JCAPS 6 Update 1 Repository Projects
| mplementing WS-Security using JWSDP 2.0

Michael.Czapski@sun.camuly 2009
Release 1.3, Updated July, 2009 for JCAPS 6 Upb&epository environment

This document contains material fréhatrice.Goutin@sun.camwho documented his experience implementing aeregersion of
this solution on Windows XP and Solaris. His cdnition is acknowledged with thanks.

As at release 6 Update 1, Java CAPS Repository doegprovide support for WS-
Security standards. The JBI and EJB side of thusgsMetro so all is well there.

To implement any kind of SOAP message manipulatiodava CAPS 6 Repository one
must build one’s own SOAP Message Handletisn://docs.sun.com/app/docs/doc/820-4
314/icapssoapmsghlr_intro?a=viewo Java CAPS 6 Repository effectively does not
implement the SOAP Message Security 1.0 [WSMS dp@tification.

| have not taken the time to work with SOAP MesshHigadlers. This document is not
about implementing WS-Security through SOAP Mess4aedlers.

This document describes how support for Web Sesv@zurity X.509 Certificate Token
Profile [X509TP 1.0], therefore Signed and Encrgp®AP Messages [SOAP 1.1], as
well as support for the Username Token Profile loarprovided in Java CAPS on a “all
care and no responsibility” basis, using techn@sghat came from the Sun Java Web
Services Developers Pack version 2.0 [JWSDP 2.0].

Please note that JWSDP 2.0 has since been refdigcédX-WS-based technologies, is
deprecated and is no longer available for download.

Please note that | disabled the Access Managetifumadity so the password provided in
the Username Token will not be validated. | digtheécause it was too much trouble for
me to recreate and document the AM installatiortH@ note.

Noteto the Reader

The material presented in this document is nobchictory in nature. Good knowledge of
Java CAPS is assumed. In particular, it is assuthatdthe implementer can deal with
platform differences, such as path naming convastion Windows and Unix, can find
his/her way around a Java CAPS project and knows toomodify IS properties, log

levels, etc., without having to see a cartoon fitetsng the process.

Knowledge of SOAP and WS-Security is not assumddh®mimaterial does not provide
tutorial on either.

Material in this document describes the use of togqaphic techniques and technologies.
Consider the implications of export and re-exparigies on your use of this material.
Consider these things also if you are contemplatraking this material available to
parties outside SMI. Please not that discussing poss$essing cryptographic software

may be illegal in some countries. It is your respbifity to ensure you don't get into
trouble for using this material.

If you find errors or omissions please drop me m@aieso | can correct them. If you find

this document useful please drop me an email sm lgauge if putting time, mostly my
own, into projects like this is worthwhile.

Table of Contents

IMOTIVALION ...t ettt 1
NOte t0 the REAENcoiueiiiiiiie e 1
Standards SUPPOITcoveiiiieeieee e st sreeeseeeeeeas 2
REIEASE NOLES ...t e 3.
IMmplementation NOTES...........ocuieivir et 3
Cryptographic Stores and ODJECLSieeeeceeeevivesiie e 3
Web Services (trivialiSing) reCapcveeeeeeeeerieeesieesreeesieeseee s 4
WS-Security (trivialiSing) INErO.........cocvveecereeereesee e seee e 4
Example SpecificS/LImItationsccooveeceeeicieeeiin e 5
Pre-TEQUISITESeeiieiiiiiee et sttt e s 6
Do not Install Access Manager at alccoeecevieeeieeinieescie e 9
IMport the EXamPIEoooeeeie e 9
Review the EXamPIecocvveiieeiies o e 10
CHENT. . 10
SV . 13
COMPONENTS ... e e e s 14
RUN the EXaMPIE......ccceeeee e 15
LOOK UNdEr the COVEISoiiiiiiiiie e 15
The 10g file .. 15
The XWS Security Configuration..............c e e eeeeeeeeeeee.. 16
CHENT. . 16
SV e e 17
Username Token Profile with Encrypted PlainTextspasd.18
Final remarksS ..o 21
REFEIENCES ...t 21

Sandards Support

See [JWSTut 2.0] Chapter&ecuring Web Serviceand [JWSTut 1.6] Chapter 6,
Introduction to XML and Web Services Securifjoes XWS-Security Implement Any
Specifications?’for a discussion of the Web Services Securitydaeas [JWSDP 2.0]

supports. See below for what the example implentientadescribed here does not
support.

To summarise:

% XML Digital Signature (DSig) using JSR-105 (XML Digl Signature APIs), see
http://www.jcp.org/en/jsr/detail?id=105

% XML Encryption (XML-Enc) using Apache's XML-Enc ingmentation, see
http://www.w3.0org/TR/xmlenc-core/

s XWS-Security Framework APIs - XWS-Security EA 2.@ydes partial support for
BSP (complete support is planned for the FCS rele&2.0.)

Release Notes

This release, 1.3, is a re-hash of the previowesasel for use with Java CAPS 6 Update 1
Repository-based projects without Access Manager.

| mplementation Notes

Note that this implementation does not use the ippbn Server for web services
security but rather implements standalone SOAP MgssSecurity infrastructure,
referred to in [JWSDP 2.0] as XWSS Security Implatagon. This implementation uses
an XML-based security configuration file to providiee runtime infrastructure with
information necessary to apply appropriate secumigthods to messages to be secured,
and to validate security token of messages to lidatad. [JWSTut 1.6] discusses this
matter in detail. This document discusses spec#gpects of XWSS Security
Configuration as required for clarity.

SAML Token Profile [SAML 1.0] support exists in tisense that | have not disabled the
code provided by the JWSDP 2.0 sample but it hadeen tested as | don’'t have the
SAML infrastructure to use or the knowledge to duwhe at this time.

Support for the use of Symmetric Cryptography existt has not been tested.

The implementation described in this document giiee Java implementation using the
Java Web Services Developer Pack 2.0 out of Jaltal®oation.

Cryptographic Soresand Objects

Java security implementations use “keystores” twestryptographic objects such as
private keys and certificates. A keystore typicaltyntains one private key and one or
more certificates. In addition, java cryptographyplementations use a ‘special
keystore, called a “truststore”, which typicallyntains certificates of all distinguished
Certification Authorities such as Verisign, RSA ety and the like. This truststore can
also contain certificates of other parties.

Keystores and truststores are used for Java cmgyby whether it relates to Secure
Sockets Layer, XML Digital Signatures, XML Encrymti or whatever else needs a
X.509 certificate or a private key. This documeasdatibes the use of cryptography for
SOAP Message security so expressions used may im@gme that the cryptographic
object stores are “special” and useable for thgpqse only. This is not the case.

For the purpose of the JWSDP-based implementatidkeyatore, as distinct from a
truststore, is a cryptographic object store thatt@ios the private key of the party that

digitally signs and/ordecrypts SOAP Messages (a private key of the subject party
required for both of these things). A truststora, tbe other hand, is a keystore that
contains certificates (with their embedded pubbkyd) of the party thancrypts SOAP
Messages and/orerifies Digital Sgnatures over SOAP Messages (public key of the
“remote” party is required for both of these thingdNVSDP also supports the use of a
“symmetric keystore” since it is possible to usenmyetric cryptosystem for SOAP
Message security. | have not spent time looking this side of things so | will not write
about it. An interested and knowledgeable readiwvited to add to this document.

The key notions to remember about public key crymphy are:

% A party digitally signs using its private key

« A party decrypts using its private key

s A party verifies digital signatures using signingenfote) party’s public key
(embedded in the X.509 Certificate)

% A party encrypts using decrypting (remote) partgisblic key (embedded in the
X.509 Certificate).

To belabour the point in the interest of clarityparty only uses its own private key,
which it never discloses to anyone, and it usegropiarties public keys embedded in
other parties X.509 Certificates. Thus it is neapgdor a party to obtain its X.509
Certificate and distribute it to everyone else whito use it.

This document does not discuss how to create @iroptivate keys, X.509 Certificates,
keystores, truststores or symmetric keystoressdtumes that the implementer has these
things or knows how to get them. If one has anaggetting X.509-related cryptographic
objects | am happy to provide, at a short noticg w&ithout a fee, a set or two for non-
production use. Email me Michael.Czapski@sun.cant cannot, at this time, provide
symmetric keystores or objects that go into thesme,above for why.

Web Services (trivialising) recap

A web service is an implementation of a HTTP PO&quest, where the ‘form data’ is

actually a XML instance document, and a HTTP respdhat may have a body that is a
XML instance document. The XML documents involvedthe exchange must conform

to the SOAP 1.1 or the SOAP 1.2 specification (SAAPsupports HTTP GET as well

as HTTP POST - the implementation described heaks @xclusively with SOAP 1.1).

Whilst exchanges over HTTP can be secured usingSdgwire Sockets Layer (SSL)
Protocol (that includes the TLS development) targpicthe transport, this is not a part of
the WS-Security protocol stack and is not consdiee be providing web services
security.

W S-Security (trivialising) intro

WS-Security specifications use the SOAP Heademskia mechanism to add security
information to SOAP messages. The Username TokefldPadds a Username header.
The SAML Token Profile adds the SAML Token headdne digital signature adds a
Signature header, etc..

Any number of WS-Security mechanisms can be usgdtiter to provide the SOAP

Message with greater or lesser ‘security’. One a@oatld a Timestamp header, a
Username Token header, a signature header andy,fioae would encrypt the SOAP

Body, or parts thereof, and the password part efllsername Token. The timestamp
would mitigate or eliminate the possibility of gtay attack. The username token would
be used to provide the credentials that could ke dsr authentication. The digital

signature could ensure integrity of the SOAP Messagd facilitate implementation of

non-repudiation of send and sender authenticaioicryption would ensure privacy of

the password and privacy of the complete SOAP Bodyhe appropriate parts thereof.
None of this, except encryption of the SOAP Bodjeds the actual payload, i.e. the
SOAP Body and data it conveys. Unlike the SSL-sstutransport between two

endpoints, SOAP Message security survives relymguigh intermediaries intact as it is
applied to the message and not to the transponnetha

A WSDL definition, defining an unsecured web seeyiavill break if encryption is
applied to the input or output message since thel X®presentation of the SOAP
Message will be altered by encryption. ConversalyVSDL definition that defines an
encrypted SOAP Message will be useless in detengiihow the unencrypted message
actually looks like, therefore what the real indéed to the web service is. WS-Policy and
related add extensions to WSDL to define securdlc@s and suchlike. Tooling and
runtime support for these varies. At any rate, asas | am concerned a web service
exists as soon as there is an implementation afhigther or not a WSDL definition
exists and whether or not it is registered in a UBBgistry.

Example Specificg/Limitations

JWSDP 2.0 provides an infrastructure for securi@iAB Messages, sending them over
the wire, receiving them over the wire and verifyitheir security attributes, amongst
others. The example implementation described is doicument only deals with SOAP
Message security. The sending and receiving of S®WKBsages is accomplished using
the HTTP eWay. This is not only easy enough bub aslucational. It clearly
demonstrates the use of the underlying HTTP tramspa demystifies, | hope, some of
the ‘magic’ that got piled up on top of the ratlsanple concepts. It also allows one to
clearly see that SOAP message exchange can be pltsloed using any transport
mechanism, for example JMS or SMTP, without affegtihe WS-Security attributes and
the validity of their application.

Whereas a sender uses its private key for digigglirsg and/or decryption regardless of
who the remote party is, each remote party will ehav different public key/X.509
Certificate. Since the example client uses onerggaronfiguration file, whose name is
indirectly hardcoded, it can only exchange enciyplata with a single service. If the
same client were to be used to exchange encryptiedwdth multiple services, the client,
or the way a security configuration file is obtadnevould have to be changed. The
service implementation assumes that it will sencrygted responses to a single client.
This is, in general, an invalid assumption sinceseavice is normally expected to
accommodate multiple clients. To do so the semiitehave to get smart about figuring
out who sent the request, how to work out the X.6@¢tificate alias of that party and
how to modify/obtain/derive a security configuratidile that defines WS-Security
methods to apply to SOAP responses to be sent toattkat requestor. These kinds of
modifications are very much dependent on the castéx which the client and the

service operate and are, at any rate, fairly sinmpdalifications to the client and the
server JCD code. The implied infrastructure reqlite support security instrument
storage and configure communication propertiesiBpéc multiple partners are more an
eXchange product implementation domain and do fffectathe validity of the WS-
Security implementation provided in the example.

Some suggestions for the client support of multgglevices:

« Have multiple configuration files, one for each wse®. Have the business
process/collaboration, upstream from the ws-secutieént, work out the appropriate
file to use based on the destination of the mesaadgyass the path to that file to the
ws-security client.

+ Have a single configuration file. Have the JCD/Bpstbeam from the ws-security
client work out the X.509 Certificate alias to usased on the destination of the
message. Have it read the security configuratienaind do an on-the-fly substitution
of the X.509 Certificate alias required for encigpt Use the resulting file for the
request.

Some suggestions for the server support of multlmts:

s Modify the request/response processor (the thireg dbrver invokes using JMS
Request/Reply) to return a configuration file gpath to the configuration files as a
JMS Response message user property based on tieatcohthe request message or
whatever. Modify the server JCD implementationtsat it uses that configuration for
encryption of the response to the request.

For the initial implementation of the sample prégecreate a directory /tmp/wssec. If you
are on Windows make sure the hierarchy is createth® same drive as the one where
your JCAPS runtime is installed. If you fail to do you will have to modify paths in a
number of places.

Note about path specifications:
I run Windows XP. On Windows XP Java does not eénether you use forward slashes {/”
or backslashes “\" for path separators so | useftinward slashes “/”. Patrice includgs
Windows and Unix variants of paths such that Winsigaths start with the drive letter, for
example C:/tmp/wssec, and Unix does not, for exarfipip/wssec. | found that as long as the
path in question is based on the same drive adabe CAPS logical host, that needs to Use
the path, specifying drive letter is unnecessanst@mnarily, then, | specify Unix-like paths,
regardless of the platform, make a specific comntigatt this is happening, and only specjfy
drive letter when nnecessary. | also assume tlapérson who is working with the stuff
documented here knows enough to cope with sucksssu

Extract cryptographic objects and stores, configomafiles and data files from the
WSSecSampleProject_1.3 JCAPS6UL.zip archive td//tmp

Subsequent discussion will assume the objectsnaaehierarchy under /tmp. If they are
not, you will need to modify paths as appropriate.

In the /tmp/wssec/jars you will have 3 JARs lisiethe next section.

In the /tmp/wssec/crypto you will have the follogisubdirectories with the following
cryptographic objects:

ltmp/wssec/crypto/asndr
asndr.pkcs12.keystore.p12
asndr.pem2.crt
asndr.pem.csr
asndr.pem.private.key
asndr.pem.private.key.noenc
asndr.pem.crt
asndr.pem.cer.stunnel
asndr.pem.cer
asndr.jks.keystore
asndr.eXchange.pkcs12.keystore.pl2
asndr.der.crt
asndr.conf

ltmp/wssec/crypto/arcvr
arcvr.pkcs12.keystore.p12
arcvr.pema2.crt
arcvr.pem.private.key
arcvr.pem.private.key.noenc
arcvr.pem.csr
arcvr.pem.crt
arcvr.pem.cer
arcvr.pem.cer.stunnel
arcvr.jks.keystore
arcvr.eXchange.pkcs12.keystore.pl2
arcvr.der.crt
arcvr.conf

ltmp/wssec/crypt/ca
DemoCA.pem.crt
cacerts

The CA subdirectory contains the X.509 Certificd@emoCA.pem.crt) of the CA
(Certification Authority) that issued the X.509 Gkcates for the asndr and the arcvr
parties. The cacerts object is the JKS Keystorth thie password of “changeit” that is a
copy of the cacerts keystore normally distributathwhe JRE with the asndr and arcvr
X.509 certificates added. This store will be usedhe “truststore”.

The cryptographic objects in the asndr and araecthries are as follows:

XXxx.pkcs12.keystore.pl2
A PKCS#12 Keystore containing the xxxx's encrypiivate key and the
corresponding X.509 Certificate. The keystore plssge is the party name
doubled so for the asndr the passphrase will bdrasndr and for the arcvr it
will be arcvrarcvr.

XXXX.pem2.crt
A PEM-encoded X.509 Certificate of the party witbmanOreadable section
listing certain important details of the certifieat it is a text file — have a look.

XXXX.pem.csr
A PEM-encoded Certificate Signing Request — thigct is not used once the
CA issues the certificate

XXXX.pem.private.key
A PEM-encoded, encrypted Private Key. The decoyptpassword is party
name doubled so for the asndr the passphrase &idsndrasndr and for the
arcvr it will be arcvrarcvr.

XXXX.pem.private.key.noenc
A PEM-encoded, unencrypted Private Key.

XXXX.pem.crt
A PEM-encoded X.509 Certificate of the party

XXXX.pem.cer.stunnel
A PEM-encoded X.509 Certificate of the party comstied so it is acceptable to
the stunnel tool. | don’t remember what the subitierences are anymore.

XXXX.pem.cer
The same object as xxxx.pem.crt but with differiglet extension. Some tools
like CRT others like CER — the content is the same.

xxxX.jks.keystore
A JKS Keystore-equivalent of the PKCS#12 keystdieis keystore contains
the private keys and the corresponding certifichtine party. Passphrase is the
same as for the PKCS#12 keystore.

xxxx.eXchange.pkcs12.keystore.p12
A PKCS#12 keystore built so the eXchnage 5.0.stag manager GUI in the
5.0.5 “environment’ likes it. The differences beemethis keystore and the
‘regular PKCS#12 keystore are subtle. Use thisskae when you need a
PKCS#12 keystore. Passphrase same as for the.others

xxxx.der.crt
A DER-encoded X.509 Certificate of the party. Gomé the same material as
the PEM-encoded version. The encoding is differBER is a binary format.
There is no use looking at the content of this fillost tools accept both PEM-
encoded and DER-encoded certificates. Some CAg isae others issue the
other.

xxxx.conf
The OpenSSL configuration file used to crate atifimte Signing Request.
Once the certificate is issued there is no usehisrfile except to look at how
the request was generated.

You can use either a PKCS#12 keystore or a JKStkeysvhere a keystore is required
when working with Java 1.5. You can use your owivgbe keys, certificates and
keystores.

In /tmp/wssec/config you will have the followingjebts:

arcvr_receiving_current_config.xml
The ws-security configuration for the receivinguest side of the web service
provider implementation. This configuration fileeggfies what WS-Security
attributes are required to be present in the SOARddge received from the
client. See JWSDP 1.6 Tutorial for elaboration drathe structure of this file
can be and what implication different componentgehtar the verification of
WS-Security attributes.

arcvr_sending_current_config.xml

The ws-security configuration file for the sendirgsponse side of the web
service provider implementation. This configuratible specifies what ws-
security attributes will be applied to the respo8&¥AP Message going back to
the client.

asndr_sending_current_config.xml
The WS-Security configuration file for the clienBoth the ws-security
attributes to be applied to the outgoing requeststhe ws-security attributes to
be verified on the incoming response are specifiddis configuration file.

WSSecClientFeedEat.properties
The client properties file specifying where theioas cryptographic stores are,
what are their types and passwords, what ws-sgotwitfiguration file to use
and what is its path, as well as what the serviBd i and what SOAPAction,
if any, to add to the outgoing HTTP headers.

AMConfig.properties
New in the 1.3 release, the Access Manager idldidaso this file serves no
useful purpose.

In /tmp/wssec/exports you will find the export bétproject, .

Do not Ingtall AccessManager at al

The Username Token Profile used to be validatedgudie Access Manager. In release
1.3 | have disabled this functionality becausedi midt have the tome or the inclination ot
reproduct AM installation and document it. Usernaamel password provided in the
Username token are not validated. Feel free tonse&ie AM or provide some other
credential validation mechanism.

| mport the Example

Import project
ltmp/wssec/exports/ IWSDP20_WSSecurity Example_JCBPS6U1.zip

Note that the Web Service External System in theonted wsSecEnv Environment is
configured with my hostname and port number. If go&l going to use it you will need to
change the host name and port number to fit witlr ymvironment. Note, too, that the
UDDIServer external is also configured to commutdoaith my UDDI Registry. You
will need to change the address, port and seraetext to fit with your environment if
you intend to use it. Note also that | have a EW¢ay, called /tmp/wssec/data, configured
to use /tmp/wssec/data as the directory in whies fare/are to be. If you are to use it you
may also need to change the paths. The same apiplies wsSec_SBYN_IS Integration
Server configuration in the wsSec_LH Logical Host.

Review file paths used in the WSSecClient and WS8eaceService

+« Edit Java classes JWSDP20/WSSecClient/jcdWSSedE&edEat to ensure the file
path matches your deployment target platform ($dlanux or WindwsXP)

+« Edit Java classes JWSDP20/WSSecServiceService/j8@d&erver to ensure the file
path matches your deployment target platform ($dlanux or WindwsXP)

« Edit the /tmp/wssec/config/SSecClientFeedEat.ptageeto verify or modify
» KeystorePath,

TruststorePath,
SymkeystorePath,
SymkeystorePassphrase,
SecConfigFilePath
ServiceURL

VVVVY

Create a deployment profile dpWSSecClient under
IWSSecurityProject/JWSDP20/WSSecClient that inctudeoth connectivity maps.
Automap, build and deploy.

The ServiceURL property in the WSSecClientFeedEaspgrties file, living in
ltmp/wssec/config/, uses my host and port. You megd to modify the port to reflect
your environment.

Create a deployment profile dpWSSecServer under
IWSSecurityProject/JWSDP20/WSSecServiceService thaludes both connectivity
maps. Automap, build and deploy.

Review the Example

The complete example implementation looks like:this

= — Secure Secure — i
Bl::sl:gs(ss qRI(?:\IIi\;i(Sec Web Service Web Service q’:s/;l;:oe\ll\rlr?bs B;Z':/Z?s
I < Client Server e <

Secure Web Service (Client) - WSSecClien Secure Web Service (Server) - WSSecServiceService

All client-side security work is done in the SecWeb Service Client. All client-side
business work is done in the Business Client.

All server-side security work is done in the Secweb Service Server. All server-side
business work is done in the Business Server.

Client

A Business Client prepares the message to be gsadbasiness request and, when the
response comes back, processes the business respomsthe Business Client prepares
the business request and what the business requoisilly looks like is up to the
Business Client and of no interest to the Securd \Service Client. What happens
between the time the business request leaves tsendas Client and the time the
business response comes back is taken care of éoyGécure Web Service Client
implementation. The Business Client and the Setvieb Service Client communicate
via a JIMS Queue using the Request/Reply model.

SOAP Request
Timestamp, Username Token, Signature, Encryption

SOAP Response
Decryption, Signature, Username Token, Timestamp Verification

Access Manager Directory Server
Business SLIAi
) gRRWSSecClient Web Service
Client L X
> Client

Seryice
Configuratio
n Properties
File

|
[

Since at least encryption is receiver-specific igit very unlikely that two distinct
recipients will have the same private key) the Bess Client indicates to the Secure
Web Service Client the security configuration amgptographic stores to use for the
specific recipient. It does so by means of a Sec@onfiguration properties file, whose
name and path, in the example, are hardcoded iBubmess Client.

(See /tmp/wssec/config/WSSecClientFeedEat.proggrtie

keepRefreshing = true

the keystore must contain the private key to use for digital signing

and decryption

KeystorePath = /tnp/wssec/ crypto/ asndr/asndr. eXchange. pkcs12. keystore. p12
Keyst oreType = PKCS12

Keyst or ePassphrase = asndrasndr

the truststore nust contain certificates which
and for encryption

TruststorePath = /tnp/wssec/crypto/cal cacerts
Trust storeType = JKS

Trust st orePassphrase = changeit

The host and port will very likely be
different in your environment — if it is
please change the UF

SynkeystorePath = /tnp/wssec/ crypto/client-synmnke
Synkeyst oreType = JCEKS
Synkeyst or ePassphrase = changei t

SecConfigFilePath = /tnp/wssec/confi dr _sending_current_config. xni

Ser vi ceURL
SOAPAct i on

http://1 ocal host: 18001/ dpWsSecSer ver _servl et _wssecserver/wssecserver

The Secure Web Service Client parses the indigatt@perties file, extracts attributes of,
and paths to, the cryptographic stores, extracts phath to the XWS Security
Configuration file and extracts the Web Service U&id SOAP Action header value.
Cryptographic stores are used to create an instinttee WSSecurity object. The XWS
Security Configuration and the business payload ased as arguments to the
WSSecurity object’'s makeAndSecureSOAPMessage() adethat creates and secures a
SOAP Request message.

Note the SecConfigFilePath property. It indicatdsclw WS-Security configuration file
is to be used. That file, in turn, specifies whatdkof WS-Security is to be applied to
outgoing messages and, in this example, what W8fBeds to be expected on the
incoming responses.

A HTTP Client eWay is then used to send the seB@AP Request and receive a secure
SOAP Response.

If service invocation fails, exception informati@extracted from the SOAP Fault or the
HTTP response, packaged and returned to the Bsi@kent with the indication of
failure.

If service invocation succeeds, the Secure Webi&emlient verifies Secure SOAP
Response.

If it was encrypted, the response is decrypteddipieal signature, if any, is verified, and
the timestamp, if any is verified. Digital signauis verified using the alias of the
sender’s X.509 Certificate. This certificate isked up in the “truststore” keystore.

If SOAP Response contains a Username Token stamedfort is made to validate the
user. Any user with any password will do. Feel freenodift the implementation to add
your own AAA.

If any of the security verification activities fadl failure message, together with the
indication of failure, is returned to the Busin€gent.

If all verification activities complete successfulthe content of the SOAP Payload
(Business Response), together with the indicatiosuocess, is returned to the Business
Client.

Success or Failure condition is returned as a JkPegoty with the name of STATUS
whose value can be one of SUCCESS or FAILURE.

Username of the user identified in the Usernameiadtanza, if any, of the SOAP
Response, is conveyed back to the Business Clgeat WS Property with the name of
SENDER_USERNAME. If Username is not available, fexample because the
Username Token was not present, the value of tropepty will be the literal -Not
Available-

The Distinguished Name (DN) of the signer, if aofythe SOAP Response, is conveyed
back to the Business Client as a JMS Property thigthname of SENDER_DN. If DN is

not available, for example because the SOAP Respoas not signed, the value of this
property will be the literal -Not Available-

Creation and securing of the SOAP Request andicetidn of the SOAP Response are
independent. Each method accepts a XWS Securitfigtoation to tell it what to do.
The example uses the same configuration file ferdient for simplicity and because the
“securing bit” of the XWS Security Configurationignored by the verification code and
the “verification bit” of the XSW Security Configation is ignored by the creation and
securing code.

Server

A Business Server receives a business requesggses it, produces a business response
and delivers it to be sent back to the requestew lthe Business Server interprets the
business request and what the business responsdyatdoks like is up to the Business
Server and of no interest to the Secure Web SefSgreer. How the request gets to the
Business Server, and how the response gets bable teequester, is taken care of by a
Secure Web Service Server implementation.

The Secure Web Service Server and the BusinesgrSasmnmunicate via a JIMS Queue
using the Request/Reply model.

SOAP Request
Decryption Signature Username Toker Timestamp Verificatior

SOAP Response
Timestamp Username Toker Signature Encryption

Access Manager < Directory Server

Secure
— Web Service — — Busi
Server gRRToWebServicelmp L
<— (Service K— < Server
Configuration]

Since at least encryption is receiver-specific igit very unlikely that two distinct

recipients will have the same private key) the Bess Server ought to indicate to the
Secure Web Service Server the security configuradind cryptographic stores to use for
the securing the response after parsing the reqmelstiguring out where it comes from.
In the example implementation this is not the c@dkcryptographic stores and XWS
security Configuration information are hardcodedha Secure Web Service. Frankly, |
did not feel like developing trading partner mamagat framework for this example. At
any rate the Secure Web Service Server helps studre implementation by providing
the Business Server with the Distinguished Name)(2Nd/or the Username of the
requester if the request was digitally signed er idquest carried a Username Token. If
the request was not digitally signed the Businesse$ will have to figure out where the
request comes from some other way, perhaps byrgaki the content of the request. If
the request contains the Username Token the BssBewsver is also provided with the
username used in the token. Password is not prv¥ateobvious reasons.

If verification of WS-Security on the SOAP Requésails the Secure Web Services
Server will return a SOPA Fault indicating, moreless intelligently, what the problem

was. For different problems it will say differehirnigs but do not rely on the SOAP Fault
text at the client side to help you figure out wiant on at the server side — it was not
intended for that — use the log instead.

If the verification succeeds the Business Servenpmment will be invoked using JMS
Request/Reply method, passing it the SOAP Bodydaayand two JMS User Properties.
One of these properties will have the name of SERDEN and the value of the
Distinguished Name of the Signer of the SOAP Regjuésany, of the literal -Not
Available-

The other will have the name of SENDER_USERNAME #malvalue of the Username
form the Username Token, if any, or the literal t d@ailable-

Upon return from the Business Server the JMS Messaiyirned will contain the XML
document to send as the response payload in the>XEodly.

The Business Server, as implemented in the samigle return two JMS User Properties,
with the same name and corresponding values agiloksdcabove. The Secure Web
Service Server does not use these values but gonseivable that it could use the
Username or the Distinguished Name to obtain tedartial for the Username Token or
the X.509 Certificate to encrypt the response toséet out as the SOAP Response.
Implementing these kinds of things is left as aareise for the interested reader.

Components

There are 5 subprojects under the WSSecurityPfdyw&DP20.1 (there is also
WSSecurityProject/JWSDP20 — ignore it):

< JARs_3rdParty — contains &° Party JAR, xws-security.jar, directly used in the
example, and all the JARs also found in the /tmpas&IARSs folder.

s JARs_Ours — contains the JAR with the WSSecuriya &@de developed specifically
for this implementation

s WSSecClient — contains a Feeder and Eater prdpattttiggers the WS-Security
Client as well as the WS-Security client itself.eTlheeder/Eater is triggered by a file
containing a XML purchase order document. Using JR&§uest/reply it invokes the
WS-Security client that parses the security comfigjan file, applies the ws-security

attributes as directed, send the request, rectieegesponse, verifies the ws-security
attributes and returns the response to the Feeater/E

s WSSecServiceService — contains the WS-Securityi@ethat receives the request
from the client, validates WS-Security attributasyokes a business function
implementation and formulates, secures and senglspanse to the client.

+ Miscellaneous — contains the input file to feed fieder project and a batch script
that renames it to the correct name for the feeder.

You can change or toss the Feeder/Eater. You canpiement the jcdWebServicelmpl
to do something more imaginative/useful than whhe texample does. The
jcdWSSecClient code can be left alone as it dodshawe any dependencies on the
structure of the XML message it secures or whosergyg attributes it verifies. Similarly,
the jcdWSSSecServer is ignorant of the businessages whose security attributes it
verifies and to the responses to which it appliesugty. The business side of the
exchange is handled exclusively in the jcdWSSeoffeedEat and jcdWebServicelmpl.

The jcdWSSecClient is flexible enough to be usedsa3he jcdWSSecServer has the
paths to security and cryptographic store fileslbaded. It will need to be modified for
use outside the example.

Run the Example

Rename the input file, /tmp/wssec/data/po_inputximlto po_input.xml

Observe, after a few seconds, the output file ptpuwiul.xml appearing in the same
directory as the input file. This file will eith@ontain a copy of the purchase order with
an extra item added or an XML structure with theoeor exception message. In the
latter case try to figure out what went wrong and@ct configuration issues.

L ook under the covers

Thelogfile

Add the following to the Integration Server -> Cigindration -> Logging -> Log Levels:

com.sun.xm| FINEST
com.sun.xml.messaging FINER
com.stc.connector.httpadapter FINE
org.jcp.xml FINEST
org.apache.xerces.dom FINE
com.sun.xml.rpc FINEST
com.sun.org.apache.xml FINEST
javax.xml.messaging FINER

In the server.log you will see encryption, digisanatures, transforms, etc., applied to
the message. See an annotated excerpt in Appenflix tARe gory details of timestamp
application, digital signing, encryption, decryptj@and verification, all 80 or so pages of
it. Riveting stuff. The excerpt comes from an eartelease of the example and does not
contain AM entries.

The XWS Security Configuration

Client

The sample XWS Security Configuration for the djewhich you will find in
Itmp/wssec/config/asndr_sending_current_config.omks similar to this:

<xWss: SecurityConfiguration

dunmpMessages="true"
xm ns: xwss="http://java. sun. com xm / ns/ xwss/ confi g" >
<l--
Note that in the <Sign> operation, a Tinesta
in the security header and signed by defaul
-->
<xwss: Ti mest anp ti neout ="2000000" />

is exported

<xwss: Si gn i ncl udeTi mestanp="true">
<xwss: X509Token
keyRef erenceType="Di rect"
certificateAias="asndr"/>

</ xwss: Si gn> [] []

X509Token certificateAias="arcvr"/>
KeyEncrypti onMet hod

al gorithme"http://wwm. w3. or g/ 2001/ 04/ xm enc#r sa- oaep- ngf 1p"/ >
Dat aEncr ypt i onMet hod

al gorithn="http://ww. w3. or g/ 2001/ 04/ xm enc#aes128- cbc"/ >
EncryptionTarget type="qgnane" value="itens" contentOnly="fal se"/>

EncryptionTarget type="gnane" val ue="bill To" contentOnly="fal se"/>
<xwss: EncryptionTarget type="gnane" val ue="shi pTo"/>
<XWss: EncryptionTarget type="xp | ue=".// SCAP- ENV: Body" />

</ xwss: Encrypt >

<xwss: Encrypt >
<XWSS:
<XWSS:
<XWSS:

<XWSS:
<XWSS:

<xwss: Requi r eEncrypti on>

<xWss: EncryptionTarget type="qgnanme" val ue="
<xWss: EncryptionTarget type="qgnanme" val ue="
<xwss: EncryptionTarget type="gnane" val ue="

shi pTo"/>
bill To" contentOnly="fal se"/>
itens" contentOnly="fal se"/>

</ xwss: Requi r eEncrypti on>

<xWss: Requi reSi gnat ure/ >
<xwss: Requi r eTi mest anp nmaxCl ockSkew="30" ti mest anpFreshnessLi nm t="2000000"/>

</ xwss: SecurityConfi guration>

Secure outgoing SOAP Message:

1. Add a timestamp with a large timeout. In a mordisga scenario one would
make the timeout more realistic.

Sign the entire message body using asndr’s prikate and making a direct
reference to it in the Signedinfo header structlibe private key will come from
the keystore whose location, type and passphraspravided elsewhere (see the
client configuration properties file).

Encrypt the message.

The recipient’s X.509 Certificate, identified byetlalias “arcvr”, will be obtained
from a truststore whose location, type and passehaiee identified elsewhere.
Use the specified algorithms for encryption of dag¢a and the encryption key.
Encrypt parts rooted at “items” and “billTo”, incung the “items” and “billTo”
nodes themselves (contentOnly="false”), parts réate“shipTo” (content only —
leave the actual tags intact), and finally therenfSOAP Body.

2.

oo

Verify the incoming SOAP Message

7. Require that the incoming message to have thewollp parts or their content
encrypted. Use own private key from a keystore whtxcation, type and

passphrase is specified elsewhere. The keystarpescted to contain only one
private key and it is expected to be the correivigpe key.
8. Require that the message body be timestamped gineldsi

Note that what is encrypted in the outgoing messaget the same as what is expected
to be encrypted in the incoming message. Sinceefgonse needs not bear resemblance
to the request what is included in each may diffied what is required to be encrypted
will very likely vary. In this example the entir@dy of the message is encrypted for the
outgoing message but is not expected to be enchypt¢he response. The sever side
must apply corresponding mechanics. This will beedby an out-of-band agreement
between parties.

Server

The sample XWS Security Configurations for the serwvhich you will find in
ltmp/wssec/config/arcvr_receiving_current_configlxm and
Itmp/wssec/config/arcvr_sending_current_config.Xook like this:

<xWss: SecurityConfiguration

dunpMessages="true"
xm ns: xwss="http://java m xm / ns/ xwss/ config" >

<xwss: Requi r eEncrypti on>
<xWss: EncryptionTarget type="xpath" val ue=".//SQOAP- ENV: Body"/ >
<xWss: EncryptionTarget type="qnanme" val ue="shipTo"/>
<xwss: EncryptionTarget type="gnane" val ue="bill To" contentOnly="fal se"/>

<xwss: EncryptionTar get typs=" me" val ue="itens" contentOnly="fal se"/>
</ xwss: Requi r eEncrypti on>;E]a
<xwss: Requi reSi gnat ure/ >

<xwss: Requi reTi mest anp maxCl ockSkew="30" ti mest anpFreshnessLi m t="200"/>

</ xwss: SecurityConfi guration>

Verify the incoming SOAP Message
1. Require that the incoming message to have thewoilp parts or their content
encrypted. Use own private key from a keystore whtxcation, type and
passphrase is specified elsewhere. The keystarpescted to contain only one
private key and it is expected to be the correivigpe key.
2. Require that the message body be timestamped gineldsi

<xwWss: SecurityConfiguration

dunmpMessages="true"
xm ns: xwss="http://java. sun. conl xm / ns/ xws g" >

<xwss: Ti mestanp ti meout ="2000000" />

<xwss: Si gn incl udeTi mest anp="true">
<xwss: X509Token
keyRef erenceType="Direct"
certificateAias="arcvr"/>
</ xwss: Si gh>

<xwss: Encrypt >
<xwss: X509Token certificateAl ias="asndr"/>
<xwss: KeyEncrypti onMet hod
al gorithne"http://ww. w3. or g/ 2001/ 04/ xm enc#r sa- oaep- pgf 1p"/ >
<xwss: Dat aEncrypti onMet hod
al gorithm="http://wwm. w3. or g/ 2001/ 04/ xm enc#aes128-cbc"/ >
<xwss: EncryptionTarget type="gnane" val ue="itens" contentOnly="fal se"/>
<xwWss: EncryptionTarget type="qname" val ue="bill To" contentOnly="fal se"/>
<xWss: EncryptionTarget type="qnanme" val ue="shi pTo"/>
</ xwss: Encrypt >

</ xwss: SecurityConfi guration>

Secure outgoing SOAP Message:

3. Add a timestamp with a large timeout. In a mordiséa scenario one would
make the timeout more realistic.

4. Sign the entire message body using arcvr’'s prikate and making a direct
reference to it in the Signedinfo header structlibe private key will come from
the keystore whose location, type and passphraspravided elsewhere (see the
client configuration properties file).

5. Encrypt the message.

6. The recipient’'s X.509 Certificate, identified byethlias “asndr”, will be obtained
from a truststore whose location, type and passptaee identified elsewhere.

7. Use the specified algorithms for encryption of tdag¢a and the encryption key.

8. Encrypt parts rooted at “items” and “billTo”, inding the “items” and “billTo”
nodes themselves (contentOnly="false”), parts réate“shipTo” (content only —
leave the actual tags intact).

This is only one example of applying combined sigwattributes to a SOAP Message.
For detailed elaboration on what the attributes aigbute values are see [JWSTut 1.6,
pp.148-172].

If both digital signatures and encryption is reqdirto secure the message one would
typically sign the message, or parts thereof, tinen encrypt what is to be encrypted.

There is no reason why the reverse cannot be danlehlave not seen it done. Still, there

might be reasons.

Username Token Profile with Encrypted PlainText password.

A bit of confusion, perhaps, Encrypted PlainTexdgyeord?

PlainText password as distinct from digested passwwehich would be obtained if the
digestedPassword attribute of the xwss:Usernametele@nent had the default value or
the explicit value of true. Server-side implemeiotatdoes not support digested
passwords as | could not figure out how to compadégested password provided in the
SOAP message to the password in LDAP using the gschanager API. So, rather than
sending a digested password we encrypt plaintexdswpard. This is what the
xwss:Encrypt element with the xwss:EncryptionTargétment with the gname of
“Password” does.

<xwss: SecurityConfiguration

xm ns: xwss="http://java. sun. conl xm / ns/ xwss/ confi g"
>

<l-- client does this -->
<xwss: Ti mestanp ti meout ="2000" />
<xwss: User naneToken
nane="wssuser"
passwor d="wsspasswor d"
di gest Password="f al se"/ >
<xwss: Encrypt >
<xwss: X509Token certificateAlias="asndr"/>
<xwss: KeyEncrypti onMet hod
al gorithme"http://ww. w3. org/ 2001/ 04/ xm enc#r sa- oaep- ngf 1p"/ >
<xwss: Dat aEncrypt i onMet hod
al gorithme"http://ww. w3. org/ 2001/ 04/ xm enc#aes128-cbc"/ >
<xwss: Encrypti onTar get
t ype="gnane"
val ue="Passwor d"

content Onl y="true"/>
</ xwss: Encrypt >

<I-- server does this -->
<xwss: Requi r eEncrypti on>
<xwss: Encrypti onTar get
t ype="gnane"
val ue="Passwor d"
content Onl y="true"/>
</ xwss: Requi r eEncrypti on>
<xwss: Requi r eUser naneToken
passwor dDi gest Requi red="f al se"/>
<xwss: Requi r eTi nest anp
maxCl ock Skew=" 30"
ti mest anpFr eshnessLi mi t ="2000"/ >

</ xwss: SecurityConfiguration>

What this says, on the sending side, is:
1. Add a Timestamp Token to the SOAP Header section

2. Add a Username Token to the SOAP Header sectiamt dmest the password

(non-default) and include the nonce (default)

3. Encrypt the Password element content using synmnétecret key) 128-bit

AES-CBC algorithm

4. Encrypt the encryption key using asymmetric (pukky) RSA-OAEP algorithm

and the Public Key from the “asndr” X.509 Certitiea

What this says, on the receiving side, is:
1. Decrypt the content of the Password element usilggprithms and
embedded within the encrypted data block and owraterKey
2. Validate the credentials supplied in the Usernammieeh
3. Validate the Timestamp Token

A sample message will look like this (because tAmespaces are so long one
magnifying glass to read th@t or one gets them wrapped around):

<?xm version="1.1" encodi ng="UTF- 8" ?>
<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Header >
<wsse: Security
xm ns: wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
wssecurity-secext-1.0.xsd"
SOAP- ENV: nust Under st and="1">
<wsse: Bi narySecurityToken
xm ns: wsu="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
wssecurity-utility-1.0.xsd"
Encodi ngType="htt p:// docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
soap- message- security-1. 0#Base64Bi nary"

keys

needs a

Val ueType="http:// docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- x509-

t oken-profil e-1. 0#X509v3"
wsu: | d="XW5SA D- 11602644371611510892409" >

M | Dhj CCAr6gAWM BAgl BLj ANBgkghki GOwWOBAQUFADCBs DEL MAk GA1UEBhMCQVUx DDAKBgNVBAgT
A05TVz EPMAOGALUEBXx MAU3I kb5 MScwd QYDVQRKEX5EZWLY QQEgQRVy dd naWAhd@ vbi BBdXRo
b3JpdHkx| TAf BgNVBAsS TGER bWADQSBTZWN1cni 0eSBEaXZpc2l vbj EPMAOGALUEAX MGRGVE bONB
MSUM wYJKoZIl hve NAGkBFhZt Y3phcHNr aUBzZW/i ZXI vbnQuY29t MB4XDTA2 MDUx Mz ExMIQLMFo X
DTA4MDcy MIEx MTQL MFowg Ywx Cz AJ Bg NVBAYTAK FVYMWCg YDVQQ EwNOU1cxJTA] BgNVBAO THGRz
bnRy | HZpYSBTb21l 29t cGFue SBTeWRuZXkx Dj AMBgNVBAs TBWFzbnRy MRl WEAYDVQQDEW sb2Nh
bGhvc3QxJDAI Bgkghki GOWOBCQEWFWFz bRy QGFwWLNNi eWAuc 3VuLm\vbTCBnz ANBgkghki GOwOB
AQEFAACB] QAWgYKCgYEAL i Ppt/ jj vt fl et +2hUYLeQovc2KLOWh1f Yai Q | 8oVg6l BhNNz+JYnD
nGx3ks Y4r brrs 0 DGhe DUUBWQAs x OFCCv4hFO1GGEYBTnK8nT 8JvY6nM t 6BQ bBJcl 6kl 8j wIKhHu
e@dt 8sOr FYn+Vi Lt 8z4TYbj yuqy Ghr | Fs4X77UECAWEAAaNRVESW AYDVRORBBKWF4EVYXNuZHIA
YXAuc2J5bi 5zdWiuY29t MAWGAL Ud EWEB/ wQCMAAWHQYDVROOBBYEFD+l 7MPNy +ybuScf qUgDI de5
k1QIMAOGCSqGS| b3DQEBBQUAA4I BAMBI 31 HRX85y ZK+Ej XRAaaNh/ 8bvBLcFTEnhcP9Fj hZ64za
bj LQyl DsMz GPSSSul wbJgnuLcG+5Ej vGg4nR0Oz Y7af 0+8i YN ughM vpWigTTVVyqh8YHOYb10p8

4NH LAPCQFNWbgnuRt j 3f 5DEt 8XvnWChCPFKsxy Qr t DAt Z4DCk Mk Xc 2KPI | n/ Df aj f anivvJRCGS
/rw | 8rtfEcsA6MRcj HBMPwy Jv0JJf c UDFT3HdgGVEOXK/ 8RY98Ph0Qa8SuByvLIkl LQIVcvOOOM
Ds H785WRC3 YRN+L600Ox ENEBDMOBRVBNBt Xi wLr 7LxQCnl 3XBf Rrj j WeAAQQCk2zgREY P
</ wsse: Bi narySecurityToken>
<xenc: Encr ypt edKey
xm ns: xenc="ht t p: // www. w3. or g/ 2001/ 04/ xm enc#" >
<xenc: Encrypti onMet hod Al gorithne"http://ww. w3. org/ 2001/ 04/ xm enc#r sa-
oaep- ngf 1p"/ >
<ds: Keyl nfo xm ns:ds="http://ww. w3. or g/ 2000/ 09/ xml dsi g#" >
<wsse: SecurityTokenRef er ence>
<wsse: Ref erence
URI =" #XWBSG D- 11602644371611510892409"
Val ueType="htt p:// docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss- x509-t oken- profil e-1. 0#X509v3"/ >
</ wsse: SecurityTokenRef er ence>
</ ds: Keyl nf o>
<xenc: C pher Dat a>
<xenc: C pher Val ue>
HGXPMAJT8f nFy2sS6vwl cA1lx63U2JEhpnehl BBI XEJi yyqgaVQ7l 1whU6cFwiNf k71vkGh/ 5uc7Tq
Pysj hAbj WhuL4LvOKN2e663Sj vZGAOazNOuKLgG2S57cEWI/ / pcnBHCy Cc9Nf f VK9qC22GT09B7T
nuVnp5ZcSE2BVi Li UZM=
</ xenc: C pher Val ue>
</ xenc: G pher Dat a>
<xenc: Ref er enceli st >
<xenc: Dat aRef erence URI =" #XW5SGA D- 1160264438513528295170"/ >
</ xenc: Ref er encelLi st >
</ xenc: Encr ypt edKey>
<wsse: User nameToken
xm ns: wsu="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
wssecurity-utility-1.0.xsd"
wsu: | d="XW5SA D- 11602644371611790622429" >
<wsse: User nanme>wssuser </ wsse: User name>
<wsse: Password
Type="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
user nane-t oken- profil e-1. 0#Passwor dText ">
<xenc: Encrypt edDat a
xm ns: xenc="http://ww. w3. or g/ 2001/ 04/ xm enc#"
| d="XWSSG D- 1160264438513528295170"
Type="http://wwmv. w3. or g/ 2001/ 04/ xm enc#Cont ent " >
<xenc: Encrypti onMet hod
Al gorithm="http://ww. w3. org/ 2001/ 04/ xm enc#aes128-cbc"/ >
<xenc: C pher Dat a>

<xenc: C pher Val ue>JhY/ YWEPY HOQohqgt hMAi 78y oFSyzJWjt t FVMhhagUYyl =</ xenc: G pher Val ue>
</ xenc: G pher Dat a>
</ xenc: Encr ypt edDat a>
</ wsse: Passwor d>
<wsse: Nonce
Encodi ngType="htt p://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401-
WSS- soap- message- security-1. 0#Base64Bi nary" >
Xl 26/ 1Z0SYc1A65Bf pEyl X&f
</ wsse: Nonce>
<wsu: Cr eat ed>2006- 10- 07T23: 40: 37Z</ wsu: Cr eat ed>
</ wsse: User nanmeToken>
<wsu: Ti mest anp
xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-
wssecurity-utility-1.0.xsd">
<wsu: Cr eat ed>2006- 10- 07T23: 40: 37Z</ wsu: Cr eat ed>
<wsu: Expi res>2006- 10- 31T04: 13: 57Z</ wsu: Expi r es>
</wsu: Ti mest anp>
</ wsse: Security>
</ SOAP- ENV: Header >
<SQAP- ENV: Body
xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecurity-
utility-1.0.xsd"
wsu: | d="XWBSA D- 1147654670736- 1549330563" >
<pur chaseOrder orderDate="1999-10-20">
<shi pTo country="US">
<name>Al i ce Smit h</name>
<street>123 Maple Street</street>
<city>M 11l Valley</city>
<st at e>CA</ st at e>
<zi p>90952</ zi p>
</ shi pTo>
<bi || To country="US">
<name>Robert Sm t h</ nane>
<street>8 Cak Avenue</street>

<city>d d Town</city>
<st at e>PA</ st at e>
<zi p>95819</ zi p>
</bill To>
<comment >Hurry, ny lawn is going w | d</conmment>
<items>
<item part Nun¥"872- AA" >
<pr oduct Nane>Lawnnower </ pr oduct Name>
<quantity>1</quantity>
<USPri ce>148. 95</ USPri ce>
<coment >Confirmthis is electric</conment>
</itemp
<item part Num="926- AA" >
<pr oduct Nane>Baby Mboni t or </ pr oduct Nane>
<quantity>1</quantity>
<USPri ce>39. 98</ USPri ce>
<shi pDat €>1999- 05- 21</ shi pDat e>
<litenr
</items>
</ pur chaseOr der >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

By combining a Timestamp Token, a Username Toked,Encryption we have a set of

credentials, conveyed securely within a SOAP Messtg be used by the provider for
invoker authentication or by the sender for resgordithentication.

Final remarks

It should be clear by now that anything for whicbaaa class or a class library exists can
be used in Java CAPS. The Web Services Securitygeadescribed here is intended to
demonstrate that, as well as to provide a practiedns of adding the features that are
increasingly requested and that the product, askdised, lacks.

The example is a reasonably simple one. If anyords fthe time and the inclination to
develop a more elaborate example, possibly a moplisticated configurable Secure
Web Service server, he, she or they, are most wecto add to the example, the
document and the Sun SeeBeyond knowledge andhiasésfor the benefit of these other
who don’t have the skills, the time or the inclioatbut do have a need.

[WSMS 1.0] Web Services Security: SOAP Message 18gci.0 (WS-Security 2004),
OASIS Standard 2004, 01 March 2004, Availablehttp://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-messagery-1.0.pdf Accessed: May
15, 2006

[SAML 1.0] Web Services Security SAML Token Profile0, OASIS Standard, 01
December 2004, Availabldattp://docs.oasis-open.org/wss/oasis-wss-saml-tpkefile-
1.0.pdf Accessed: May 15, 2006

[UTP 1.0] Web Services Security Username Tokenilerdf.0, OASIS Standard, 01
March 2004, Available: http://docs.oasis-open.org/wss/2004/01/oasis-200vExE
username-token-profile-1.0.pdkccessed: May 15, 2006

[X509TP 1.0] Web Services Security X.509 Certifecdtoken Profile, OASIS Standard
2004, 01 March 2004, Availabldrttp://docs.oasis-open.org/wss/2004/01/oasis-200401
wss-x509-token-profile-1.0.pdAccessed: May 15, 2006

[SOAP 1.1] Simple Object Access Protocol (SOAP), M3C Note 08 May 2000,
Available: http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508Accessed: May 15,
2006

[JWSDP 2.0] Java Web Services Developer Pack, bersRk.0, Available:
http://java.sun.com/webservices/jwsdptcessed: May 18, 2006

[JWSTut 2.0] Java Web Services Tutorial, Versiojn.0,2 Available:
http://java.sun.com/webservices/docs/2.0/tutorgad/8ecurity-WebSvcs.htmlAccessed:
May 18. 2006

[JWSTut 1.6] Java Web Services Tutorial, Version 6, 1. Available:
http://java.sun.com/webservices/docs/1.6/tutoraa/dAccessed: May 18. 2006

See also a variety of Sun Java Enterprise Systeri5@Q0 documents at
http://docs.sun.com/app/docs/coll/1286rid related places.

