
Sending Secure Electronic Mail (S/MIME)
in Java (CAPS) the Easy Way

Michael.W.Czapski@gmail.com
May, 2009

Table of Contents
Introduction..1
SecMail Class Library and Pre-requisites Download ..1
Setting up Cryptographic Objects..2
(Re) Configuring sample Java Sender ...4
Java CAPS 6 Repository JCD Example...6
Using Outlook Express to Read Secure Email ..8
Summary..25

Introduction
Every now and then one needs to secure communications between parties. Some
would say it is necessary to do that all the time and perhaps it is. The issues are the
complexity and expense. The complexity comes from having to configure a bunch of
tools to support things like encryption and digital signatures for more then a single
party. The expense comes from typically having to purchase cryptographic
instruments from well known Certification Authorities, and keep on purchasing them
all over again every 1 or 2 years. This discussion introduces a class library that offers
a set of simple methods for constructing and sending secure electronic mail using the
Secure Multipurpose Internet Mail Extensions (S/MIME), the Bounce Castle
Cryptographic Libraries and the Java programming language. The intent is to allow a
Java CAPS developer, or a Java developer, to add Secure Electronic Mail
functionality quickly and easily, and without having to make too much of a time
investment learning about PKI-based security and related matters. This addresses the
complexity issue. The expense issue is addressed in my Blog Entry, “Producing Free,
Private X.509 Certificates for use with PKI-based Solutions”, at
http://blogs.sun.com/javacapsfieldtech/entry/producing_free_private_x_509. That
blog discusses how to roll out a private Certification Authority and obtain X.509
Certificates., and other cryptographic objects, for free.

This document discusses the use of cryptographic software and manipulation of
cryptographic objects. Using or discussing cryptography software is illegal in some
parts of the world. It is you responsibility to ensure that you comply with any
import/export and use laws that apply to you.

SecMail Class Library and Pre-requisites Download
The SecMail Class Library, and most of the class libraries it depends on, is available
for download from http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/SecMail_and_extra_libs.zip/details. Download the pckage is you ntend to
try what this document discusses.

The archive package does not contain the packages that actually implement the
cryptographic methods and algorithms. You will need to download bcmail-jdk15-

143.jar and bcprov-jdk15-143.jar from the Bouncy Castle site, at
http://www.bouncycastle.org/latest_releases.html. You may need to use different
versions depending on the Java version you are using.

To use the SecMail class library, extract the SecMail.jar, activation.jar, mail.jar and
log4j-1.2.8.jar from the SecMail_and_extra_libs.zip to a directory where your
development environment can find them. For Java CAPS 5.x and 6 Repository-based
projects you will need to import these files into your project. Java CAPS 5.x and 6
Repository developer is assumed to know how to do that. For regular Java developer
do what you need to do depending on the development environment you use. For
NetBeans, for example, add the JARs to the Library for your Java project.

Place the bcmail-jdk15-143.jar and bcprov-jdk15-143.jar, or the later version of the
archives, in the same location as the SecMail and other packages.

Setting up Cryptographic Objects
In this discussion it is assumed that a sender, called msender, intends to send a secure
electronic mail to a party called mreceiver. msender digitally signs an email message
(using its own Private Key), encrypts the messages (using mreceiver’s public key
which is embedded in mreceiver’s X.509 Certifdicate) and sends it to the nearest
SMTP Server. To the SMTP Server secure email is just another MIME Multipart
message.

The preceding paragraph implies that msender has access it its own Private Key
cryptographic object (to Digitally Sign the message) and to mreceiver’s X.509
Certificate cryptographic object (to encrypt the message so that only mreceiver can
decrypt it). It is also implied that mreceiver has access to its Private Key (to decrypt
the message) and msender’s X.509 Certificate (to verify mserver’s digital signature).

The rest of this section deals with obtaining the appropriate cryptographic objects,
manipulating them and getting them to a state where they can be used.

To use X.509 Certificates for electronic mail security in conjunction with the SecMail
package one needs a Truststore. A cacerts truststore, in JKS format, is available with
every JRE. Use it in place %JAVA_HOME%\jre\lib\security\cacerts (storepass is
changeit) or copy it to a convenient location for exclusive use by your solution.

To this cacerts truststore import certificates of all parties with whom you wish to enter
into secure communication, remembering to also import certificates of any
Certification Authorities that signed these certificates, if they are not already there.

For the most part CA certificates of well know CAs, like Verisign, will already be in
the cacerts. Private CA’s certificates will not be already there so they need to be
imported as well.

Using the tools and techniques discussed in my blog entry “Producing Free, Private
X.509 Certificates for use with PKI-based Solutions” at
http://blogs.sun.com/javacapsfieldtech/entry/producing_free_private_x_509, produce
two sets of cryptographic objects – one for msender and one for mreceiver. When
creating a Certificate Signing Request use the email address forms which your mail

system likes, for example msender@vulcan.fed if your email systems sits in the
vulcan.fed domain and you are creating crypto objects for msender.

Assume you are using the private democa PKI discussed in my blog entry “Producing
Free, Private X.509 Certificates for use with PKI-based Solutions”. Assume also that
you will be using a private copy of the cacerts so you will need to copy it to a
convenient spot.

cd C:\JCAPS6U1Projects\SecMail\pki
copy %JAVA_HOME%\jre\lib\security\cacerts .\

Assuming your PKI infrastructure, constructed using the method discussed in the blog
above, is rooted at C:\JCAPS6U1Projects\SecMail\pki, the democa certificate will be
in ca\democa\democa.pem.crt.

Issue the following import command to add the democa CA X.509 Certificate to the
truststore:

C:\JCAPS6U1Projects\SecMail\pki>%JAVA_HOME%\bin\key tool -import -v -
alias democa -file ca\democa\democa.pem.crt -keysto re cacerts -
storepass changeit -storetype jks -trustcacerts

When asked whether to trust this certificate answer “yes”.

The interaction will look similar to this:

C:\JCAPS6U1Projects\SecMail\pki>%JAVA_HOME%\bin\key tool -import -v -alias democa -file
ca\democa\democa.pem.crt -keystore cacerts -storepa ss changeit -storetype jks -
trustcacerts
Owner: EMAILADDRESS=certification@authority.com, CN =democa, OU=democa Security
Division, O=democa Certification Authority, L=Sydne y, ST=NSW, C=AU
Issuer: EMAILADDRESS=certification@authority.com, C N=democa, OU=democa Security
Division, O=democa Certification Authority, L=Sydne y, ST=NSW, C=AU
Serial number: 5
Valid from: Mon May 04 09:16:05 EST 2009 until: Fri Jul 21 09:16:05 EST 2017
Certificate fingerprints:
 MD5: 35:C0:B9:C9:1E:F5:34:19:8E:06:D4:B9: 34:C9:D0:DE
 SHA1: C5:EB:CC:64:44:4D:E4:5C:C5:ED:20:05: DA:D9:9C:9B:9E:03:F2:1B
Trust this certificate? [no]: y
Certificate was added to keystore
[Storing cacerts]

Now that the democa is imported, which is only necessary if the end user certificates
we will import next were signed by this private CA, we will import end use
certificates of all the parties with whom we will communicate. In this case we only
need mreceiver’s certificate if we expect to be encrypting messages for mreceiver or
verifying digital signatures generated by mreceiver.

The mreceiver:

%JAVA_HOME%\bin\keytool -import -v -alias mreceiver -file
mreceiver\mreceiver.pem.crt -keystore cacerts -stor epass changeit -
storetype jks –trustcacerts

The interaction is shown below.

C:\JCAPS6U1Projects\SecMail\pki>%JAVA_HOME%\bin\key tool -import -v -alias mreceiver -
file mreceiver\mreceiver.pem.crt -keystore cacerts -storepass changeit -storetype jks
-trustcacerts
Owner: EMAILADDRESS=mreceiver@some.company.com, CN= mreceiver, OU=mreceiver,
O=mreceiver, ST=NSW, C=AU
Issuer: EMAILADDRESS=certification@authority.com, C N=democa, OU=democa Security
Division, O=democa Certification Authority, L=Sydne y, ST=NSW, C=AU
Serial number: 2
Valid from: Mon May 04 10:45:54 EST 2009 until: Fri Jul 21 10:45:54 EST 2017
Certificate fingerprints:
 MD5: 5E:5D:FB:5F:C2:BD:3E:0F:E2:58:D4:CA: 19:07:D3:28
 SHA1: A0:11:B7:27:70:24:65:F8:C2:D2:16:B8: F0:55:1B:77:09:EB:E7:60
Trust this certificate? [no]: y
Certificate was added to keystore
[Storing cacerts]

mreceiver is the party to whom we will be sending secure messages.

For the msender, ourselves, we will use the PKCS#12 Keystore, which was generated
as we followed the steps in the Blog Entry referred to above. We don’t need to import
msender’s certificate because we never use it for cryptographic operations. Everybody
else, which engages in secure communications with us, does.

(Re) Configuring sample Java Sender
SecMail.jar contains both the compiled classes and the Java sources of all classes.
Amongst others, there is the SecMailSenderBC.java.

Extract this source file and inspect it to see what needs to be done to send a secure
email wit or without attachments. I will discuss only the selected statements that may
need to be modified to suit your environment.

The msender’s keystore location, password and type may need changing:

Line 93:
String sSenderKeyStoreFilePath = "C:/JCAPS6U1Projects/SecMail/pki/msen
der/msender.pkcs12.keystore.p12";

Change the location of the msender’s keystore if different from what is in the
example.

Line 94:
String sSenderKeyPassPhrase = "msendermsender";

Change the passphrase of the msender’s Keystore, if different

 I assume you are using cryptographic objects generated by the scripts from the Blog
Entry. If this is not the case then you know enough to know to change keystore type in
line 95 if it is not a PKCS#12 keyatore.

The location and type of the truststore to which you added mreceiver’s certificate may
need to be changed.

Line 99:
String sTruststoreKeyStoreFilePath = "C:/JCAPS6U1Pr ojects/SecMail/pki
/cacerts";

Change the location of the truststore if it is different

Line 100:
String sTruststoreKeyPassPhrase = "changeit";

Change the truststore passphrase if it is different

Lines 107-109:
String sSMTPServer = "localhost";
String sSMTPAcctUsername = "msender";
String sSMTPAcctPassword = "msender";

Change the host, username and password for the SMTP Server. Secure SMTP Server
is not supported – feel free to extend the library to support SMTP over SSL.

The annotation below the following statements discuss some aspects of the code. See
the source for all there is to know.

jse = new SecMail(sSMTPServer, sSMTPAcctUsername, s SMTPAcctPassword);

Create an instance of the SecMail class and configure it to use the appropriate SMTP
Server.

jse.setLoggingOff();
jse.setMailDebug(false);
Remove or comment out this is you would like to see verbose debug information and
set the other to true for more verbose informaion.

jse.setEncrypt(true);

State whether you wish to have the message encrypted. False will leave encryption
off. True will cause the receiver’s certificate to be used for encryption.

jse.setSign(true);

State whether you wish to have the message signed. False will leave signature off.
True will cause the sender’s private key to be used for signing.

jse.setFrom("msender@some.company.com", "Mail Sende r", senderKS, "mse
nder", "msendermsender");
jse.addReplyTo("msender@aus.sun.com.com", "Mick");

Configure the anem, the email addresses, the keystore containing the private key and
keystore passphrase for the sender (eMail From entity).

jse.addTo("mreceiver@some.company.com", "Mail Recei ver", truststoreKS
1, "mreceiver");

Configure eMail To parameters – recipient address and name, and truststore from
which the receipients certificate is to be exytracted and the keystore alias for that
certificate.

jse.setSubject("Email test at " + new Date());

Set email subject

jse.addText("Hello Michael,\r\nThis is a test of
email\r\n\r\nCheers\r\n");

Add body text of the message.

jse.addFileAttachment("c:/docs/TPMUserGuide.pdf");

Optionally add an attachment from a file in the file system

jse.addByteArrayAttachment("Hello this is a byte ar ray 1".getBytes(),
 "ByteArray1.txt", "Byte Array 1");

Optionally add an attachment from a byte array and mane the attachment

jse.addByteArrayAttachment("Hello this is a
byte array 2".getBytes());

Optionally add an attachment form a byte array without naming it.

jse.send();
Finally, send the message.

There are a number of methods one can use. One can, for example, add multiple
recipients, CC recipients, and so on.

When the code executes it will connect to the SMTP Server, construct the mail
message, signing and encrypting as necessary, and send it for forwarding ot the mail
recipient’s mail server.

Feel free to explore the code. Bear in mind that I am not great shakes at Java
programming. It’s just another language which I learned enough of to be dangerous
but not enough to be good at it. For me, in this case, the end justifies the means. If you
are great shakes at Java, as lots of people in the works would be, feel free to re-write
this code properly ☺

Java CAPS 6 Repository JCD Example
Here is a Java CAPS 6 Repository project that uses the SecMail class library to send
secure email. The project hierarchy, including imported JARs is shown below.

Note that there is only 1 JCD here. It is triggered by a JMS message, the content of
which it completely ignores. All ‘variable’ information, keystores, truststores, email
addresses, etc., are hardcoded for this example. Your JCD would probably be a great

deal smarter/more dynamic about configuration. This JCD is merely an example of
the use of the class library.
Here is the Connectivity Map.

Here is the complete source of the JCD.

package SecMailJCD;

import au.org.czapski.utils.crypto.*;
import java.security.KeyStore;
import java.util.Date;

public class jcdSecMailJCD
{

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContex t collabContext;
 public com.stc.codegen.util.TypeConverter typeC onverter;

 public void receive(com.stc.connectors.jms.Mes sage input)
 throws Throwable
 {
 String sSenderKeyStoreFilePath =
 "C:/JCAPS6U1Projects/SecMail/pki/msender/ms ender.pkcs12.keystore.p12";
 String sSenderKeyPassPhrase = "msendermsend er";
 CryptoUtils sender_cu1 = new CryptoUtils();
 if (!logger.isDebugEnabled()) {
 sender_cu1.setLoggingOff();
 } else {
 sender_cu1.setDebug();
 }
 KeyStore senderKS = sender_cu1.getKeyStoreF romFile
 (sSenderKeyStoreFilePath, sSenderK eyPassPhrase, "PKCS12");
 String sTruststoreKeyStoreFilePath =
 "C:/JCAPS6U1Projects/SecMail/pki/ca certs";
 String sTruststoreKeyPassPhrase = "changeit ";
 CryptoUtils truststore_cu2 = new CryptoUtil s();
 if (!logger.isDebugEnabled()) {
 truststore_cu2.setLoggingOff();
 } else {
 truststore_cu2.setDebug();
 }
 KeyStore truststoreKS1 = truststore_cu2.get KeyStoreFromFile
 (sTruststoreKeyStoreFilePath, sTru ststoreKeyPassPhrase, "JKS");
 SecMail jse = null;
 String sSMTPServer = "localhost";
 String sSMTPAcctUsername = "msender";
 String sSMTPAcctPassword = "msender";
 jse = new SecMail(sSMTPServer, sSMTPAcctUs ername, sSMTPAcctPassword);
 if (!logger.isDebugEnabled()) {
 jse.setLoggingOff();
 } else {
 jse.setDebug();
 }
 jse.setMailDebug(false);
 jse.setEncrypt(true);

 jse.setSign(true);
 jse.setFrom(
 "msender@some.company.com"
 , "Mail Sender", senderKS, "msender ", "msendermsender");
 jse.addReplyTo("msender@aus.sun.com.com", "Mick");
 jse.addTo(
 "mreceiver@aus.sun.com"
 , "Mail Receiver", truststoreKS1, " mreceiver");
 jse.setSubject("Email test at " + new Date ());
 jse.addText
 ("Hello Michael,\r\nThis is a test of email\r\n\r\nCheers\r\n");
 jse.addFileAttachment("c:/docs/TPMUserGuid e.pdf");
 jse.addFileAttachment("c:/tmp/wah/Discharg eSummaryTemplate.odt");
 jse.addByteArrayAttachment(
 "Hello tis is a byte array 1".getBy tes()
 , "ByteArray1.txt", "Byte Array 1");
 jse.addByteArrayAttachment("Hello tis is a byte array 2".getBytes());
 jse.send();
 }

}

To exercise the project, the export of which is not included but the project is so
trivially simple that there should not be a need for it, submit a message to the
configured JMS queue.

Once the JCD executes an email message will have been sent to the recipient. If all is
configured correctly the recipient can use a suitable email client to receive and read
the email. Naturally, since the email will likely be encrypted and digitally signed,
some steps must be taken at the email client side to enable the email to be readable.
The following section, “Using Outlook Express to Read Secure Email”, discusses
how Microsoft Outlook Express can be configured to verify correct operation of
secure email.

Using Outlook Express to Read Secure Email
Of the multitude of eMail clients available I have chosen Microsoft Outlook Express
to use for this discussion. It is included with Windows and it is easy enough to use. If
you have/like a different one feel free to use it. I will not help in configuring it,
though.

Before we can successfully receive secure mail we must ensure we have recipient’s
account set up. Let’s add an account for user mreceiver.

Use the domain name of your mail system, for example mreceiver@vulcan.fed.

The trick here is the mail server configuration. I have MailEnable,
http://www.mailenable.com/, installed locally and configured with appropriate
mailboxes. The mreceiver user has a mailbox with the username of mreceiver and
password of mreceiver.

Once the MailEnable account is set up, and the corresponding Outlook Express
Account is set up, Send/Receive will get an initial email message from MailEnable.

All this gives us a configured mail account for receiving regular electronic mail. This
is not going to work for encrypted electronic mail because decryption requires the
recipient to know its private key and to tell Outlook Express where to look for it.

Let’s add, what Microsoft Outlook Express calls, a Digital ID.

If you followed instructions in the Blog Entry, referenced way back at the beginning
of the document, to create cryptographic objects for mreceiver, you will have an
object called mreceiver.pkcs12.keystore.p12 with the passphrase of
mreceivermreceiver.

Locate that file in he file system and import it.

Enter the passphrase.

Accept default store.

And Finish.

If all went well you will be told that the import was successful.

Select the certificate and click View to review the content.

Note that importing the PKCS#12 Keystore, which is what we just did, provides the
private key to use for message decryption.

In addition to out private key, necessary to decrypt messages others encrypted for us,
we need to import certificates of all senders who will be digitally signing messages
we will receive. If we fail to do this the message will be decrypted, if encrypted, but
digital signatures will not be valid so we will not be able to trust the messages which
came for the party claiming to have sent them.

Switch to the Other People tab and click Import.

Locate the other party’s X.509 Certificate, we will use msender’s certificate, and click
Next.

Accept store and click Next.

Click Finish. The certificate will be imported and will be able to be used for
verification of digital signatures from msender.

If msender sends a signed and encrypted message to mreceiver Outlook Express will
show the message with a person icon over the envelope icon and provide feedback
shown below.

Click Continue.

We just imported msender’s certificate and we did not tell Outlook Express to trust it.
Accordingly, Outlook Express will display a warning page.

Let’s click Edit Trust.

Click the Explicitly Trust this Certificate and click OK.

Back in Outlook Express let’s click Open Message.

From left to right the arrows point out that the message has been digitally signed (and
there is an issue with the signature), it has been encrypted and it has attachments. This
is a message in the reading pane. Let’s open the message in a window by double-
clicking on the message line in the top pane.

Note Security line: Digitally signed – sender/signer mismatch; Encrypted.
Icons at the far right also indicate that there is an issue with the signature and that
message was encrypted.

Let’s click on the icon indicating an issue with signing.

General Tab tells us that the message was received from msender@aus.sun.com
(which is how the MailEnable instance I am using is configured).

The Security Tab tells us that the message was signed by
msender@some.company.com.

Let’s click the View Certificates … button

Click the Signing Certificate and have a look at the details.

Ideally, the email address in the certificate should match the email address of the
sender who is using the certificate to sign electronic mail.

If we make sure the msender’s address matches the address in the certificate we will
not get the signature validation issue. We will be able to a) trust that nobody but us
could possibly have decrypted the message (we have the private key and we did not
give it to anyone) and b) the message was signed by the owner of the private key
related to their certificate – we can trust the message was composed and signed by the
sender.

Summary
Every now and then one needs to secure communications between parties. The issue
is complex and expensive to address. The complexity comes from having to configure
a bunch of tools to support things like encryption and digital signatures for more then
a single party. This discussion introduced a class library that offers a set of simple
methods for constructing and sending secure electronic mail using the Secure
Multipurpose Internet Mail Extensions (S/MIME), the Bounce Castle Cryptographic
Libraries and the Java programming language. The intent was to allow a Java CAPS
developer, or a Java developer, to add Secure Electronic Mail functionality quickly
and easily, and without having to make too much of a time investment learning about
PKI-based security and related matters.

