
JCAPS 6 Update 1 Repository Projects
Implementing WS-Security using JWSDP 2.0

Michael.Czapski@sun.com, July 2009

Release 1.3, Updated July, 2009 for JCAPS 6 Update 1 Repository environment

This document contains material from Patrice.Goutin@sun.com, who documented his experience implementing an earier version of
this solution on Windows XP and Solaris. His contribution is acknowledged with thanks.

Motivation

As at release 6 Update 1, Java CAPS Repository does not provide support for WS-
Security standards. The JBI and EJB side of things use Metro so all is well there.

To implement any kind of SOAP message manipulation in Java CAPS 6 Repository one
must build one’s own SOAP Message Handlers, http://docs.sun.com/app/docs/doc/820-4
314/jcapssoapmsghlr_intro?a=view, so Java CAPS 6 Repository effectively does not
implement the SOAP Message Security 1.0 [WSMS 1.0] specification.

I have not taken the time to work with SOAP Message Handlers. This document is not
about implementing WS-Security through SOAP Message Handlers.

This document describes how support for Web Services Security X.509 Certificate Token
Profile [X509TP 1.0], therefore Signed and Encrypted SOAP Messages [SOAP 1.1], as
well as support for the Username Token Profile can be provided in Java CAPS on a “all
care and no responsibility” basis, using technologies that came from the Sun Java Web
Services Developers Pack version 2.0 [JWSDP 2.0].

Please note that JWSDP 2.0 has since been replaced by JAX-WS-based technologies, is
deprecated and is no longer available for download.

Please note that I disabled the Access Manager functionality so the password provided in
the Username Token will not be validated. I did this because it was too much trouble for
me to recreate and document the AM installation for this note.

Note to the Reader

The material presented in this document is not introductory in nature. Good knowledge of
Java CAPS is assumed. In particular, it is assumed that the implementer can deal with
platform differences, such as path naming conventions on Windows and Unix, can find
his/her way around a Java CAPS project and knows how to modify IS properties, log
levels, etc., without having to see a cartoon illustrating the process.

Knowledge of SOAP and WS-Security is not assumed but the material does not provide
tutorial on either.

Material in this document describes the use of cryptographic techniques and technologies.
Consider the implications of export and re-export policies on your use of this material.
Consider these things also if you are contemplating making this material available to
parties outside SMI. Please not that discussing and possessing cryptographic software

may be illegal in some countries. It is your responsibility to ensure you don’t get into
trouble for using this material.

If you find errors or omissions please drop me an email so I can correct them. If you find
this document useful please drop me an email so I can gauge if putting time, mostly my
own, into projects like this is worthwhile.

Table of Contents

Motivation ... 1
Note to the Reader .. 1
Standards Support ... 2
Release Notes .. 3
Implementation Notes... 3
Cryptographic Stores and Objects ... 3
Web Services (trivialising) recap... 4
WS-Security (trivialising) intro.. 4
Example Specifics/Limitations .. 5
Pre-requisites... 6
Do not Install Access Manager at al .. 9
Import the Example .. 9
Review the Example... 10

Client..10
Server ...13
Components ...14

Run the Example... 15
Look under the covers .. 15

The log file...15
The XWS Security Configuration..16
Client..16
Server ...17
Username Token Profile with Encrypted PlainText password.18

Final remarks...21
References ... 21

Standards Support

See [JWSTut 2.0] Chapter8, Securing Web Services and [JWSTut 1.6] Chapter 6,
Introduction to XML and Web Services Security “Does XWS-Security Implement Any
Specifications?” for a discussion of the Web Services Security standards [JWSDP 2.0]
supports. See below for what the example implementation described here does not
support.

To summarise:

� XML Digital Signature (DSig) using JSR-105 (XML Digital Signature APIs), see
http://www.jcp.org/en/jsr/detail?id=105

� XML Encryption (XML-Enc) using Apache's XML-Enc implementation, see
http://www.w3.org/TR/xmlenc-core/

� XWS-Security Framework APIs - XWS-Security EA 2.0 provides partial support for
BSP (complete support is planned for the FCS release of 2.0.)

Release Notes

This release, 1.3, is a re-hash of the previous release for use with Java CAPS 6 Update 1
Repository-based projects without Access Manager.

Implementation Notes

Note that this implementation does not use the Application Server for web services
security but rather implements standalone SOAP Message Security infrastructure,
referred to in [JWSDP 2.0] as XWSS Security Implementation. This implementation uses
an XML-based security configuration file to provide the runtime infrastructure with
information necessary to apply appropriate security methods to messages to be secured,
and to validate security token of messages to be validated. [JWSTut 1.6] discusses this
matter in detail. This document discusses specific aspects of XWSS Security
Configuration as required for clarity.

SAML Token Profile [SAML 1.0] support exists in the sense that I have not disabled the
code provided by the JWSDP 2.0 sample but it has not been tested as I don’t have the
SAML infrastructure to use or the knowledge to build one at this time.

Support for the use of Symmetric Cryptography exists but has not been tested.

The implementation described in this document is a pure Java implementation using the
Java Web Services Developer Pack 2.0 out of Java Collaboration.

Cryptographic Stores and Objects

Java security implementations use “keystores” to store cryptographic objects such as
private keys and certificates. A keystore typically contains one private key and one or
more certificates. In addition, java cryptography implementations use a ‘special’
keystore, called a “truststore”, which typically contains certificates of all distinguished
Certification Authorities such as Verisign, RSA Security and the like. This truststore can
also contain certificates of other parties.

Keystores and truststores are used for Java cryptography whether it relates to Secure
Sockets Layer, XML Digital Signatures, XML Encryption or whatever else needs a
X.509 certificate or a private key. This document describes the use of cryptography for
SOAP Message security so expressions used may imply to some that the cryptographic
object stores are “special” and useable for that purpose only. This is not the case.

For the purpose of the JWSDP-based implementation a keystore, as distinct from a
truststore, is a cryptographic object store that contains the private key of the party that

digitally signs and/or decrypts SOAP Messages (a private key of the subject party is
required for both of these things). A truststore, on the other hand, is a keystore that
contains certificates (with their embedded public keys) of the party that encrypts SOAP
Messages and/or verifies Digital Signatures over SOAP Messages (public key of the
“remote” party is required for both of these things). JWSDP also supports the use of a
“symmetric keystore” since it is possible to use symmetric cryptosystem for SOAP
Message security. I have not spent time looking into this side of things so I will not write
about it. An interested and knowledgeable reader is invited to add to this document.

The key notions to remember about public key cryptography are:
� A party digitally signs using its private key
� A party decrypts using its private key
� A party verifies digital signatures using signing (remote) party’s public key

(embedded in the X.509 Certificate)
� A party encrypts using decrypting (remote) party’s public key (embedded in the

X.509 Certificate).

To belabour the point in the interest of clarity, a party only uses its own private key,
which it never discloses to anyone, and it uses other parties public keys embedded in
other parties X.509 Certificates. Thus it is necessary for a party to obtain its X.509
Certificate and distribute it to everyone else who is to use it.

This document does not discuss how to create or obtain private keys, X.509 Certificates,
keystores, truststores or symmetric keystores. It assumes that the implementer has these
things or knows how to get them. If one has an issue getting X.509-related cryptographic
objects I am happy to provide, at a short notice and without a fee, a set or two for non-
production use. Email me at Michael.Czapski@sun.com. I cannot, at this time, provide
symmetric keystores or objects that go into them, see above for why.

Web Services (trivialising) recap

A web service is an implementation of a HTTP POST request, where the ‘form data’ is
actually a XML instance document, and a HTTP response that may have a body that is a
XML instance document. The XML documents involved in the exchange must conform
to the SOAP 1.1 or the SOAP 1.2 specification (SOAP 1.2 supports HTTP GET as well
as HTTP POST – the implementation described here deals exclusively with SOAP 1.1).

Whilst exchanges over HTTP can be secured using the Secure Sockets Layer (SSL)
Protocol (that includes the TLS development) to encrypt the transport, this is not a part of
the WS-Security protocol stack and is not considered to be providing web services
security.

WS-Security (trivialising) intro

WS-Security specifications use the SOAP Header extension mechanism to add security
information to SOAP messages. The Username Token Profile adds a Username header.
The SAML Token Profile adds the SAML Token header. The digital signature adds a
Signature header, etc..

Any number of WS-Security mechanisms can be used together to provide the SOAP
Message with greater or lesser ‘security’. One could add a Timestamp header, a
Username Token header, a signature header and, finally, one would encrypt the SOAP
Body, or parts thereof, and the password part of the Username Token. The timestamp
would mitigate or eliminate the possibility of a replay attack. The username token would
be used to provide the credentials that could be used for authentication. The digital
signature could ensure integrity of the SOAP Message and facilitate implementation of
non-repudiation of send and sender authentication. Encryption would ensure privacy of
the password and privacy of the complete SOAP Body, or the appropriate parts thereof.
None of this, except encryption of the SOAP Body, affects the actual payload, i.e. the
SOAP Body and data it conveys. Unlike the SSL-secured transport between two
endpoints, SOAP Message security survives relying through intermediaries intact as it is
applied to the message and not to the transport channel.

A WSDL definition, defining an unsecured web service, will break if encryption is
applied to the input or output message since the XML representation of the SOAP
Message will be altered by encryption. Conversely, a WSDL definition that defines an
encrypted SOAP Message will be useless in determining how the unencrypted message
actually looks like, therefore what the real interface to the web service is. WS-Policy and
related add extensions to WSDL to define security policies and suchlike. Tooling and
runtime support for these varies. At any rate, as far as I am concerned a web service
exists as soon as there is an implementation of it, whether or not a WSDL definition
exists and whether or not it is registered in a UDDI Registry.

Example Specifics/Limitations

JWSDP 2.0 provides an infrastructure for securing SOAP Messages, sending them over
the wire, receiving them over the wire and verifying their security attributes, amongst
others. The example implementation described in this document only deals with SOAP
Message security. The sending and receiving of SOAP Messages is accomplished using
the HTTP eWay. This is not only easy enough but also educational. It clearly
demonstrates the use of the underlying HTTP transport and demystifies, I hope, some of
the ‘magic’ that got piled up on top of the rather simple concepts. It also allows one to
clearly see that SOAP message exchange can be accomplished using any transport
mechanism, for example JMS or SMTP, without affecting the WS-Security attributes and
the validity of their application.

Whereas a sender uses its private key for digital signing and/or decryption regardless of
who the remote party is, each remote party will have a different public key/X.509
Certificate. Since the example client uses one security configuration file, whose name is
indirectly hardcoded, it can only exchange encrypted data with a single service. If the
same client were to be used to exchange encrypted data with multiple services, the client,
or the way a security configuration file is obtained, would have to be changed. The
service implementation assumes that it will send encrypted responses to a single client.
This is, in general, an invalid assumption since a service is normally expected to
accommodate multiple clients. To do so the service will have to get smart about figuring
out who sent the request, how to work out the X.509 Certificate alias of that party and
how to modify/obtain/derive a security configuration file that defines WS-Security
methods to apply to SOAP responses to be sent back to that requestor. These kinds of
modifications are very much dependent on the contexts in which the client and the

service operate and are, at any rate, fairly simple modifications to the client and the
server JCD code. The implied infrastructure required to support security instrument
storage and configure communication properties specific to multiple partners are more an
eXchange product implementation domain and do not affect the validity of the WS-
Security implementation provided in the example.

Some suggestions for the client support of multiple services:
� Have multiple configuration files, one for each service. Have the business

process/collaboration, upstream from the ws-security client, work out the appropriate
file to use based on the destination of the message and pass the path to that file to the
ws-security client.

� Have a single configuration file. Have the JCD/BP upstream from the ws-security
client work out the X.509 Certificate alias to use based on the destination of the
message. Have it read the security configuration file and do an on-the-fly substitution
of the X.509 Certificate alias required for encryption. Use the resulting file for the
request.

Some suggestions for the server support of multiple clients:
� Modify the request/response processor (the thing the server invokes using JMS

Request/Reply) to return a configuration file or a path to the configuration files as a
JMS Response message user property based on the content of the request message or
whatever. Modify the server JCD implementation so that it uses that configuration for
encryption of the response to the request.

Pre-requisites

For the initial implementation of the sample projects create a directory /tmp/wssec. If you
are on Windows make sure the hierarchy is created on the same drive as the one where
your JCAPS runtime is installed. If you fail to do so you will have to modify paths in a
number of places.

Extract cryptographic objects and stores, configuration files and data files from the
WSSecSampleProject_1.3_JCAPS6U1.zip archive to /tmp/…
Subsequent discussion will assume the objects are in a hierarchy under /tmp. If they are
not, you will need to modify paths as appropriate.

In the /tmp/wssec/jars you will have 3 JARs listed in the next section.

Note about path specifications:
I run Windows XP. On Windows XP Java does not care whether you use forward slashes “/”
or backslashes “\” for path separators so I use the forward slashes “/”. Patrice includes
Windows and Unix variants of paths such that Windows paths start with the drive letter, for
example C:/tmp/wssec, and Unix does not, for example /tmp/wssec. I found that as long as the
path in question is based on the same drive as the Java CAPS logical host, that needs to use
the path, specifying drive letter is unnecessary. Customarily, then, I specify Unix-like paths,
regardless of the platform, make a specific comment that this is happening, and only specify
drive letter when nnecessary. I also assume that the person who is working with the stuff
documented here knows enough to cope with such issues.

In the /tmp/wssec/crypto you will have the following subdirectories with the following
cryptographic objects:

/tmp/wssec/crypto/asndr

asndr.pkcs12.keystore.p12
asndr.pem2.crt
asndr.pem.csr
asndr.pem.private.key
asndr.pem.private.key.noenc
asndr.pem.crt
asndr.pem.cer.stunnel
asndr.pem.cer
asndr.jks.keystore
asndr.eXchange.pkcs12.keystore.p12
asndr.der.crt
asndr.conf

/tmp/wssec/crypto/arcvr

arcvr.pkcs12.keystore.p12
arcvr.pem2.crt
arcvr.pem.private.key
arcvr.pem.private.key.noenc
arcvr.pem.csr
arcvr.pem.crt
arcvr.pem.cer
arcvr.pem.cer.stunnel
arcvr.jks.keystore
arcvr.eXchange.pkcs12.keystore.p12
arcvr.der.crt
arcvr.conf

/tmp/wssec/crypt/ca

DemoCA.pem.crt
cacerts

The CA subdirectory contains the X.509 Certificate (DemoCA.pem.crt) of the CA
(Certification Authority) that issued the X.509 Certificates for the asndr and the arcvr
parties. The cacerts object is the JKS Keystore, with the password of “changeit” that is a
copy of the cacerts keystore normally distributed with the JRE with the asndr and arcvr
X.509 certificates added. This store will be used as the “truststore”.

The cryptographic objects in the asndr and arcvr directories are as follows:
xxxx.pkcs12.keystore.p12

A PKCS#12 Keystore containing the xxxx’s encrypted private key and the
corresponding X.509 Certificate. The keystore passphrase is the party name
doubled so for the asndr the passphrase will be asndrasndr and for the arcvr it
will be arcvrarcvr.

xxxx.pem2.crt
 A PEM-encoded X.509 Certificate of the party with human0readable section

listing certain important details of the certificate – it is a text file – have a look.

xxxx.pem.csr
 A PEM-encoded Certificate Signing Request – this object is not used once the

CA issues the certificate
xxxx.pem.private.key
 A PEM-encoded, encrypted Private Key. The decryption password is party

name doubled so for the asndr the passphrase will be asndrasndr and for the
arcvr it will be arcvrarcvr.

xxxx.pem.private.key.noenc
 A PEM-encoded, unencrypted Private Key.
xxxx.pem.crt
 A PEM-encoded X.509 Certificate of the party
xxxx.pem.cer.stunnel
 A PEM-encoded X.509 Certificate of the party constructed so it is acceptable to

the stunnel tool. I don’t remember what the subtle differences are anymore.
xxxx.pem.cer
 The same object as xxxx.pem.crt but with different file extension. Some tools

like CRT others like CER – the content is the same.
xxxx.jks.keystore
 A JKS Keystore-equivalent of the PKCS#12 keystore. This keystore contains

the private keys and the corresponding certificate of the party. Passphrase is the
same as for the PKCS#12 keystore.

xxxx.eXchange.pkcs12.keystore.p12
 A PKCS#12 keystore built so the eXchnage 5.0.x keystore manager GUI in the

5.0.5 “environment’ likes it. The differences between this keystore and the
‘regular’ PKCS#12 keystore are subtle. Use this keystore when you need a
PKCS#12 keystore. Passphrase same as for the others.

xxxx.der.crt
 A DER-encoded X.509 Certificate of the party. Contains the same material as

the PEM-encoded version. The encoding is different. DER is a binary format.
There is no use looking at the content of this file. Most tools accept both PEM-
encoded and DER-encoded certificates. Some CAs issue one others issue the
other.

xxxx.conf
 The OpenSSL configuration file used to crate a Certificate Signing Request.

Once the certificate is issued there is no use for this file except to look at how
the request was generated.

You can use either a PKCS#12 keystore or a JKS keystore where a keystore is required
when working with Java 1.5. You can use your own private keys, certificates and
keystores.

In /tmp/wssec/config you will have the following objects:
arcvr_receiving_current_config.xml
 The ws-security configuration for the receiving request side of the web service

provider implementation. This configuration file specifies what WS-Security
attributes are required to be present in the SOAP Message received from the
client. See JWSDP 1.6 Tutorial for elaboration on what the structure of this file
can be and what implication different components have for the verification of
WS-Security attributes.

arcvr_sending_current_config.xml

 The ws-security configuration file for the sending response side of the web
service provider implementation. This configuration file specifies what ws-
security attributes will be applied to the response SOAP Message going back to
the client.

asndr_sending_current_config.xml
 The WS-Security configuration file for the client. Both the ws-security

attributes to be applied to the outgoing requests and the ws-security attributes to
be verified on the incoming response are specified in this configuration file.

WSSecClientFeedEat.properties
 The client properties file specifying where the various cryptographic stores are,

what are their types and passwords, what ws-security configuration file to use
and what is its path, as well as what the service URL is and what SOAPAction,
if any, to add to the outgoing HTTP headers.

AMConfig.properties
 New in the 1.3 release, the Access Manager is disabled so this file serves no

useful purpose.

In /tmp/wssec/exports you will find the export of the project, .

Do not Install Access Manager at al

The Username Token Profile used to be validated using the Access Manager. In release
1.3 I have disabled this functionality because I did not have the tome or the inclination ot
reproduct AM installation and document it. Username and password provided in the
Username token are not validated. Feel free to re-instate AM or provide some other
credential validation mechanism.

Import the Example

Import project
/tmp/wssec/exports/ JWSDP20_WSSecurity_Example_v1.3_JCAPS6U1.zip

Note that the Web Service External System in the imported wsSecEnv Environment is
configured with my hostname and port number. If you are going to use it you will need to
change the host name and port number to fit with your environment. Note, too, that the
UDDIServer external is also configured to communicate with my UDDI Registry. You
will need to change the address, port and servlet context to fit with your environment if
you intend to use it. Note also that I have a File eWay, called /tmp/wssec/data, configured
to use /tmp/wssec/data as the directory in which files are/are to be. If you are to use it you
may also need to change the paths. The same applies to the wsSec_SBYN_IS Integration
Server configuration in the wsSec_LH Logical Host.

Review file paths used in the WSSecClient and WSSecServiceService
� Edit Java classes JWSDP20/WSSecClient/jcdWSSecClientFeedEat to ensure the file

path matches your deployment target platform (Solaris/Linux or WindwsXP)
� Edit Java classes JWSDP20/WSSecServiceService/jcdWSSecServer to ensure the file

path matches your deployment target platform (Solaris/Linux or WindwsXP)
� Edit the /tmp/wssec/config/SSecClientFeedEat.properties to verify or modify

� KeystorePath,

� TruststorePath,
� SymkeystorePath,
� SymkeystorePassphrase,
� SecConfigFilePath
� ServiceURL

Create a deployment profile dpWSSecClient under
/WSSecurityProject/JWSDP20/WSSecClient that includes both connectivity maps.
Automap, build and deploy.

The ServiceURL property in the WSSecClientFeedEat.properties file, living in
/tmp/wssec/config/, uses my host and port. You may need to modify the port to reflect
your environment.

Create a deployment profile dpWSSecServer under
/WSSecurityProject/JWSDP20/WSSecServiceService that includes both connectivity
maps. Automap, build and deploy.

Review the Example

The complete example implementation looks like this:

All client-side security work is done in the Secure Web Service Client. All client-side
business work is done in the Business Client.

All server-side security work is done in the Secure Web Service Server. All server-side
business work is done in the Business Server.
Client

A Business Client prepares the message to be used as a business request and, when the
response comes back, processes the business response. How the Business Client prepares
the business request and what the business request actually looks like is up to the
Business Client and of no interest to the Secure Web Service Client. What happens
between the time the business request leaves the Business Client and the time the
business response comes back is taken care of by the Secure Web Service Client
implementation. The Business Client and the Secure Web Service Client communicate
via a JMS Queue using the Request/Reply model.

Business

Client

Secure

Web Service

Client

qRRWSSecClient

Service

Configuratio

n Properties

File Keystore Truststore Symkeystore

SOAP Request

Timestamp, Username Token, Signature, Encryption

SOAP Response

Decryption, Signature, Username Token, Timestamp Verification

Access Manager Directory Server

Since at least encryption is receiver-specific (it is very unlikely that two distinct
recipients will have the same private key) the Business Client indicates to the Secure
Web Service Client the security configuration and cryptographic stores to use for the
specific recipient. It does so by means of a Security Configuration properties file, whose
name and path, in the example, are hardcoded in the Business Client.
(See /tmp/wssec/config/WSSecClientFeedEat.properties)

keepRefreshing = true

the keystore must contain the private key to use for digital signing
and decryption
KeystorePath = /tmp/wssec/crypto/asndr/asndr.eXchange.pkcs12.keystore.p12
KeystoreType = PKCS12
KeystorePassphrase = asndrasndr

the truststore must contain certificates which to use for signature verification
and for encryption
TruststorePath = /tmp/wssec/crypto/ca/cacerts
TruststoreType = JKS
TruststorePassphrase = changeit

SymkeystorePath = /tmp/wssec/crypto/client-symmkeystore.jceks
SymkeystoreType = JCEKS
SymkeystorePassphrase = changeit

SecConfigFilePath = /tmp/wssec/config/asndr_sending_current_config.xml

ServiceURL = http://localhost:18001/dpWSSecServer_servlet_wssecserver/wssecserver
SOAPAction =

The host and port will very likely be
different in your environment – if it is
please change the URL.

The Secure Web Service Client parses the indicated properties file, extracts attributes of,
and paths to, the cryptographic stores, extracts the path to the XWS Security
Configuration file and extracts the Web Service URL and SOAP Action header value.
Cryptographic stores are used to create an instance of the WSSecurity object. The XWS
Security Configuration and the business payload are used as arguments to the
WSSecurity object’s makeAndSecureSOAPMessage() method that creates and secures a
SOAP Request message.

Note the SecConfigFilePath property. It indicates which WS-Security configuration file
is to be used. That file, in turn, specifies what kind of WS-Security is to be applied to
outgoing messages and, in this example, what WS-Security is to be expected on the
incoming responses.

A HTTP Client eWay is then used to send the secure SOAP Request and receive a secure
SOAP Response.

If service invocation fails, exception information is extracted from the SOAP Fault or the
HTTP response, packaged and returned to the Business Client with the indication of
failure.

If service invocation succeeds, the Secure Web Service Client verifies Secure SOAP
Response.

If it was encrypted, the response is decrypted, the digital signature, if any, is verified, and
the timestamp, if any is verified. Digital signature is verified using the alias of the
sender’s X.509 Certificate. This certificate is looked up in the “truststore” keystore.

If SOAP Response contains a Username Token stanza no effort is made to validate the
user. Any user with any password will do. Feel free to modift the implementation to add
your own AAA.

If any of the security verification activities fail a failure message, together with the
indication of failure, is returned to the Business Client.

If all verification activities complete successfully the content of the SOAP Payload
(Business Response), together with the indication of success, is returned to the Business
Client.

Success or Failure condition is returned as a JMS property with the name of STATUS
whose value can be one of SUCCESS or FAILURE.

Username of the user identified in the UsernameToken stanza, if any, of the SOAP
Response, is conveyed back to the Business Client as a JMS Property with the name of
SENDER_USERNAME. If Username is not available, for example because the
Username Token was not present, the value of this property will be the literal -Not
Available-
The Distinguished Name (DN) of the signer, if any, of the SOAP Response, is conveyed
back to the Business Client as a JMS Property with the name of SENDER_DN. If DN is

not available, for example because the SOAP Response was not signed, the value of this
property will be the literal -Not Available-

Creation and securing of the SOAP Request and verification of the SOAP Response are
independent. Each method accepts a XWS Security Configuration to tell it what to do.
The example uses the same configuration file for the client for simplicity and because the
“securing bit” of the XWS Security Configuration is ignored by the verification code and
the “verification bit” of the XSW Security Configuration is ignored by the creation and
securing code.
Server

A Business Server receives a business request, processes it, produces a business response
and delivers it to be sent back to the requester. How the Business Server interprets the
business request and what the business response actually looks like is up to the Business
Server and of no interest to the Secure Web Service Server. How the request gets to the
Business Server, and how the response gets back to the requester, is taken care of by a
Secure Web Service Server implementation.

The Secure Web Service Server and the Business Server communicate via a JMS Queue
using the Request/Reply model.

Since at least encryption is receiver-specific (it is very unlikely that two distinct

recipients will have the same private key) the Business Server ought to indicate to the
Secure Web Service Server the security configuration and cryptographic stores to use for
the securing the response after parsing the request and figuring out where it comes from.
In the example implementation this is not the case. All cryptographic stores and XWS
security Configuration information are hardcoded in the Secure Web Service. Frankly, I
did not feel like developing trading partner management framework for this example. At
any rate the Secure Web Service Server helps such a future implementation by providing
the Business Server with the Distinguished Name (DN) and/or the Username of the
requester if the request was digitally signed or the request carried a Username Token. If
the request was not digitally signed the Business Server will have to figure out where the
request comes from some other way, perhaps by looking at the content of the request. If
the request contains the Username Token the Business Server is also provided with the
username used in the token. Password is not provided for obvious reasons.

If verification of WS-Security on the SOAP Request fails the Secure Web Services
Server will return a SOPA Fault indicating, more or less intelligently, what the problem
was. For different problems it will say different things but do not rely on the SOAP Fault
text at the client side to help you figure out what went on at the server side – it was not
intended for that – use the log instead.

If the verification succeeds the Business Server component will be invoked using JMS
Request/Reply method, passing it the SOAP Body Payload and two JMS User Properties.
One of these properties will have the name of SENDER_DN and the value of the
Distinguished Name of the Signer of the SOAP Request, if any, of the literal -Not
Available-
The other will have the name of SENDER_USERNAME and the value of the Username
form the Username Token, if any, or the literal -Not Available-

Upon return from the Business Server the JMS Message returned will contain the XML
document to send as the response payload in the SOAP Body.

The Business Server, as implemented in the sample, also return two JMS User Properties,
with the same name and corresponding values as described above. The Secure Web
Service Server does not use these values but it is conceivable that it could use the
Username or the Distinguished Name to obtain the credential for the Username Token or
the X.509 Certificate to encrypt the response to be sent out as the SOAP Response.
Implementing these kinds of things is left as an exercise for the interested reader.
Components

There are 5 subprojects under the WSSecurityProject/JWSDP20.1 (there is also
WSSecurityProject/JWSDP20 – ignore it):

� JARs_3rdParty – contains a 3rd Party JAR, xws-security.jar, directly used in the

example, and all the JARs also found in the /tmp/wssec/JARs folder.
� JARs_Ours – contains the JAR with the WSSecurity Java code developed specifically

for this implementation
� WSSecClient – contains a Feeder and Eater project that triggers the WS-Security

Client as well as the WS-Security client itself. The Feeder/Eater is triggered by a file
containing a XML purchase order document. Using JMS Request/reply it invokes the
WS-Security client that parses the security configuration file, applies the ws-security

attributes as directed, send the request, receives the response, verifies the ws-security
attributes and returns the response to the Feeder/Eater.

� WSSecServiceService – contains the WS-Security Service that receives the request
from the client, validates WS-Security attributes, invokes a business function
implementation and formulates, secures and sends a response to the client.

� Miscellaneous – contains the input file to feed the feeder project and a batch script
that renames it to the correct name for the feeder.

You can change or toss the Feeder/Eater. You can re-implement the jcdWebServiceImpl
to do something more imaginative/useful than what the example does. The
jcdWSSecClient code can be left alone as it does not have any dependencies on the
structure of the XML message it secures or whose security attributes it verifies. Similarly,
the jcdWSSSecServer is ignorant of the business messages whose security attributes it
verifies and to the responses to which it applies security. The business side of the
exchange is handled exclusively in the jcdWSSecClientFeedEat and jcdWebServiceImpl.

The jcdWSSecClient is flexible enough to be used as is. The jcdWSSecServer has the
paths to security and cryptographic store files hardcoded. It will need to be modified for
use outside the example.

Run the Example

Rename the input file, /tmp/wssec/data/po_input.xml.~in to po_input.xml

Observe, after a few seconds, the output file po_output_1.xml appearing in the same
directory as the input file. This file will either contain a copy of the purchase order with
an extra item added or an XML structure with the error or exception message. In the
latter case try to figure out what went wrong and correct configuration issues.

Look under the covers

The log file

Add the following to the Integration Server -> Configuration -> Logging -> Log Levels:

com.sun.xml FINEST
com.sun.xml.messaging FINER
com.stc.connector.httpadapter FINE
org.jcp.xml FINEST
org.apache.xerces.dom FINE
com.sun.xml.rpc FINEST
com.sun.org.apache.xml FINEST
javax.xml.messaging FINER

In the server.log you will see encryption, digital signatures, transforms, etc., applied to
the message. See an annotated excerpt in Appendix B for the gory details of timestamp
application, digital signing, encryption, decryption, and verification, all 80 or so pages of
it. Riveting stuff. The excerpt comes from an earlier release of the example and does not
contain AM entries.

The XWS Security Configuration

Client

The sample XWS Security Configuration for the client, which you will find in
/tmp/wssec/config/asndr_sending_current_config.xml looks similar to this:
<xwss:SecurityConfiguration

dumpMessages="true"
xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >

 <!--
 Note that in the <Sign> operation, a Timestamp is exported
 in the security header and signed by default.
 -->
 <xwss:Timestamp timeout="2000000" />

 <xwss:Sign includeTimestamp="true">
 <xwss:X509Token

keyReferenceType="Direct"
certificateAlias="asndr"/>

 </xwss:Sign>

 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="arcvr"/>
 <xwss:KeyEncryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <xwss:DataEncryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xwss:EncryptionTarget type="qname" value="items" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="billTo" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="shipTo"/>
 <xwss:EncryptionTarget type="xpath" value=".//SOAP-ENV:Body"/>
 </xwss:Encrypt>

 <xwss:RequireEncryption>
 <xwss:EncryptionTarget type="qname" value="shipTo"/>
 <xwss:EncryptionTarget type="qname" value="billTo" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="items" contentOnly="false"/>
 </xwss:RequireEncryption>

 <xwss:RequireSignature/>
 <xwss:RequireTimestamp maxClockSkew="30" timestampFreshnessLimit="2000000"/>
</xwss:SecurityConfiguration>

Secure outgoing SOAP Message:

1. Add a timestamp with a large timeout. In a more realistic scenario one would
make the timeout more realistic.

2. Sign the entire message body using asndr’s private key and making a direct
reference to it in the SignedInfo header structure. The private key will come from
the keystore whose location, type and passphrase are provided elsewhere (see the
client configuration properties file).

3. Encrypt the message.
4. The recipient’s X.509 Certificate, identified by the alias “arcvr”, will be obtained

from a truststore whose location, type and passphrase are identified elsewhere.
5. Use the specified algorithms for encryption of the data and the encryption key.
6. Encrypt parts rooted at “items” and “billTo”, including the “items” and “billTo”

nodes themselves (contentOnly=”false”), parts rooted at “shipTo” (content only –
leave the actual tags intact), and finally the entire SOAP Body.

Verify the incoming SOAP Message

7. Require that the incoming message to have the following parts or their content
encrypted. Use own private key from a keystore whose location, type and

1

2

3 4

5

6

7

8

passphrase is specified elsewhere. The keystore is expected to contain only one
private key and it is expected to be the correct private key.

8. Require that the message body be timestamped and signed.

Note that what is encrypted in the outgoing message is not the same as what is expected
to be encrypted in the incoming message. Since the response needs not bear resemblance
to the request what is included in each may differ and what is required to be encrypted
will very likely vary. In this example the entire body of the message is encrypted for the
outgoing message but is not expected to be encrypted in the response. The sever side
must apply corresponding mechanics. This will be done by an out-of-band agreement
between parties.
Server

The sample XWS Security Configurations for the server, which you will find in
/tmp/wssec/config/arcvr_receiving_current_config.xml and
/tmp/wssec/config/arcvr_sending_current_config.xml, look like this:

<xwss:SecurityConfiguration
 dumpMessages="true"
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >

 <xwss:RequireEncryption>
 <xwss:EncryptionTarget type="xpath" value=".//SOAP-ENV:Body"/>
 <xwss:EncryptionTarget type="qname" value="shipTo"/>
 <xwss:EncryptionTarget type="qname" value="billTo" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="items" contentOnly="false"/>
 </xwss:RequireEncryption>

 <xwss:RequireSignature/>
 <xwss:RequireTimestamp maxClockSkew="30" timestampFreshnessLimit="200"/>

</xwss:SecurityConfiguration>

Verify the incoming SOAP Message

1. Require that the incoming message to have the following parts or their content
encrypted. Use own private key from a keystore whose location, type and
passphrase is specified elsewhere. The keystore is expected to contain only one
private key and it is expected to be the correct private key.

2. Require that the message body be timestamped and signed.

<xwss:SecurityConfiguration
 dumpMessages="true"
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config" >

 <xwss:Timestamp timeout="2000000" />

 <xwss:Sign includeTimestamp="true">
 <xwss:X509Token
 keyReferenceType="Direct"
 certificateAlias="arcvr"/>
 </xwss:Sign>

 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="asndr"/>
 <xwss:KeyEncryptionMethod
 algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <xwss:DataEncryptionMethod
 algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xwss:EncryptionTarget type="qname" value="items" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="billTo" contentOnly="false"/>
 <xwss:EncryptionTarget type="qname" value="shipTo"/>
 </xwss:Encrypt>

</xwss:SecurityConfiguration>

1

2

3
4

5
7

8

Secure outgoing SOAP Message:

3. Add a timestamp with a large timeout. In a more realistic scenario one would
make the timeout more realistic.

4. Sign the entire message body using arcvr’s private key and making a direct
reference to it in the SignedInfo header structure. The private key will come from
the keystore whose location, type and passphrase are provided elsewhere (see the
client configuration properties file).

5. Encrypt the message.
6. The recipient’s X.509 Certificate, identified by the alias “asndr”, will be obtained

from a truststore whose location, type and passphrase are identified elsewhere.
7. Use the specified algorithms for encryption of the data and the encryption key.
8. Encrypt parts rooted at “items” and “billTo”, including the “items” and “billTo”

nodes themselves (contentOnly=”false”), parts rooted at “shipTo” (content only –
leave the actual tags intact).

This is only one example of applying combined security attributes to a SOAP Message.
For detailed elaboration on what the attributes and attribute values are see [JWSTut 1.6,
pp.148-172].

If both digital signatures and encryption is required to secure the message one would
typically sign the message, or parts thereof, first then encrypt what is to be encrypted.
There is no reason why the reverse cannot be done but I have not seen it done. Still, there
might be reasons.
Username Token Profile with Encrypted PlainText password.

A bit of confusion, perhaps, Encrypted PlainText password?
PlainText password as distinct from digested password, which would be obtained if the
digestedPassword attribute of the xwss:UsernameToken element had the default value or
the explicit value of true. Server-side implementation does not support digested
passwords as I could not figure out how to compare a digested password provided in the
SOAP message to the password in LDAP using the Access Manager API. So, rather than
sending a digested password we encrypt plaintext password. This is what the
xwss:Encrypt element with the xwss:EncryptionTarget element with the qname of
“Password” does.

<xwss:SecurityConfiguration
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config"
 >

 <!-- client does this -->
 <xwss:Timestamp timeout="2000" />
 <xwss:UsernameToken
 name="wssuser"
 password="wsspassword"
 digestPassword="false"/>
 <xwss:Encrypt>
 <xwss:X509Token certificateAlias="asndr"/>
 <xwss:KeyEncryptionMethod
 algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <xwss:DataEncryptionMethod
 algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xwss:EncryptionTarget
 type="qname"
 value="Password"

 contentOnly="true"/>
 </xwss:Encrypt>

 <!-- server does this -->
 <xwss:RequireEncryption>
 <xwss:EncryptionTarget
 type="qname"
 value="Password"
 contentOnly="true"/>
 </xwss:RequireEncryption>
 <xwss:RequireUsernameToken
 passwordDigestRequired="false"/>
 <xwss:RequireTimestamp
 maxClockSkew="30"
 timestampFreshnessLimit="2000"/>

</xwss:SecurityConfiguration>

What this says, on the sending side, is:

1. Add a Timestamp Token to the SOAP Header section
2. Add a Username Token to the SOAP Header section, don’t digest the password

(non-default) and include the nonce (default)
3. Encrypt the Password element content using symmetric (secret key) 128-bit

AES–CBC algorithm
4. Encrypt the encryption key using asymmetric (public key) RSA-OAEP algorithm

and the Public Key from the “asndr” X.509 Certificate

What this says, on the receiving side, is:

1. Decrypt the content of the Password element using algorithms and keys
embedded within the encrypted data block and own Private Key

2. Validate the credentials supplied in the Username Token
3. Validate the Timestamp Token

A sample message will look like this (because the namespaces are so long one needs a
magnifying glass to read that � or one gets them wrapped around):

<?xml version="1.1" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
 SOAP-ENV:mustUnderstand="1">
 <wsse:BinarySecurityToken
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509v3"
 wsu:Id="XWSSGID-11602644371611510892409">
MIIDhjCCAm6gAwIBAgIBLjANBgkqhkiG9w0BAQUFADCBsDELMAkGA1UEBhMCQVUxDDAKBgNVBAgT
A05TVzEPMA0GA1UEBxMGU3lkbmV5MScwJQYDVQQKEx5EZW1vQ0EgQ2VydGlmaWNhdGlvbiBBdXRo
b3JpdHkxITAfBgNVBAsTGERlbW9DQSBTZWN1cml0eSBEaXZpc2lvbjEPMA0GA1UEAxMGRGVtb0NB
MSUwIwYJKoZIhvcNAQkBFhZtY3phcHNraUBzZWViZXlvbmQuY29tMB4XDTA2MDUxMzExMTQ1MFoX
DTA4MDcyMTExMTQ1MFowgYwxCzAJBgNVBAYTAkFVMQwwCgYDVQQIEwNOU1cxJTAjBgNVBAoTHGFz
bmRyIHZpYSBTb21lQ29tcGFueSBTeWRuZXkxDjAMBgNVBAsTBWFzbmRyMRIwEAYDVQQDEwlsb2Nh
bGhvc3QxJDAiBgkqhkiG9w0BCQEWFWFzbmRyQGFwLnNieW4uc3VuLmNvbTCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEAtiPpt/jjvtflet+2hUYLeQovc2KLOMVh1fYaiQ/l8oVg6lBhNNz+JYm0
nGx3ksY4rbmsoDGheDUuBwQdsxOFCCv4hF01G6EYBTmK8mr8JvY6nMIt6BQlbBJcl6kI8jwJKhHu
eQ5t8sOrFYn+ViLt8z4TYbjyuqyGhrlFs4X77UECAwEAAaNRME8wIAYDVR0RBBkwF4EVYXNuZHJA
YXAuc2J5bi5zdW4uY29tMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFD+l7MPNy+ybuScfqUqDIde5
k1QJMA0GCSqGSIb3DQEBBQUAA4IBAQBl3IHRX85yZK+EjXRAaaMh/8bvBLcFTEm2hcP9FjhZ64za
bjLQglDsMzGPSSSuIwDJgnuLcG+5EjvGg4mR0zY7afo+8iYNiughMlvpWuqTTVVyqh8YHOYb10p8

4NH/LAPCQFNWobgnuRtj3f5DEt8XvnWChCPFKsxyQrtDAtZ4DCkMxXc2KPIln/Dfajfam7vJRCG6
/rwlI8rtfEcsA6MRcjH8MPwyJv0JJfcUDFT3HdgGMeOXK/8RY98Ph0Qa8SuByvL9klLQJVcv00OM
DsH785wRC3YRN+L6oOxEnEBDm9BRV8NBtXiwLr7LxQCnI3XBfRrjjWeAAQQCk2zgREyP
 </wsse:BinarySecurityToken>
 <xenc:EncryptedKey
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:Reference
 URI="#XWSSGID-11602644371611510892409"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>
HG5XPMQT8fnFy2sS6vwlcA1x63U2JEhpnehIBBIXEJiyyqgaVQ7I1whU6cFwNfk71vkGb/5uc7Tq
PysjhAbjWnuL4Lv0KN2e663SjvZGA0azN0uKLgG2S57cEWu//pcm8HCyOc9NffVK9qC22GT09B7T
nuVnp5ZcSE2BViLiUZM=
 </xenc:CipherValue>
 </xenc:CipherData>
 <xenc:ReferenceList>
 <xenc:DataReference URI="#XWSSGID-1160264438513528295170"/>
 </xenc:ReferenceList>
 </xenc:EncryptedKey>
 <wsse:UsernameToken
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 wsu:Id="XWSSGID-11602644371611790622429">
 <wsse:Username>wssuser</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">
 <xenc:EncryptedData
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 Id="XWSSGID-1160264438513528295170"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xenc:CipherData>

<xenc:CipherValue>JhY/YWEPyHOQphqthMWd78yoFSyzJWqttFMhhagUYyI=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </wsse:Password>
 <wsse:Nonce
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#Base64Binary">
Xl26/1ZOSYc1A65BfpEylXGf
 </wsse:Nonce>
 <wsu:Created>2006-10-07T23:40:37Z</wsu:Created>
 </wsse:UsernameToken>
 <wsu:Timestamp
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd">
 <wsu:Created>2006-10-07T23:40:37Z</wsu:Created>
 <wsu:Expires>2006-10-31T04:13:57Z</wsu:Expires>
 </wsu:Timestamp>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 wsu:Id="XWSSGID-1147654670736-1549330563">
 <purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>

 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild</comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
 </purchaseOrder>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

By combining a Timestamp Token, a Username Token, and Encryption we have a set of
credentials, conveyed securely within a SOAP Message, to be used by the provider for
invoker authentication or by the sender for responder authentication.

Final remarks

It should be clear by now that anything for which a Java class or a class library exists can
be used in Java CAPS. The Web Services Security example described here is intended to
demonstrate that, as well as to provide a practical means of adding the features that are
increasingly requested and that the product, as distributed, lacks.

The example is a reasonably simple one. If anyone finds the time and the inclination to
develop a more elaborate example, possibly a more sophisticated configurable Secure
Web Service server, he, she or they, are most welcome to add to the example, the
document and the Sun SeeBeyond knowledge and tools base for the benefit of these other
who don’t have the skills, the time or the inclination but do have a need.

References

[WSMS 1.0] Web Services Security: SOAP Message Security 1.0 (WS-Security 2004),
OASIS Standard 2004, 01 March 2004, Available: http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf, Accessed: May
15, 2006

[SAML 1.0] Web Services Security SAML Token Profile 1.0, OASIS Standard, 01
December 2004, Available: http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.0.pdf, Accessed: May 15, 2006

[UTP 1.0] Web Services Security Username Token Profile 1.0, OASIS Standard, 01
March 2004, Available: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0.pdf, Accessed: May 15, 2006

[X509TP 1.0] Web Services Security X.509 Certificate Token Profile, OASIS Standard
2004, 01 March 2004, Available: http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0.pdf, Accessed: May 15, 2006

[SOAP 1.1] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000,
Available: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, Accessed: May 15,
2006

[JWSDP 2.0] Java Web Services Developer Pack, Version 2.0, Available:
http://java.sun.com/webservices/jwsdp/, Accessed: May 18, 2006

[JWSTut 2.0] Java Web Services Tutorial, Versiojn 2.0, Available:
http://java.sun.com/webservices/docs/2.0/tutorial/doc/Security-WebSvcs.html, Accessed:
May 18. 2006

[JWSTut 1.6] Java Web Services Tutorial, Version 1.6, Available:
http://java.sun.com/webservices/docs/1.6/tutorial/doc/, Accessed: May 18. 2006

See also a variety of Sun Java Enterprise System 2005Q4 documents at
http://docs.sun.com/app/docs/coll/1286.1 and related places.

