Getting Hundreds of Files using Batch Local File eWay
in Java CAPS 6

Michael.Czapski@sun.com

May 2009
Table of Contents
0T (3o 1o o 1
SOIULION OULIINE ... e e e e e e e e et eeeeaaans 1
oo LT a1 0T Y=Ll I oo = U 2
JCARTIESPIOCESSOT ...t et e ettt eeenae s s e e e e e e e e e eeeeas 3
SUIMIMIAIY ..ttt ettt e errr e e e ettt e e et et e e e ee e e e et e e e eta e e s ennaaseeetnneeeennnnaenes 8

Introduction

Occasionally one needs to pick up and processgya lanmber of files, on the order of
hundreds or thousands. With the Batch Inbound eV\G#y/Adapter it is not possible
to pick up more then one file per poll. The Batatél File, if triggered by some
event other then an appearance of a file in atdingcperhaps a Scheduler trigger of a
manual trigger, with correctly designed logic caagess many files in a single
invocation.

This document discusses how Batch Local File-bas&dion can be constructed to
effectively process hundreds of files in a singdep

Solution Outline

In this solution the file processing logic will ery simple. The Java Collaboration
or a JCA MDB if one so desires, will receive agreg message from a JMS Queue.
This trigger message will be ignored as its solgpse is to get the collaborations
started. Once started, the collaboration will eatéyop in which a Batch Local File
Adapter will perform a GET operation looking fofile, which fits a statically
configured pattern and lives in a statically coafed directory, get the payload and
send the payload to a JMS Topic. Once done itreifiet the Batch Local File OTD
and will resume the loop looking for the next filhe collaboration will exit
normally only if a FileNotFound condition is encaered. If an exception occurs the
collaboration will terminate with an exception.

Processing hundreds or thousands of files maydakéher long time, even if all the
collaboration is doing is getting the payload aeddng it to a JMS destination.
During that time another trigger may arrive. Tovamt another copy of the
collaboration from starting the JMS Queue read lgliserialized. To prevent triggers
building up the trigger sender will configure arpeation time for each trigger. If not
picked up before expiration the trigger will be egfed to be discarded by the IMS
implementation and never delivered.

In the solution discussed in this document triggatsbe generated by a Scheduler
eWay-triggered Java Collaboration, which will cormp@ JMS message, configure
the Expiry property and submit the trigger mesdagbe JMS Queue.

The Connectivity Map for the overall solution isgm in Figure 1.

= —— -+
p@p O— e @ o SRS
S oheduler cmFastFeedCAHHLT _jcdintervalTriggerl gintervalTrigger cmPastFeedithHLY jcdFilesProcessor! tHLT231FeedData

Figure 1 Connectivity Map

jcdIntervalTrigger

The jcdIntervalTrigger, shown in Listing 1, hawviai logic. Most of this logic is
devoted to logging a timestamp to server.log.

Listing 1 jedintervalTrigger logic
public void start
(com st c. schedul erotd. appconn. schedul er. Fi | eText Message i nput
com stc. connectors.jns. JMS W.JMS)
throws Throwabl e {

long I Time = SystemcurrentTineM I 1is();
java.util.Date dtNow = new java.util.Date(l Ti nme);
| ogger . debug("\ n===>>> Triggered at " + dtNow);

com stc. connectors.jnms. Message jmsMsg = W JIMS. creat eText Message() ;
j neMsg. get MessageProperties().setExpiration(20 * 1000); // 20 seconds
j msMsg. set Text Message("Trigger, " + SystemcurrentTimeMIlis() + "," + dtNow);

W.JIMS. send(j msMsQ) ;

The Scheduler connectivity map connector, cSchedsleonfigured for a 15 second
interval, as shown in Figure 2. This interval candiferent.

»@m:@»@@

cmFastFeed WihHLY jodintervalTrigger! gintervalTrigger cmFastFeed@MthHLY _jcdFilesPr

cScheduler
‘Properties il
I2) Configuration IProperties
=2 schedule Seconds 15
-----) Daily at time

----- 12 weekly on day

----- I3 Monthly by date

----- I Monthly by week

----- =) vearly by date

----- =0 early by week

----- = Frequency in hours
----- = Frequency in minukes
----- = Frequency in seconds

Figure?2 §ch_eduler cbnfigured for a 15 second interval

The JMS Publish connector is configured to be tatignal (as distinct from XA)
non-persistent, as shown in Figure 3. We don’t nmmsking a few triggers.

B Properties

ma%wm

cmFastFeedCWihHLY _jodinterval Trigger! dintervalTrigger cmFastFeedGiithHLY _jcdFilesProcessol

£
cEcheduler

I) Configuration B Properties
Euj M5 Client Transaction moce Transacked
- I Basic Delivery mode Monpersistent
Priarity 4
ldle Timeout (in seconds) 30
Mzzitum Pool Size 32

Maczitmum Wit Tirme (in milizecands) 30000
Steady Pool Size 4

Figure 3 JM S Publisher configurations

Nothing on the publishing side determines that mgss are to be serialized.

The jcdIntervalTrigger collaboration will delivemaessage to the JIMS Queue

gintervalTrigger every 15 seconds.

jcdFilesProcessor

jcdFilesProcessor is where interesting stuff happ&he logic was briefly described
in Solution Outline. Listing 2 shows the completdiaboration.

Listing 2 jcdFilesPr ocessor

X

B Y E S FY S

i mport
i mport
i mport
i mport

com st c. enways. bat chext . Local Fi | eExcepti on;

com st c. eways. conmon. eway. st andal one. stream ng. St ream ngExcepti on;
com st c. eways. bat chext . Bat chExcepti on;

java.io. Fi | eNot FoundExcepti on;

public class jcdFilesProcessor {

public com stc. codegen. | ogger. Logger | ogger;

public comstc.codegen.alerter. Alerter alerter;

public com stc. codegen. util.CollaborationContext collabContext;
public com stc. codegen. util.TypeConverter typeConverter;

public void receive

(com stc. connectors.jns. Message i nput
, com stc. eways. bat chext . Bat chLocal G BLFIn
, comstc.connectors.jnms.JVM5 WJIMS)

throws Throwabl e {

long I Now = SystemcurrentTimeM I 1is();
java.util.Date dtNow = new java.util.Date(l Now);
| ogger . debug("\ n===>>> Received trigger "
+ input.get Text Message() + " at " + INow + ", " + dtNow);

int i =0
bool ean bl More = true;
while (bl More) {

try {
/'l get the current file
I/
G BLFIn.getdient().get();
| ogger. debug("\ n===>>> got file " + ++ + " " +

G BLFIn.getd ient().getResol vedNamesToGet (). get Target Fi | eNare()) ;

}/ create a JMS nmessage, set expiration, populate with
/1 payl oad and send
/1

com stc. connectors.jms. Message jmsMsg = W.JIMS. cr eat eText Message() ;
j neMsg. get MessageProperties().setExpiration(60 * 60 * 1000);

j neMBg. set Text Message(new String(G BLFIn.getCient().getPayload()));

W JIMB. send(j msMsg) ;

}/ prepapre for next file

/1

if (!GBLFIn.getdient().reset()) {
| ogger.error("\n===>>> Failed to reset");
t hrow new Exception("Failed to reset");

} catch (com stc. eways. bat chext. Local Fi | eException Ife) {
/1
/1l File Not Found is expected and benign
/1 That exception is so deeply nexted that the follow ng code
/1l is needed to determine if this is what cause the excetion
/1
if (lIfe.getNestedException() instanceof Local Fil eException) {
Local Fi |l eException | fel
= (Local Fi | eException) |fe.getNestedException();

if (Ifel.get NestedException() instanceof Stream ngException) {
St ream ngException | fe2
= (Stream ngException) |fel. getNestedException();

if (Ife2.getNestedException() instanceof BatchException) {
Bat chException |fe3
= (BatchException) |fe2.getNestedException();

if (1fe3.getNestedException()
i nstanceof Fil eNot FoundException) {
Fi | eNot FoundException |fe4
= (Fi | eNot FoundExcepti on)
| f e3. get Nest edException();

| ogger . error
("\ n===>>> | gnoring expected File Not Found Exception: "

+ | fed. get Message());

bl More = fal se;

} else {

| ogger. error ("\n===>>> Unexpected Local Fi | eException:"
+ Ife.getdass() + "\n", Ife);

bl More = fal se;

} else {
| ogger. error ("\n===>>> Unexpected Local Fi | eException: "
+ Ife.getdass() + "\n", Ife);
bl More = fal se;

} else {
| ogger. error ("\ n===>>> Unexpected Local Fil eExcepti on:
+ Ife.getdass() + "\n", Ife);
bl More = fal se;

} else {
| ogger. error("\ n===>>> Unexpected Local Fil eExcepti on:
+ Ife.getdass() + "\n", Ife);
bl More = fal se;

}
} catch (Exception e) {
| ogger.error("\n===>>> Exception getting file "
+ e.getCause() + "\n", e);
bl More = fal se;

Let’s ignore, for the moment, the large block ofeption handling code and look at
the file processing loop. Figure 4 show the ablatexd logic.

105 int i = 0O;
106 hoolean blMaore = true;
107 while (blMore] |

] try i

109

110

111 G_BLFIn.getClient () .get();

112 logger.debug ("yn===>%>> got file ™ + ++i + " "7 +

113 G_BLFIn.getClient (] .getResolvedNamesToGet () .getTargetFileName ()) ;
114

115

lla

117

115 com, Stc.connectors. jws. Message jwsMsg = W_JHM3.createTextMessagel)
119 Jw=sM=g. getMessageProperties() .setExpiration (60 * a0 * 1000) ;

120 JmsMsg.setTextMessage (new String (G_BLFIn.getClient () .getPayloadi]]);
121 W_JH5.zend (jmsH=g) :

122 H

123

124

125 if {!G_BLFIn.getClient(].reseti()] {

126 logger .error [("\n===>>> Failed to reset™):

127 throw new Exception|"Failed to reset™);

128 H

129 } cateh (com.sto.eways.batchext.LocalFileException lfe) |

130 oo o

131 b ooateh (Exception)

132

133 i

134 i

Figure 4 Abbreviated file processing logic

The line numbers don’t correspond to source liiégy are here merely for the
convenience of reference.

The loop starts at line 107.

The logic is surrounded by try-catch. We need fbtee loop normally when
FieINotFoundException is encountered and abnornvetign any other exception is
encountered. FileNotFoundException is a nestedpixae We will discuss how to
work out if this exception occurred a little later.

At line 111 we issue the GET command to the Adap#drthis point we can obtain
the actual expanded name of the file. As we wil ls¢er, we don’t know what the
name of the file being processed in this loop tteramight as we enter the loop
iteration be because the Adapter is configuredad For files using a regular
expression.

On lines 118 through 121 we construct, populatessemdi a JMS message. At line
120 we get file payload as bytes, convert themdtrsing and set them as JIMS
message payload. Once could also use JMS Bytestyesstead of IMS
TextMessage and avoid conversion.

On line 125 we attempt to reset the OTD so as tabbeto process the next file. This
is the critical step that makes it possible to psscmultiple files in a single
invocation. If successful, we go back to the tophefloop to process the next file.

Because the FileNotFoundException exception isséedeexception, and it is nested
4 levels deep, the logic required to determineakccurred is larger then the logic
required to do the work of the collaboration. Feybrshows the exception processing
logic.

50 } catch (com.ste.evays.batchext.LocalFileExeception 1fe) {

51

52

58

54

55

56 if (lfe.getNestedException() instanceof LocalFileException) |

57 LocalFileException lfel = [LocalFileException) lfe.getMestedExceptioni):

53 if (lfel.getMNestedException() instanceof 3treamingException) {

59 StreamingException lfel = (StreamingException) lfel.getMNestedExceptioni):

&0 if [lfei.getNestedException() instanceof BatchException] {

61 BatchException 1fe3 = (BatchException) lfel.getlestedException():

B2 if (lfed.getNestedExceptioni)

63 instanceof FileNotFoundException)

6 FileNotFoundException lfe4 = (FileNotFoundException) lfe3.getNestedExceptioni):
65 logger .error ("\n===>>> Ignoring expected File Not Found Exception: " + lfed.getMessage()):
1 blMore = false;

57 } else {

(1) logger.error ("\n===>>> Unexpected LocalFileException:" + lfe.getClass() + "\n", lfe);
69 blMore = false:

70 }

71 } else {

72 logger.error ("yn===>3> nexpected LocalFileException: " + lfe.getClass() + "\n", 1lfe):
13 hlMore = false:

74 1

75 P oelse |

i) logger.error ("\n===>>> Unexpected LocalFileException: " + lfe.getClass() + "yn", lfe):
77 bllore = false:

18 +

79 yoelse |

80 logger.error ("yn===>»> Unexpected LocalFileException: " + lfe.getClass(}) + "\n", 1lfe):

gl hlMore = false;

82 H

83 } catch (Exception e) {

84 logger.error ("\n===33> Exception getting file "

g5 + e.getCause() + "\n", e):

86 bllore = false:

g7 H

Figure 5 Exception handling logic
Inspect the code in Listing 2 to see more cleathatws happening.

On line 50 we are catching the BatchLocalFileExicepéxception. This is the
outermost exception that is thrown when the javialieNotFoundException is
thrown.

On line 57 we get a nested exception and on line&®ok to see if it is a
StreamingException, which too is an outer exceptwotine
java.io.FileNotFoundException which we are lookfag

On line 59 we get a nested exception and on line& 0ok to see if it is a
BatchEXxception, which too is an outer exceptiothto
java.io.FileNotFoundException which we are lookfog

On line 61 we get the innermost nested exception.
On lines 62 through 66 we finally determine thatlveee the

java.io.FileNotFoundException, which we expect towr once all files are processed,
and we handle it by logging a message and settim@obolean to exit the loop.

In all other cases we log a message and set thie@oto exit the loop. Perhaps we
should have re-thrown an exception since only FokfdundException is a benign
one, all other being unexpected and not desirable.

Let's now take a look at the connector propertiethe connectivity map.

Serial Mode concurrency at the receiver side vafiiee that only one message will
get picked up from the queue at a time. So lonth@sollaboration executes,
processing files, no new message will get pickedaupo new instance of the
collaboration will try to process the same filesexiisting instance is already
processing. Figure 6 shows the property setting.

-} E* - bﬂ'}—ﬁ,‘- an .CBI-

2y
astFeediWithHLY _jodintervalTrioger! dlrtervalTrigoer cmPastFeediWithHLT _cdFilesProcessort tHLV 231 FeedData

x

|21 Configuration =Properties
=) M3 Client Meszage selectar J
J w Concurrency Setial mode :) J

I Redelivery Handing
F-I2) Advanced

Figure 6 Serial M ode concurrency at the receiver

The Batch Local File connector is configured toklao directory
/jcéul_data/HL7_txs/volume_feed for files whose ramatisfy regular expression
HL7 23 ADT_A[0-9][0-9]_[A-Za-z0-9]*.hl7_231. Somexamples of this kind of
names are:

HL7_23 ADT_A03_ARMC_460374__06374.hl7_231

HL7_ 23 _ADT_A03_ARMC_460390_06308.hl7_231

HL7_23 ADT_A03_ARMC_555555_06390.hl7_231

HL7_23_ADT_A03_ARMC_6699473_ 06385.hl7_231

HL7 23 ADT_A03_ARMC_782111073 06383.hl7_231

HL7_23_ADT_A03_ARMC_7899473_ 06384.hl7_231

HL7_ 23 ADT_A03_BIGH_002664 05942.hl7_231

HL7 23 ADT_A03_BIGH 1111111 06392.hl7_231

HL7 23 ADT_A03_BIGH_222222 06387.hl7_231

HL7 23 ADT_A03_STC_777777__06391.hl7_231

HL7_23 ADT_A03_STC_9999999999 06395.hl7_231

Figure 7 shows the configuration of the Target ltimraproperties.

—O——>fp—a—f Gl

tFastFeedWithHLT _jcdintervalTrigger! dintervalTrigaer cmPastFeed@ithHLY _jcdFilesProcessart tHLY 231 FeedData

‘ Properties

x

|2 configuration
s ----- I Pre Transfer Append e J
..... 10 Sequence Mumbering |Target Directary Mame fjceul_datafHL7 _txsfvolume_feed J
----- 12 Post Transfer Target Directory Mame |z Pattern Mo J
{5 General Settings Target File Mame HL7 _23_aDT_A[0-9][0-9]_[a-Za-z0-9_T*.Hl7_231 [
{3 Target Location Target File Mame ks Pattern Yes J

Figure 7 Target Location properties

| copy files to be picked up from another directeoyrather then preserving them |
delete them. Post Transfer properties ensureitbatdre deleted once processed.
Figure 8 shows these properties.

—O——fbe @ =

cmFastFeedhWithHLT _jcdintervalTrigoger aintervalTrigger cmFastFeedadnithHLT _jodFiles

‘ Properties
=) configur ation [=IProperties
Pozt Directory Name Yaf
Post Directory MName |s Pattern Yes
Post File Mame “af
Post File Mame |= Pattern Yes
. = Target Location Post Transfer Command Delete

Figure 8 Post Transfer properties

The final component in the connectivity map is aSJWopic. There is no current
subscriber to this topic and there are no duralibsaibers so all messages that are
sent to it will be silently discarded by the JSMplementation. This is what | need for
this example in order to see the behaviour of ilkgfocessor without having to
concern myself with cleaning up or processing hadsiof messages. A proper
solution would actually do something with the meesa

Summary

Occasionally one needs to pick up and procesga larmber of files, on the order of
hundreds or thousands. With the Batch Inbound e¥YG#/Adapter it is not possible
to pick up more then one file per poll. The Batadtcél File, if triggered by some

event other then an appearance of a file in atdingcperhaps a Scheduler trigger of a

manual trigger, with correctly designed logic caagess many files in a single
invocation.

This document discussed a Batch Local File-baskdico that effectively processes
hundreds of files in a single pass.

An archive with 660 HL7 v2 files and the projecpext is available for download at
http://mediacast.sun.com/users/Michael.CzapskitBadia/ProcessingHundredsOfFi
leWithBatchAdapter.zip/details

