
Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

1 of 14

GlassFish ESB v2.2 Field Notes

Michael.Czapski@sun.com
January 2010, Release 1.0.0.0

Table of Contents
Introduction..1
JVM-Global, Ephemeral Sequence Generator...1
HL7 Message ID Encricher ...5
Summary..14
References..14

Introduction
When working on the HA solutions discussed in my blog[1] I realized that it will be
difficult to work out whether messages are delivered in order, as was required, and
whether any are missing. I got over the issue by ensuring that my test data was
prepared in such a way that messages in each test file had increasing, contiguous
sequence numbers embedded in the message. For HL7 v2, which is the messaging
standard with which I dealt, I used MSH-10, Message Control ID field. I wrote
processed messages and acknowledgements to files whose names embedded MSH-10
Message Control Id, with the sequence number, so breaks in sequence and out of
order messages could be readily detected.

With multiple message files containing between 1 and 50,000 messages, adding a
sequence number to each message by hand was clearly out of the question.

I put the GlassFish ESB to use. I constructed a file-to-file BPEL module project to
read each test file and to prepend a sequence number to each message’s MSH-10
field. The only snag was how to get a sequence number that would start at 0 and
increase by 1 for each message, such that each BPEL process instance would get the
next sequence, and that messages would be written to the output file in order.

This note discusses how I went about accomplishing the task.

JVM-Global, Ephemeral Sequence Generator
After considering a couple of possibilities I resolved to use a Java static int to
hold the sequence number, knowing that it will be good until the project is re-
deployed or until the Application Server is restarted, which was good enough for my
purpose. To make the Java code accessible to BPEL I decided to create a POJO,
which to invoke from BPEL.

Let’s create a “New Project” -> “Java” -> “Java Application”, POJOGetSeqNum,
making sure to uncheck the ”create main class” option.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

2 of 14

Right-click project name, choose “New” � “Other …”. Choose “ESB” � “POJO
Service”.

Specify Class Name: GetSeqNum, package name: pkg.GetSeqNum, method name:
NextSeq, and accept input and output parameters as strings.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

3 of 14

When the skeleton POJO code is shown in the editor, add the following source code
as indicated:

First we declare private static int to hold the most recent sequence number, and a
synchronization object, since the formatter may not be thread-safe.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

4 of 14

Inside the NetSeq method body we initialize the return variable, assign the most
recent sequence value to it with post-increment, inside a synchronization block, create
a formatter to format the number as numeric string, format the number and return it to
the caller.

Once the code is added, right click inside the source window and choose “Fix
Imports”, to resolve missing import statements.

If I was interested in the sequence number as an int I could have skipped the
formatting bit and returned an int. To keep my messages in order by sequence
number, I prefer to have a zero-filled, right-justified number strings, like 000001.

Compile the file. It should compile unless something got messed up in transcription.

To test the code let’s add a Main class to the project and use it to invoke the NextSeq
method in our class.

Right-click the name of the project and choose “New” � “Java Class”. Name it
GetNextSeqDriver and make sure to include it in the same package as GetNetSeq.

Insert the following code as shown.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

5 of 14

Right-click the name of this calss, GetSeqNumDriver, choose “Run File” and observe
the outcome in the output window.

Right-click the project name and choose “Build”.

The utility class is ready.

HL7 Message ID Encricher
With the sequence number generator ready we are now in a position to process HL7
v2 messages by prepending increasing sequence number to the MSH-10 Message
Control ID, so we can use these messages in HA testing.

Obtain HL7 v2 XML Schema documents, from which we will need ADT A03 and
related schemas, from http://wiki.open-esb.java.net/attach/HL7/hl7v2xsd.zip. Unzip it
to a convenient location.

Create a “New Project” � “SOA” � “BPEL Module”, named HL7Sequencer.

Create a sub-folder, HL7v231, in the “Process Files” folder. Right click the name of
the subfolder and choose “New” � “External XML Schema Document(s)”. Locate
the ADT_A03.xsd in the hl7 v2.3.1 folder hierarchy hl7v2xsd/2.3.1, and choose it.

Click Finish.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

6 of 14

Supplementary files, included in ADT_A03.xsd, were added as well. The project will
now look like this:

We expect to read one or more HL7 version 2.3.1 delimited ADT A03 messages,
enrich the MSH-10 field, and write out HL7 v 2.3.1 delimited ADT A03 messages.
This requires a File BC to read and write records. We could use one File BC
configuration for reading and one for writing, but we can also use a single File BC
configuration to both read records from a file and to write records to a different file in
the same directory.

Let’s create “New” � “WSDL Document”, named HL7Sequencer_FileInOut:

WSDL Type: Concrete
Binding: FILE
Type: poll and write back reply

Request Configuration
File Polling:
 File Name: ADT_A03_raw_%d.hl7
 Polling Directory: /GFESBv22Projects/GFESB_HA_LB/data (or whatever
directory you need to use)
Record processing:
 Multiple Records: true
 Delimiter: \r\n
Payload Processing:
 Message Type: encoded data
 XSD Element/Type: ADT_A03
 Encoded type: hl7encoder
 Remove Trailing EOL: true

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

7 of 14

Response Configuration
File Write:
 File Name: ADT_A03_raw_%d.hl7
 File Exists: Append to existing file
 Delimited By: \r\n
Payload Processing:
 Message Type: encoded data
 XSD Element/Type: ADT_A03
 Encoded type: hl7encoder
 Remove Trailing EOL: true

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

8 of 14

Open the BPEL Process and drag the WSDL onto the right-hand swim line. Name
partner link FielInOut.

Expand the project POJOGetSeqNum, through the Source Packages �
pkg.GetSeqNum node. Drag the GetSeqNum.wsdl onto the right hand swim line and
name the partner link GetSeq.

Drag the Receive, Assign, Invoke, Assign and Reply activities onto the canvas and
connect as shown.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

9 of 14

Edit Receive1 activity and create an Input Variable: vA03In.

Edit Reply1 activity and create Normal Response: Output Variable: vA03Out.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

10 of 14

Edit Invoke1 activity and create two variables, Input Variable: vFormat and Output
Variable: vNextSeq.

Select Assign1 activity, switch to Mapper and assign string literal “000000” to
variable vFormat.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

11 of 14

Switch to Design view, select Assign2 activity, switch to Mapper view and map, in
stages, as discusses below.

Map vA03In�part1 to vA03Out�part1

Map concatenation of vNextSeq�part1, literal “_” and
vA03In�part1�MSH�Message Control ID to vA03Out�part1�MSH�Message
Control ID.

Save and Build the project.

Create “New Project”�”SOA”�”Composite Application”, named
HL7Sequencer_CA.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

12 of 14

Drag HL7Sequencer and POJOGetSeqNum projects onto the CASA canvas and click
Build.

Righ-click the QoS icon on the link form the File BC to the BPEL process and set
Max Concurrency Limit to 1, to serialize message processing. Having gone to all this
trouble to assign sequential numbers we need to make sure the records are indeed
written out in order.

Deploy the project.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

13 of 14

Archive containing test messages, ADT_A03_raw.zip, can be downloaded from
http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/ADT_A03_raw.zip/details.

Submit the file, ADT_A03_raw_1.hl7, containing 1 HL7 message.

Inspect the input file content.

Inspect the output file content.

Sequence number, 000000, was prepended to the MSH-10 content.

Delete, or move elsewhere, the output file. If you don’t do that records from the next
run will be appended to that file, as requested in the File BC configuration.

Submit a file with 30 HL7 messages, ADT_A03_raw_30.hl7, and inspect the content.

Inspect the output file and note that sequence numbers were prepended and started
from 000001, since the one record file was processed before.

Ephemeral, JVM-global, POJO-based Sequence Number Generator for BPEL

14 of 14

JVM global, ephemeral sequencing works.

To reset the sequence to zero re-deploy the project. This is why this kind of
sequencing is called ephemeral (short lived -
http://www.google.com.au/search?q=define%3Aephemeral).

The private static int, which holds the current sequence, will be destroyed if the
application server is restarted, application is undeployed or redeployed.

Summary
This note walked through development of a JVM global, ephemeral sequence number
generator, in a form of a POJO useable from a BPEL process. To demonstrate the use
of the sequence generator a BPEL project, enriching HL7 v2.3.1 messages with
sequence numbers prepended to the MSH-10 filed, was also developed and exercised.
This kind of project can be used, as I have done, to prepare data for HA testing, and
other occasions where message processing in sequence is required and needs to be
confirmed.

References
1 “GlassFish ESB v2.2 Field Notes - Exercising Load Balanced, Highly

Available, Horizontally Scalable HL7 v2 Processing Solutions”, Accessed:
January 9, 2010, Available:
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_2_field1

