
Java CAPS Quick Note 001
Split file into multiple files

Michael.Czapski@sun.com
28th of February 2008

This Quick Note discusses a solution to the use case provided by Richard Kuiter.

An input file contains the following records:

H100000000000014099120ASN00507
L1140991200000008261850826185738
L1140991200000008261850826185738
L1140991200000008261850826185738
L1140991200000008261850826185738
L1140991200000008261850826185738
L1140991200000008261850826185738
H100000000000014099126ASN00531
L1140991260000008262690826269662
L1140991260000008262690826269662
L1140991260000008262690826269662
L1140991260000008262690826269662
L1140991260000008262690826269662

It is required that each block of records starting with the H1 (header) record and
containing all the following L1 (line) records, be written to a different file.

The solution involves the use of:

1. Batch Inbound eWay to locate the input file and provide its name and location
to a Java Collaboration Definition

2. Batch Local File eWay to provide an Input Stream to the Batch Record eWay
3. Batch Record eWay to break up the inout stream into records delimited by

carriage return+new line
4. Batch Local Fiel eWay to write each block of records to a file with a distinct

name

Brief steps to implement this solution are given below. The collaboration code will
work in Java CAPS 5 and 6 Repository.

Create the appropriate Java CAPS Environment – one with a Logical Host, an
Application Server, a Batch Inbound external system, a Batch Record external system
and a Batch Local File external system.

The only thing that needs configuring in the environment is the App Server if you
would like to deploy out of the NetBeans IDE

Create a new Classic project

Create a JCD triggered by a Batch Inbound eWay (input)
Add Batch Local File eWay OTD to get the payload stream (G_BatchLocal)
Add Batch Record eWay OTD to get records one at a time (G_BatchRecord)
Add Batch Local File eWay OTD to write separate files out (P_BatchLocal)

Put the following code into the receive method:

 public void receive
 (com.stc.connector.batchadapter.appconn.BatchAppconnMessage input
 , com.stc.eways.batchext.BatchLocal G_BatchLocal
 , com.stc.eways.batchext.BatchRecord G_BatchRecord
 , com.stc.eways.batchext.BatchLocal P_BatchLocal)
 throws Throwable {
 String sFileName = input.getGUIDFileName();
 String sDirName = input.getPathDirName();
 ;
 // configure batch local to read the right file
 //
 G_BatchLocal.getConfiguration().setTargetDirectoryName(sDirName);
 G_BatchLocal.getConfiguration().setTargetDirectoryNameIsPattern(false);
 G_BatchLocal.getConfiguration().setTargetFileName(sFileName);
 G_BatchLocal.getConfiguration().setTargetFileNameIsPattern(false);
 ;
 // configure output file directory and prepare for file name
 //
 P_BatchLocal.getConfiguration().setTargetDirectoryName(sDirName);
 P_BatchLocal.getConfiguration().setTargetDirectoryNameIsPattern(false);
 P_BatchLocal.getConfiguration().setTargetFileNameIsPattern(false);
 ;
 // read records from the file

 //
 G_BatchRecord.setInputStreamAdapter

(G_BatchLocal.getClient().getInputStreamAdapter());
 while (G_BatchRecord.get()) {
 byte[] baRecIn = G_BatchRecord.getRecord();
 String sRecIn = new String(baRecIn);
 ;
 logger.warn("\n===>>>" + sRecIn);
 if (sRecIn.startsWith("H1")) {
 // set file name to be the whole header records - seems unique
 P_BatchLocal.getConfiguration().setTargetFileName(sRecIn + ".txt");
 }
 P_BatchLocal.getClient().setPayload((sRecIn + "\r\n").getBytes());
 P_BatchLocal.getClient().put();
 }
 }

Create the connectivity map.
Configure the Batch Inbound:

Configure the BatchLocalFile in with placeholders for file name and directory name –
these are set dynamically in the JCD

Configure the BatchRecord – use “\r,\n” for delimiter list

Configure the BatchLocalFile out with placeholders for file name and directory name
– these are set dynamically in the JCD. Make sure to configure Append as Yes.

Save the CM

Create a deployment profile, build and deploy

Provide a text file with the content you need to process, in the directory configured in
the Batch Inbound and with the name you configured in the Batch Inbound.

My file is named differently to what the Batch Inbound expects so I will rename it to
what the Batch Inbound expects to allow it to process the file.

Once the file is processed two other files will appear, one for each header. Each file
will contain the header and all lines until the next header or the end of file.

