

Java CAPS 6 Update 1
Exposing MTOM-capable Java CAPS Classic Web Service

Michael.Czapski@sun.com
February 2009

Contents
1. Introduction..1
2. WSDL Notes..3
4. Build eInsight / BPEL 1.0-based Web Service..12
5. Exercise eInsight / BPEL 1.0-based Web Service ...21
6. Add Service Wrapper to provide MTOM support...27
7. Test Wrapped Service ..32
8. Create Java CAPS Environment ..36
9. Obtain and use the Apache TCP Mon..38
10. Install soapUI Plugin..39
11. Install JAX-RPC Plugin...40

1. Introduction
If we overlook the fact that using web services to transfer large payloads is a very
stupid idea, we will be faced with the need to implement the optimisation mechanisms
to make transfer of large payloads using web services a little less inefficient from the
stand point of the size of the over-the-wire data to be transferred.

The standardised, supported mechanism for this is the Message Transmission
Optimisation Method (MTOM), http://en.wikipedia.org/wiki/MTOM. Java CAPS
Repository-based Web Services don’t offer a convenient mechanism to provide
MTOM support.

This note walks through the implementation of a Java CAPS Repository-based,
eInsight-based web service and the implementation of the EJB-based Web Service
Wrapper for this service, which provides support for MTOM. The Note discusses how
to exercise the services using the NetBeans web services testing facilities and how to
observe on-the-wire message exchanges.

Create a Project Group
I find the NetBeans flat project structure annoying. The Enterprise Designer
hierarchical project structure, ported to Java CAPS 6 Classic, was a much more
reasonable way of organizing projects and project artefacts. The Project group feature
of NetBeans is a poor substitute for that. Be it how it may, I have gotten into a habit
of creating project groups so I can collect related projects and open/close related
projects in a hit.

So, let’s create a new project group, provide a folder for the projects that belong to the
group and crenate new projects for this Note in that group.

In Java CAPS 6, once you create a project group, the CAPS Components Library
project will “disappear”. To “get it back” you can re-connect the repository or hit the
“Refresh All” button on the tool bar.

2. WSDL Notes
Java CAPS 6 is fussy about the kind of WSDL it will accept for different kinds of
projects. In this Note we will be dealing with EJB-based Web Services and
Repository-based Web Services. Empirical experience tells me that the only kind of
WSDL that is acceptable to both is a) document/literal WSDL and b) a WSDL with
an in-line XML Schema. Another words, don’t use an external XML Schema included
in the WSDL and expect it to work. It will work in same projects but not in others. In
particular, if you create a Classic Web Service, which you wish to invoke form an
EJB via a Web Service Reference, the tooling will be unable to find the referenced
XML Schema and the result will be a fiasco.

One way I adopted recently goes like this:

1. Create a BPEL 2.0 Module for common WSDLs and XSDs
2. Create an XMLS Schema document using the NetBeans “New->XML

Schema” method, with eventual Request and Reply in the XSD as separate
Elements.

3. Create a “New->WSDL Document”, specifying the appropriate XML Schema
elements for Request and Reply messages, and Faults if you have any.

4. Copy the new WSDL document and replace the content of the
<types></types> with the entire content of the XML Schema document.

Figure 2-1 Create a new BPEL Modules

Figure 2-2 Name the module to indicate what objects it contains

Figure 2-3 Create a New->XML Schema

Figure 2-4 Name the document and change target namespace value

Add the elements to the XSD as required. Listing 3-1 provides the XML Schema
document we will use in this Note.

Now create a New->WSDL document.

Figure 2-5 Create a New->WSDL Document

Figure 2-6 Name the WSDL, specify target namespace and Binding information

Figure 2-7 Name the Operation, choose Request (Input) type and name it

Figure 2-8 Name Input and Output (Response) and choose type

Figure 2-9 Accept default to finish

Slightly re-formatted for readability, in Source mode, the “interesting” WSDL
fragment is shown in Figure 3-10.

Figure 2-10 WSDL fragment

Note the content of the <types></types> tag, with XML Schema import.

Copy the entire WSDL and paste as a new WSDL wit a name perhaps suffixed with
some constant that tells you that this WSDL has the XSD embedded rather then
imported.

Now open the XML Schema, copy its content and replace the content of the
<types></types> tag with it.

Figure 2-11 Select the content of the <types></types> tag

Figure 2-12 Paste the XML Schema source in its place and Format document

This produces a WSDL that will work in all kinds of projects and an XML Schema
that can be used where WSDL is not required, for example to create XSD-based
OTDs.

The XML Schema we will use in this Note looks like that presented in Listing 3-1.

Listing 2-1 Send Document XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="uri:Sun:Michael:Czapski:XSD:SendDocument"
 xmlns:tns="uri:Sun:Michael:Czapski:XSD:SendDocument"
 elementFormDefault="qualified">
 <xsd:element name="DocumentReq">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="DocID" type="xsd:int"></xsd:element>
 <xsd:element name="DocDescription" type="xsd:string"></xsd:element>
 <xsd:element name="DocDirectoryName" type="xsd:string"></xsd:element>
 <xsd:element name="DocFileName" type="xsd:string"></xsd:element>
 <xsd:element name="DocBody"
 type="xsd:base64Binary" minOccurs="0"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="DocumentRes">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="DocID" type="xsd:int"></xsd:element>
 <xsd:element name="SendStatus" type="xsd:boolean"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The original WSDL is presented in Listing 3-2

Figure 2-2 Original WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="SendDocument"
 targetNamespace="uri:Sun:Michael:Czapski:WSDL:SendDocument"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="uri:Sun:Michael:Czapski:WSDL:SendDocument"
 xmlns:ns="uri:Sun:Michael:Czapski:XSD:SendDocument"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
 <xsd:schema
 targetNamespace="uri:Sun:Michael:Czapski:WSDL:SendDocument">
 <xsd:import
 namespace="uri:Sun:Michael:Czapski:XSD:SendDocument"
 schemaLocation="SendDocument.xsd"/>
 </xsd:schema>
 </types>
 <message name="opSendDocumentRequest">
 <part name="sSendReq" element="ns:DocumentReq"/>
 </message>
 <message name="opSendDocumentResponse">
 <part name="sSendRes" element="ns:DocumentRes"/>
 </message>
 <portType name="SendDocumentPortType">
 <operation name="opSendDocument">
 <input name="input1" message="tns:opSendDocumentRequest"/>
 <output name="output1" message="tns:opSendDocumentResponse"/>
 </operation>
 </portType>
 <binding name="SendDocumentBinding" type="tns:SendDocumentPortType">
 <soap:binding
 style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="opSendDocument">
 <soap:operation/>
 <input name="input1">
 <soap:body use="literal"/>
 </input>
 <output name="output1">
 <soap:body use="literal"/>
 </output>
 </operation>

 </binding>
 <service name="SendDocumentService">
 <port name="SendDocumentPort" binding="tns:SendDocumentBinding">
 <soap:address
location="http://localhost:${HttpDefaultPort}/SendDocumentService/SendDocumentPort"/>
 </port>
 </service>
 <plnk:partnerLinkType name="SendDocument">
 <!-- A partner link type is automatically generated when a new port type is
added. Partner link types are used by BPEL processes.
In a BPEL process, a partner link represents the interaction between the BPEL process
and a partner service. Each partner link is associated with a partner link type.
A partner link type characterizes the conversational relationship between two
services. The partner link type can have one or two roles.-->
 <plnk:role name="SendDocumentPortTypeRole"
portType="tns:SendDocumentPortType"/>
 </plnk:partnerLinkType>
</definitions>

The modified WSDL is presented in Listing 3-3

Figure 2-3 Modified WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="SendDocument"
 targetNamespace="uri:Sun:Michael:Czapski:WSDL:SendDocument"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="uri:Sun:Michael:Czapski:WSDL:SendDocument"
 xmlns:ns="uri:Sun:Michael:Czapski:XSD:SendDocument"
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="uri:Sun:Michael:Czapski:XSD:SendDocument"
 xmlns:tns="uri:Sun:Michael:Czapski:XSD:SendDocument"
 elementFormDefault="qualified">
 <xsd:element name="DocumentReq">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="DocID" type="xsd:int">
 </xsd:element>
 <xsd:element name="DocDescription" type="xsd:string">
 </xsd:element>
 <xsd:element name="DocDirectoryName" type="xsd:string">
 </xsd:element>
 <xsd:element name="DocFileName" type="xsd:string">
 </xsd:element>
 <xsd:element name="DocBody"
 type="xsd:base64Binary" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="DocumentRes">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="DocID" type="xsd:int">
 </xsd:element>
 <xsd:element name="SendStatus" type="xsd:boolean">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="opSendDocumentRequest">
 <part name="sSendReq" element="ns:DocumentReq"/>
 </message>
 <message name="opSendDocumentResponse">
 <part name="sSendRes" element="ns:DocumentRes"/>
 </message>
 <portType name="SendDocumentPortType">

 <operation name="opSendDocument">
 <input name="input1" message="tns:opSendDocumentRequest"/>
 <output name="output1" message="tns:opSendDocumentResponse"/>
 </operation>
 </portType>
 <binding name="SendDocumentBinding" type="tns:SendDocumentPortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="opSendDocument">
 <soap:operation/>
 <input name="input1">
 <soap:body use="literal"/>
 </input>
 <output name="output1">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SendDocumentService">
 <port name="SendDocumentPort" binding="tns:SendDocumentBinding">
 <soap:address
location="http://localhost:${HttpDefaultPort}/SendDocumentService/SendDocumentPort"/>
 </port>
 </service>
 <plnk:partnerLinkType name="SendDocument">
 <!-- A partner link type is automatically generated when a new port type is
added. Partner link types are used by BPEL processes.
In a BPEL process, a partner link represents the interaction between the BPEL process
and a partner service. Each partner link is associated with a partner link type.
A partner link type characterizes the conversational relationship between two
services. The partner link type can have one or two roles.-->
 <plnk:role name="SendDocumentPortTypeRole"
portType="tns:SendDocumentPortType"/>
 </plnk:partnerLinkType>
</definitions>

4. Build eInsight / BPEL 1.0-based Web Service
Let’s create a Java CAPS Repository-based / Classic project, WSSReceiveDocument.
Figures 4-1 and 4-2 illustrate the steps.

Figure 4-1 Creating Java CAPS Repository-based Project

Figure 4-2 Naming the project

Let’s now import the Web Service Definition (WSDL) from the file system, which is
where the artefacts in the CommonXMLDocs project reside. Before starting the
Wizard let’s copy to clipboard the location of the WSDL document. Righ-click the
name of the WSDL in CommonXMLDocs/Process
Files/SendDocumentEmbedded.wsdl and choose Properties. Click the small button
with the ellipsis at the rightmost end of the “All Files” field. See Figure 4-3.

Figure 4-3 Open the All Files Property box

Select the WSDL location and copy to clipboard as shown in Figure 4-4.

Figure 4-4 Copy the WSDL location to the clipboard

Dismiss both dialogue boxes. Right-click the name of the Classic project and choose
Import->Web Service Definition. Figure 4-5 illustrates this.

Figure 4-5 Import WSDL Wizard – step 1
Accept default “File System” location type by clicking Next.

Paste the file path into the data entry field and press Enter, see Figure 4-6. Until you
do the Next button will be disabled.

Figure 4-6 Paste the WSDL location

Click Next, as shown in Figure 4-7.

Figure 4-7 Accept selected WSDL

If there are no errors, click Next, as shown in Figure 4-8. If there are errors then sort
them out and do this agai.

Figure 4-8 Accept what is offered

Accept what is offered by clicking Next, as illustrated in Figure 4-9.

Figure 4-9 Accept what is offered

Assuming no errors or warnings are present, click Finish, as illustrated in Figure 4-10.

Figure 4-10 Complete Wizard

The process above produces a Classic WSDL artefact, shown in Figure 4-11.

Figure 4-11 Classic WSDL artefact

Create a new Business Process. Figure 4-12 illustrates the menu options involved.

Figure 4-12 Create a new Classic Business Process

To implement the service let’s drag the Web Service operation onto the business
process canvas and choose the “Implement” option. Figures 4-13 and 4-14 illustrate
the steps.

Figure 4-13 Drag the web service operation onto the BP canvas

Figure 4-14 Choose “Implement …”

Connect the activities together, add a Business Rule and map. Figure 4-15 illustrates
this.

Figure 4-15 Map Web Service request data to Web Service Response nodes

The implementation is deliberately simple since the business logic does not really
matter in this case.

Let’s create the Connectivity Map, drag the business process onto the CM canvas, add
the Web Service Connector, connect and configure it. Figure 4-16 shows the
completed connectivity map.

Figure 4-16 cmWSSReceiveDocument Connectivity Map

Assume you have created a Java CAPS Environment as discussed in Section 8, “

Create Java CAPS Environment”.

Add a new SOAP/HTTP Web Service External System container,
WSSReceiveDocument, and configure it as appropriate to your environment. Figures
4-17 through 4-19 illustrate this for my environment.

Figure 4-17 Create a SOAP/HTTP Web Service External System …

Figure 4-18 Name the container and choose container type

Figure 4-19 Configure host, port and servlet context

The Java CAPS Environment now has all the containers necessary to deploy the
project we have been working on so far. Let’s create the Deployment Profile,
WSSReceiveDocument, build and deploy the project. Figure 4-20 illustrates a step in
this process. As the deployment is built choose to publish the WSDL to UDDI.

Figure 4-20 Choose Deployment Profile name and the environment to which it will belong
The service is deployed. Now let’s exercise it to make sure it works.

5. Exercise eInsight / BPEL 1.0-based Web Service
The modern NetBenas IDE, used in Java CAPS 6, provides a number of ways to test
web services. The most straight-forward is to install the SoapUI Plugin, which is
doable through the Tools->Plugins-accessible Plugin Manager.

Installation of the SoapUI Plugin is discussed in section 10, “

Install soapUI Plugin”.

If the plugin is installed a new Enterprise Project Category, Web Service Testing
Project, becomes available in the “New Project” wizard.

To configure a Web Service Testing Project we will need a URL or a file system
location of a WSDL that corresponds to the web service to be tested. This we can
obtain through the “UDDI Browser” web-based UI, typically at
http://<yourUDDIHost>:<YourUDDIPort>/CAPSUDDI/uddibrowse.jsp.

Make sure to select and copy the WSDL URL.

Figure 5-1 Click on the WSDL URL

Select the URL.

Figure 5-2 Select the URL and copy it to the clipboard

Create a new Web Service testing Project, WSSReceiveDocumentWSTP.

Figure 5-3 New Web Service Testing Project

Name the Project and paste the WSDL URL into the Initial WSDL (URL/File).

Figure 5-4 Paste the URL into the box.

Once the WSDL is parsed and imported, expand the project structure and open
“Request 1” for editing.

Figure 5-5 Open Request 1 for editing

Complete the request by providing data for the fields. Paste the following string, not
including quotes, into the optional DocBody “ZHVtbXk=”. Submit the request.

Figure 5-6 Configure SOAP Request

The response returned by the service should look like this:

Figure 5-7 SOAP Response

Let’s now start the TCP Mon as a proxy listening on port 8888, see section 9, “

Obtain and use the Apache TCP Mon”, and configure NetBeans to use that as the
Web Proxy. Tools->Options->General: Manual Proxy Settings.

Figure 5-8 Configure Web Proxy

Submit the request again and view the TCP Mon display, noticing the SOA Request
and the SOAP Response.

Figure 5-9 SOAP Request (top) and SOAP Response (bottom)

Let’s now enable MTOM support in the soapUI plugin and enforce it. Select the
“Reqeust 1” node in the web service testing project. Pull down the Windows menu
and select “Properties”. This will open the Properties window pane. Make sure the
four attachment related properties are configured as true, Enable MTOM, Force
MTOM, inline Response Attachment and Expand MTOM Attachments.

Submit the request again and observe the SOAP FAULT that is returned.

Figure 5-10 MTOM Attachment-related properties

The SOAP Fault is shown in Listing 5-1.

Listing 5-1 SOAP Fault – Element not allowed: Include
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns0="uri:Sun:Michael:Czapski:XSD:SendDocument"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <env:Body>
 <env:Fault>
 <faultcode>env:Server</faultcode>
 <faultstring>Internal server runtime exception</faultstring>
 <detail>
 <ans1:SOAPFaultMessage
xmlns="http://seebeyond/com/xsddefined/FaultMessages"
xmlns:ans1="http://seebeyond/com/xsddefined/FaultMessages">
 <ans1:Fault>
 <faultcode xmlns="">SERVER_ERROR</faultcode>
 <faultstring xmlns="">root
cause:com.stc.otd.runtime.UnmarshalException: error: Element not allowed:
Include@http://www.w3.org/2004/08/xop/include in element
DocBody@uri:Sun:Michael:Czapski:XSD:SendDocument and the associated Fault container
is not available</faultstring>
 <faultactor xmlns="">wsserver</faultactor>
 <detail xmlns="">root cause:com.stc.otd.runtime.UnmarshalException:
error: Element not allowed: Include@http://www.w3.org/2004/08/xop/include in element
DocBody@uri:Sun:Michael:Czapski:XSD:SendDocument and the associated Fault container
is not available</detail>
 </ans1:Fault>
 </ans1:SOAPFaultMessage>
 </detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

What happened?

The soapUI plugin, which supports MTOM, was told to optimise binary data in the
SOAP Request using the Message Transmission Optimisation Mechanism (MTOM)
standard. It did so. The base64-encoded content of the DocBody node was decoded,
moved to a MIME part and replaced with the “Include ….” reference. The request
was transformed into that shown in Listing 5-2.

Listing 5-2 SOAP Request transformed according to MTOM spec.
POST http://localhost:38080/WSSReceiveDocument/SendDocumentPort HTTP/1.1
SOAPAction: ""
Content-Type: multipart/related; type="application/xop+xml";
start="<rootpart@soapui.org>"; start-info="text/xml"; boundary="----
=_Part_2_837984.1234319921406"MIME-Version: 1.0User-Agent: Jakarta Commons-
HttpClient/3.1Host: localhost:38080Proxy-Connection: Keep-AliveContent-Length: 1039---
---=_Part_2_837984.1234319921406Content-Type: application/xop+xml; charset=UTF-8;
type="text/xml"Content-Transfer-Encoding: 8bitContent-ID:
 <rootpart@soapui.org>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:uri="uri:Sun:Michael:Czapski:XSD:SendDocument">
 <soapenv:Header/>
 <soapenv:Body>
 <uri:DocumentReq>
 <uri:DocID>1</uri:DocID>
 <uri:DocDescription>First Document</uri:DocDescription>
 <uri:DocDirectoryName>c:/tmp/docs</uri:DocDirectoryName>
 <uri:DocFileName>aa.pdf</uri:DocFileName>
 <!--Optional:-->
 <uri:DocBody>
 <inc:Include href="cid:http://www.soapui.org/105621903315644"
xmlns:inc="http://www.w3.org/2004/08/xop/include"/>
 </uri:DocBody>
 </uri:DocumentReq>
 </soapenv:Body>
 </soapenv:Envelope>------=_Part_2_837984.1234319921406Content-Type:
application/octet-streamContent-Transfer-Encoding: binaryContent-ID:
 <http://www.soapui.org/105621903315644>dummy------
=_Part_2_837984.1234319921406--

Note the content ID in the part and the content ID in the body of the DocBody node.

Since the service as implemented does not support MTOM the request failed to be
processed and caused the SOAP Fault to be returned.

6. Add Service Wrapper to provide MTOM support
There is no way to configure MTOM support for the Java CAPS Repository-based
eInsight-based Web Service directly. There are no configuration properties to do that
and there is no code support in the framework. One possibility is to use the SOAP
Handler mechanism, available since Java CAPS 5.1.3 Rollup 2, but that requires a
deal of low level Java coding and is not for the faint of heart. The simpler way in Java
CAPS 6 is to create an EJB-based Web Service as a service wrapper / proxy for the
eInsight-based web service. This EJB-based web service would be invoked by the
consumer and it, in its turn, would invoke the service proper.

Let’s create an EJB Module Project, WSSReceiveDocumentEM.

Figure 6-1 New EJB Module Project

Figure 6-2 Name the project and specify location for its artefacts

Figure 6-3 Finish

Right-click CommonXMLDocs/Process Files/SendDocumentEmbedded.wsdl, choose
Properties and copy the “All Files” property value to the clipboard.

Let’s now create a New -> Web Service from WSDL … (or New -> Other -> Web
Services -> Web Service from WSDL`).

Name the Web Service WSSReceiveDocument, provide a package name, for example
pkg.WSSReceiveDocument, and provide the WSDL location.

Figure 6-4 Configure new web service initial properties

The service implementation skeleton opens in Design Mode. Check the Optimize
Transfer of Binary Data (MTOM) checkbox to enable MTOM support, as shown in
Figure 6-5.

Figure 6-5 Enable MTOM support
Use the UDDI Browser servlet to get a copy of the URL pointing to the WSDL for the
Repository-based Web Service we already deployed, see Figure 5-1 and Figure 5-2.

Right-click on the name of the project, WSSRecevieFileEM, and choose New->Web
Service Client … Check the WSDL URL radio button and paste the WSDL URL.
Click Finish to complete the wizard. This is illustrated in Figure 6-6.

Figure 6-6 Create Web Service Client from the existing service’s WSDL

Note a new node, Web Service Reference, appear in the project’s node tree, Figure 6-
7.

Figure 6-7 Web Service Reference added to the project

Locate the Java source of the WSSRecevieDocument web service, open it, switch to
Source view and select the two lines of code inside the opSendDocument method.
Delete the two lines of code by pressing Enter. This is illustrated in Figure 6-8.

Figure 6-8 Select the code to replace with the real implementation

Expand the Web Service Reference node tree all the way to the operation. Drag the
web service operation to the Java source canvas as illustrated in Figure 6-9.

Figure 6-9 Add web service invocation to the Java source

You will get a slab of Java boilerplate code added to the canvas. The service
invocation will have an error. Merely rename the variable sSendReq to sSendReqC, or
similar, to eliminate the problem. Right-click inside the source code window and
choose Format.

Figure 6-10 Boilerplate code invoking the web service, with variable name changed

Modify the boilerplate code to read as shown in Listing 6-1.

Listing 6-1 body of the opSendDocument method, simplified
public uri.sun.michael.czapski.xsd.senddocument.DocumentRes
 opSendDocument
 (uri.sun.michael.czapski.xsd.senddocument.DocumentReq sSendReq) {

 try { // Call Web Service Operation
 uri.sun.michael.czapski.wsdl.senddocument.SendDocumentPortType port
 = service.getSendDocumentPort();
 return port.opSendDocument(sSendReq);
 } catch (Exception ex) {
 uri.sun.michael.czapski.xsd.senddocument.DocumentRes
 result = new uri.sun.michael.czapski.xsd.senddocument.DocumentRes();
 result.setDocID(sSendReq.getDocID());
 result.setSendStatus(false);
 return result;
 }
}

Build and deploy this service.

7. Test Wrapped Service
Expand the Web Services node, right-click
SendDocumentService[SendDocumentPort] node and choose Create Web Services
Tests. Figure 7-1 illustrates this.

Figure 7-1 Create web services tests for the service

Accept the default options, as shown in Figure 7-2, and accept the default name.

Figure 7-2 Accept defaults

Expand the Web Services Tests node tree all the way to Request 1 and open Request 1
in the Request Editor, as shown in Figure 7-3.

Figure 7-3 Open Request 1 in Request Editor

Modify the request body by providing appropriate values for the document elements
and modify Request 1 properties to enable MTOM support. Figure 7-4 illustrates both
aspects.

Figure 7-4 Modify request body and request properties

You should still have the NetBeans General Manual Proxy Settings configured to use
the TCP Mon proxy at port 8888. Switch to TCP Mon and click the Remove All
button to clear the old interactions. Switch back to NetBeans and submit the request.

You should receive a response that looks like that shown in Figure 7-5.

Figure 7-5 Request and Response

Switch to the TCP Mon and observe the request and the response as they were seen on
the wire. Note that the body of the DocBody node has been externalised to a MME
part and replaced with the ContentID reference. Note the correspondence between the
ContentID in the reference and the contented of the MIME part. Figure 7-8 illustrates
the request and the response, encoded as per the MTOM requirements. Note that all
the MTOM-related work was performed by the “behind-the-scenes” infrastructure.
All we needed to do was to enable MTOM support by checking the checkbox.

To find out what the URL of the MTOM Wrapper Service is right-click on the service
name, choose Test Web Service, as shown in Figure 7-6, and copy the WSDL
location as shown in Figure 7-7.

Figure 7-6 Start the Test Web Service functionality

Figure 7-7 Copy WSDL Location

Figure 7-8 MTOM-encoded request and response on the wire

The WSDL location for the MTOM Wrapper service looks, for me, like:

http://localhost:38080/SendDocumentService/WSSReceiveDocument?WSDL

The original Repository-based project’s WSDL location looks, for me, like:

http://localhost:38080/WSSReceiveDocument/SendDocumentPort?WSDL

Even though both services are built from the same WSDL the servlet contexts are
different so there is no clash.

8. Create Java CAPS Environment
Create a Java CAPS Environment, WSEnv, as illustrated in Figures Figure 8-1
through Figure 8-3.

Figure 8-1 Create Java CAPS Environment

Add a Logical Host. Add a Sun Java System Application Server and a Sun Java
System Message Queue. Set the properties for both to provide authentication
credentials, host names and port numbers that reflect your environment.

Figure 8-2 Add an Application Server to the Environment’s Logical Host.

Add a new UDDI External System container and modify its properties to reflect your
environment.

Figure 8-3 Add new UDDI External System

We will add and configure Web Services Client and Server External System
containers as we go along in solution development.

9. Obtain and use the Apache TCP Mon
One of the issues with SOAP decoration, which is what MTOM and others do, is that
the on-the-wire message looks different from what the sending and the receiving
applications see. It is very hard to make the application server and the client log what
they are sending and receiving and even then t here is a good chance that what is
logged differs from what is sent / received. To see what is really exchanged a wire
snooper of some sort is required.

Apache TCP Mon, see http://ws.apache.org/commons/tcpmon/index.html, can be used
as a convenient proxy to view the on-the-wire messages exchanged between web
services invokers and providers. Download the TCP Mon from the site. Tutorial at
http://ws.apache.org/commons/tcpmon/tcpmontutorial.html has a nice explanation of
the usage modes.

To start the TCP Mon from the command line in a direct intermediary mode with
specific host and port configuration one could say (on Windows):

C:> cd C:\tools\tcpmon-1.0-bin\build
C:> tcpmon.bat 38081 localhost 38080

This will start the TCP Mon with the listening port 38081, relaying messages to port
38080 on localhost.

C:> cd C:\tools\tcpmon-1.0-bin\build
C:> tcpmon.bat 8888

This will start the TCP Mon as a proxy listening on port 8888. One needs to configure
one’s client to use the proxy.

10. Install soapUI Plugin

To test EJB-based web services with complex messages SoapUI plugin needs be
installed.

Tools->Plugins->Available Plugins

Figure 10-1 Locate soapUI in the list of AvailablePlugins

Click the checkbox next to plugin name and click Install. Follow the prompts.

Figure 10-2 Choosing to install the plugin

You will need to have access to the Internet as the tooling will try to download the
plugin.

11. Install JAX-RPC Plugin
Java CAPS Repository Web Services ae JAX-RPC services. To integrate them with
non-Repository-based services we need to install JAX-RPC Plugin. Do this through
the Tools -> Plugins Plugin Manager’s Available Plugins Tab, where the plugin is
listed. Locate JAX-RPC, cject the Install checkbox and click Install.

Figure 11-1 Choose to install JAX-RPC plugin

