11 SecureSpan XML VPN Client shortcut

Start the VPN Client. Nothing apparent will happen. The SecureSpan XML VPN
Client will show up in the System Tray, as shown in Figure 15-12.

Figure 15-12 VPN Client in System Tray

Click on the tray icon to make the UI appear, see Figure 15-13.

Figure 15-13 SecureSpan VPN Client UI

Click the New button.

Figure 15-14 Register new Gateway

Figure 15-15 Choose Trusted Gateway

Provide the gateway name/address as specified when you configured the SecureSpan
Gateway – best specify FQDN.

Figure 15-16 Provide Gateway Name/Address

You should see the gateway registered. If you have any other gateway, like I do,
select and delete it.

Figure 15-17 Gateway registered

We will configure the VPN Client in the most straight forward manner possible, with
just one Trusted Gateway Account, set as a default account.

Pull down the File Menu and click Properties. Gateway Account Properties Wizard,
open on General Tab, should appear. This is shown in Figure 15-16. Click on the
Identity Tab, provide username “admin” and password “password”, then check the
Save Password checkbox. Figure 15-18 illustrates this. If you have accessed the SSG
Manager a couple of times using the admin user, you will have been forced to change
the password. If this is what happened then provide the correct password here. Mine is
“L7.Ap4y0u&me”.

Figure 15-18 Configure Identity

Click on the Network Tab.

Take note of the “Proxy URL” – by default http://localhost:7070/gatewayn, where
gatewayn is the name in the proxy column in the list of gateway accounts in the
General Tab.

Take note of the standard gateway ports, by default 8080 and 8443. Figure 15-19
highlights the items of specific interest.

Figure 15-19 Network Tab – default setting

Switch to XML VPN Client Policy Tab and uncheck the “Use SSL by Default”
checkbox, see Figure 15-20. We would like to snoop on the wire.

Figure 15-20 Uncheck the “Use SSL by Default” checkbox

When done, click OK to close the properties.
You can exit from the VPN Client UI. When you exit the VPN Client it will disappear
from the System Tray.

15.4 Install certificates for the VPN Client and the Gateway
All configurations that use encryption or digital signing require the use of X.509
Certificates and Private Key Keystores. In this section we will add a Certification
Authority (CA) Certificate and two End-Use Certificates/Key Stores for use in
examples. Note that all of these objects are objects I created and should not be used
for anything except experimentation.

The zip archive, mcz_ssg_certs_and_keys.zip, contains a number of objects, some of
which are certificates and some of which are keystores, see Figure 15-21. The archive
is available for download from http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/mcz_ssg_certs_and_keys.zip/details.

Figure 15-21 Contents of the archive
7-Zip 4.42 Copyright (c) 1999-2006 Igor Pavlov 20 06-05-14

Listing archive: mcz_ssg_certs_and_keys.zip

 Date Time Attr Size Compressed Name
------------------- ----- ------------ ------------ ------------
2009-02-21 09:46:18A 441 269 ssgcli\ssgcli.conf
2009-02-21 09:46:46A 870 707 ssgcli\ssgcli.der.crt
2009-02-21 09:46:46A 1658 1652
ssgcli\ssgcli.eXchange.pkcs12.keystore.p12
2009-02-21 09:47:14A 2351 1800 ssgcli\ssgcli.jks.keystore
2009-02-21 09:46:28A 1233 874 ssgcli\ssgcli.pem.cer
2009-02-21 09:46:48A 1800 1293 ssgcli\ssgcli.pem.cer.stunnel
2009-02-21 09:46:28A 1233 874 ssgcli\ssgcli.pem.crt
2009-02-21 09:46:18A 655 485 ssgcli\ssgcli.pem.csr
2009-02-21 09:46:18A 561 448 ssgcli\ssgcli.pem.private.key
2009-02-21 09:46:44A 3615 2045 ssgcli\ssgcli.pem2.crt
2009-02-21 09:46:46A 2684 2678 ssgcli\ssgcli.pkcs12.keystore.p12
2009-02-21 09:47:14 D.... 0 0 ssgcli
2009-02-21 09:45:08A 441 271 ssgtwy\ssgtwy.conf
2009-02-21 09:45:32A 870 705 ssgtwy\ssgtwy.der.crt
2009-02-21 09:45:38A 1658 1654
ssgtwy\ssgtwy.eXchange.pkcs12.keystore.p12
2009-02-21 09:46:00A 2351 1799 ssgtwy\ssgtwy.jks.keystore
2009-02-21 09:45:24A 1233 876 ssgtwy\ssgtwy.pem.cer

2009-02-21 09:45:38A 1800 1294 ssgtwy\ssgtwy.pem.cer.stunnel
2009-02-21 09:45:24A 1233 876 ssgtwy\ssgtwy.pem.crt
2009-02-21 09:45:10A 655 484 ssgtwy\ssgtwy.pem.csr
2009-02-21 09:45:10A 561 447 ssgtwy\ssgtwy.pem.private.key
2009-02-21 09:45:32A 3615 2044 ssgtwy\ssgtwy.pem2.crt
2009-02-21 09:45:34A 2684 2682 ssgtwy\ssgtwy.pkcs12.keystore.p12
2009-02-21 09:46:00 D.... 0 0 ssgtwy
2006-12-19 21:43:44A 1399 1028 DemoCA.pem.crt
2006-12-19 21:43:44A 991 781 DemoCA.der.crt
2006-12-19 21:43:44A 4236 2363 DemoCA.pem2.crt
------------------- ----- ------------ ------------ ------------
 40828 30429 27 files

Objects with the file extensions of “cer”, “crt” and “crt.stunnel” are X.509
Certificates. Objects with the file extensions of “pkcs12.keystore.p12” and
“jks.keystore” are keystores – in PKCS#12 and Java KeyStore formats respectively.
Keystores are password-protected. Passwords are “ssgtwyssgtwy” for
“ssgtwy.pkcs12.keystore.p12” and “ssgtwy.jks.keystore”, and “ssgclissgcli” for
“ssgcli.pkcs12.keystore.p12” and “ssgcli.jks.keystore”. Both keystore types contain
the same private key. The reason there are two is that some cryptographic tools use
the PKCS#12 keystores and others use the JKS keystores. I have a set of scripts I
developed years ago, which produce all the different forms at in the same session so it
is more trouble for me to remove the ones I don’t use then to keep all of them.

The Certification Authority (CA) certificate, used to sign the end-use certificates for
ssgtwy and ssgcli, is DemoCA. DemoCA’s certificate is in the DemoCA.*.crt. All
pem, pem2 and der are different encodings of the same certificate. Use whichever
comes first. PEM format is a Base64-encoded version of the DER format. If asked to
paste the certificate, paste the content of the PEM format certificate.

Unzip the content of the archive to a convenient directory.

15.4.1 Add Certificates and Keys to the Gateway store
Pull down the Manage menu of the SSG Manager and choose Manage Certificates.
Figure 15-22 illustrates this.

Figure 15-22 Activate the Manage->Manage Certificates functionality

Click the Add button, select the Import from a File option and Browse to where the
certificates are, see Figure 15-23.

Figure 15-23 Start the certificate import process

Pick DemoCA.crt, click Open, Figure 15-24, and click Next.

Figure 15-24 Pick the CA certificate

The Certificate Details panel will appear, Figure 15-25. Click Next.

Figure 15-25 Certificate details

Check the Signing Certificates … checkboxes and click Finish, see Figure 15-26.

Figure 15-26 Select certificate usage options

Repeat the steps to import the “ssgcli” certificate, the certificate that will represent the
SecureSpan VPN Client. Select the other three usages as shown in Figure 15-27.

Figure 15-27 Select usages for the VPN Client certificate

The “ssgcli” certificate will be used by the Gateway to validate ssgcli’s digital
signatures over messages received from it, and to encrypt messages bound for the
ssgcli, the VPN Client. The DemoCA Certificate is used to validate certificates which
were issued and signed by the DemoCA. Both ssgcli and ssgtwy certificates were
issued by the DemoCA. Finish import by clicking the close button, Figure 15-28.

Figure 15-28 List of certificates in the Gateway’s store

Now let’s add the “ssgtwy” private key, residing in the PKCS#12 keystore. The
ssgtwy private key will be used by the Gateway to digitally sign outbound messages
and to decrypt inbound messages.

In the SSG Manager pull down the Manage drop down and select Manage Private
Keys. Click the Import button, locate the ssgtwy.pkcs12.keystore.p12 file, select it,
enter the password “ssgwtyssgtwy”, enter “ssgtwy” as an alias, click OK and click
Close. Figure 15-29 shows the new private key imported into the Gateway store.

Figure 15-29 Begin Import of the ssgtwy private key

The Gateway now has the certificate that will be used by the VPN Client, the private
key the Gateway will use and the CA Certificate, which will be used to validate
certificates issued by it.

15.4.2 Add Private Key and Certificate to the VPN Client store
Switch to the VPN Client UI. Click Properties, switch to Identity Tab and click the
View Client Certificate button, click the Import Client Certificate button, Figure
15-30.

Figure 15-30 Start the Import certificate wizard

Locate the PKCS#12 Keystore, which is what the wizard is actually looking for,
select it and click the Import Certificate button, Figure 15-31. There is a bit of
confusion of terms here. PKCS#12 Keystore, containing the private key, is a different
object from the X.509 Certificate, but never mind. The PKCS#12 keystore contains
both the certificate and its corresponding private key.

Figure 15-31 Select and import the PKCS#12 Keystore

Specify “ssgclissgcli” for the password and click OK. Successful import will be
conferment, see Figure 15-32.

Figure 15-32 Successful import of the Keystore

Done. The VPN Client now has cryptographic objects, some of which it will need for
digital signing of outbound messages and decryption of inbound messages.

15.5 Create Java CAPS Environment
Create a Java CAPS Environment, WSSecGateEnv, as illustrated in Figures Figure
15-33 through Figure 15-36.

Figure 15-33 Create Java CAPS Environment

Add a Logical Host. Add a Sun Java System Application Server and a Sun Java
System Message Queue. See Figure 15-34 for the menu options to use.

Figure 15-34 Add an Application Server to the Environment’s Logical Host.

Set the properties for both to provide authentication credentials, host names and port
numbers that reflect your environment. When configuring properties for the JMS
Message Server, provide the Sun JMQ Server URL that includes the redelivery
handling incantation. For me the URL looks like that shown in Figure 15-35.

Figure 15-35 JMQ URL with redelivery handling incantation

mq://localhost:37676/?JMSJCA.redeliveryhandling=1:m ove(same:$DLQ)

Add a new UDDI External System container and modify its properties to reflect your
environment. Part of the process is illustrated in Figure 15-36.

Figure 15-36 Add new UDDI External System

We will add and configure Web Services Client and Server External System
containers as we go along in solution development.

15.6 Obtain and use the Apache TCP Mon
One of the issues with SOAP decoration, which is what MTOM and others do, is that
the on-the-wire message looks different from what the sending and the receiving
applications see. It is very hard to make the application server and the client log what
they are sending and receiving and even then there is a good chance that what is
logged differs from what is sent / received. To see what is really exchanged a wire
snooper of some sort is required.

Apache TCP Mon, see http://ws.apache.org/commons/tcpmon/index.html, can be used
as a convenient proxy to view the on-the-wire messages exchanged between web
services invokers and providers. Download the TCP Mon from the site. Tutorial at
http://ws.apache.org/commons/tcpmon/tcpmontutorial.html has a nice explanation of
the usage modes.

To start the TCP Mon from the command line in a direct intermediary mode with
specific host and port configuration one could say (on Windows):

C:> cd C:\tools\tcpmon-1.0-bin\build
C:> tcpmon.bat 38081 localhost 38080

This will start the TCP Mon with the listening port 38081, relaying messages to port
38080 on localhost.

C:> cd C:\tools\tcpmon-1.0-bin\build
C:> tcpmon.bat 8888

This will start the TCP Mon as a proxy listening on port 8888. One needs to configure
one’s client to use the proxy.

