
Chapter 5, 1

Chapter 5
WS Security in GlassFish ESB

5.1 Chapter Content

GlassFish ESB v2.1 uses the Metro stack for web services standards support.

This chapter explores selected methods of applying security to the channel over which SOAP
messages are exchanged and the SOAP messages themselves, using a basic BPEL 2.0-based
invoker and provider set.

A pair of projects, an invoker and a provider, are used to provide the logic. Composite
Applications are used to apply different variants of security policies. There will be one pair of
Composite Applications for each security policy to demonstrate that security is a non-functional
requirement and to show how security policy and application logic can be separated such that
change in one does not require change to the other.

The following security policies are explored:

• None

Michael.Czapski@sun.com, Revision 0.2.3, September 19, 2009

In this document I explore the effects of selected web services security policies on
SOAP message exchange in the GlassFish ESB v2.1.

To provide early access I intend to release revisions of this document as significant
new sections become available.

This is a work-in-progress document.

Rev 0.1: Content

• Assumptions and Notes
• Person Service XML Schema and WSDL Interface
• Common XML Project
• PersonSvc BPEL Module
• PersonCli BPEL Module
• JBI-based Person Service – Plain End-to-End
• JBI-based Person Service – SSL with Server-side Authentication

Rev 0.2: Additional Content

• JBI-based Person Service – SSL with Mutual Authentication (broken)
• EJB-based Person Service – No security
• EJB-based Person Service – SSL with Server-side Authentication
•

Chapter 5, 2

• HTP BC Channel Security - SSL / TLS with Server-side Authentication

• HTTP BC Channel Security - SSL / TLS with Mutual Authentication

• EJB Channel Security - SSL / TLS with Server-side Authentication

•

• Message Encryption

•

For each variant an end-to-end solution will be built and exercised. Server.log traces from both
sides will be inspected and discussed as necessary to clarify what is happening during the
process.

5.2 Assumptions and Notes

To explore different options for securing web services in GlassFish ESB v2.1 it is necessary
to obtain and install the GlassFish ESB v2.1 software. Distribution, as at September 2009, can be
downloaded from https://open-esb.dev.java.net/Downloads.html. Since installation of GlassFish
ESB is adequately documents, see http://wiki.open-esb.java.net/Wiki.jsp?page=UsingTheGlassFi
shESBInstallationGUI, installation instructions are not repeated here. It is assumed that the
GlassFish ESB v2.1 installation exists and is functional. This also assumes that the NeBeans
6.5.1 IDE, distributed as part of GlassFish ESB, is installed and operational. Issues have been
reported with different version of the JDK 6. GlassFish ESB installation used for examples
developed in this chapter uses JDK 1.6.0_16.

Exploration of channel security, while possible with a single installation of GlassFish ESB, will
be easier if two instances of GlassFish ESB, on two different hosts, are available. If not, it will be
hard for the reader to follow SSL Handshake log messages and figure out which are produced by
the invoker and which are produced by the provider. Examples in this chapter will use two
separate hosts for these projects. Typically, the server-side implementation will be deployed to a
host whose fully qualified domain name (FQDN) is orad1.ssc and client-side implementation will
be deployed to a host whose FQDN is mcz02.aus.sun.com.

It is assumed that the NetBeans IDE and one instance of the GlassFish Application Server are co-
hosted on the same machine. Each time I use the expression “the local instance of the GlassFish”
I mean the instance of the GlassFish which is resident on the same host as the NetBeans IDE
used for development. If this is not the environment you use adjust as required.

5.3 Person Service XML Schema and WSDL Interface

A basic web service provider, which we will develop and use to explore web services
security, will accept a request with a person identifier and will return a small set of person details
for the selected person. This is a request/reply service. Since data returned by the service is not
of importance we will not bother with details such as searching a database for person details. We
will simply hardcode the response.

Chapter 5, 3

The request and response messages will conform to the XML Schema shown in Listing 5.3.1.

Listing 5.3.1 Person XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xml.netbeans.org/schema /Person"
 xmlns:tns="http://xml.netbeans.org/schema/Perso n"
 elementFormDefault="qualified"
 >

 <xsd:element name="PersonReq">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PersonID" type=" xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="PersonRes">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PersonID" type=" xsd:string"/>
 <xsd:element name="FamilyName" type ="xsd:string"/>
 <xsd:element name="MiddleInitials"
 type="xsd:string" minO ccurs="0"/>
 <xsd:element name="GivenName" type= "xsd:string"/>
 <xsd:element name="Gender" type="xs d:string" minOccurs="0"/>
 <xsd:element name="AddressDetails" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Stre etAddress"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="City Town"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Post Code"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Stat eProvince"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Coun try"
 type="xsd: string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="CreditCardDetail s" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Card Type"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Card Number"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Expi ryDate"
 type="xsd: string" minOccurs="0"/>
 <xsd:element name="Secu rityCode"
 type="xsd: string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Chapter 5, 4

 <xsd:element name="PersonFlt">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PersonID" type=" xsd:string"/>
 <xsd:element name="FaultDetail" typ e="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

The service interface will conform to the WSDL interface document shown in Listing 5.3.2. This
service uses messages defined in the Person XML Schema shown in Listing 5.3.1.

Listing 5.3.2 PersonAbsSvc WSDL Interface Document

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="PersonAbsSvc"
 targetNamespace="http://j2ee.netbeans.org/wsdl/ CommonXML/PersonAbsSvc"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/Common XML/PersonAbsSvc"
 xmlns:ns="http://xml.netbeans.org/schema/Person "
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2 .0/plnktype">
 <types>
 <xsd:schema
 targetNamespace="http://j2ee.netbeans.o rg/wsdl/CommonXML/PersonAbsSvc">
 <xsd:import
 namespace="http://xml.netbeans.org/ schema/Person"
 schemaLocation="Person.xsd"/>
 </xsd:schema>
 </types>
 <message name="getPersonDetailsRequest">
 <part name="msgPersonDetailsReq" element="n s:PersonReq"/>
 </message>
 <message name="getPersonDetailsResponse">
 <part name="msgPersonDetailsRes" element="n s:PersonRes"/>
 </message>
 <message name="getPersonDetailsFault">
 <part name="msgPersonDetailsFlt" element="n s:PersonFlt"/>
 </message>
 <portType name="PersonAbsSvcPortType">
 <operation name="getPersonDetails">
 <input name="input1" message="tns:getPe rsonDetailsRequest"/>
 <output name="output1" message="tns:get PersonDetailsResponse"/>
 <fault name="fault1" message="tns:getPe rsonDetailsFault"/>
 </operation>
 </portType>
 <plnk:partnerLinkType name="PersonAbsSvc">
 <plnk:role name="PersonAbsSvcPortTypeRole"
 portType="tns:PersonAbsSvcPortTy pe"/>
 </plnk:partnerLinkType>
</definitions>

Note that this WSDL document only defines the Abstract part of the interface. We will add
concrete part for each project variant we will explore. This WSDL definition will be named
PersonAbsSvc.

Chapter 5, 5

To save the effort the client implementation will be exposed as a web service and will be
triggered using a SoapUI web service testing project. The interface definition, TriggerCon, is
shown in Listing 5.3.3.

Listing 5.3.3 TriggerCon WSDL Interface Document

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="TriggerCon"
 targetNamespace="http://j2ee.netbeans.org/wsdl/ CommonXML/TriggerCon"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://j2ee.netbeans.org/wsdl/Common XML/TriggerCon"
 xmlns:ns="http://xml.netbeans.org/schema/Person "
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2 .0/plnktype"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soa p/">
 <types>
 <xsd:schema
 targetNamespace="http://j2ee.netbeans.o rg/wsdl/CommonXML/TriggerCon">
 <xsd:import
 namespace="http://xml.netbeans.org/ schema/Person"
 schemaLocation="Person.xsd"/>
 </xsd:schema>
 </types>
 <message name="triggerPersonRequest">
 <part name="msgPersonDetailsReq" element="n s:PersonReq"/>
 </message>
 <message name="triggerPersonResponse">
 <part name="msgPersonDetailsRes" element="n s:PersonRes"/>
 </message>
 <message name="triggerPersonFault">
 <part name="msgPersonDetailsFlt" element="n s:PersonFlt"/>
 </message>
 <portType name="TriggerConPortType">
 <operation name="triggerPerson">
 <input name="input1" message="tns:trigg erPersonRequest"/>
 <output name="output1" message="tns:tri ggerPersonResponse"/>
 <fault name="fault1" message="tns:trigg erPersonFault"/>
 </operation>
 </portType>
 <binding name="TriggerConBinding" type="tns:Tri ggerConPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/s oap/http"/>
 <operation name="triggerPerson">
 <soap:operation/>
 <input name="input1">
 <soap:body use="literal"/>
 </input>
 <output name="output1">
 <soap:body use="literal"/>
 </output>
 <fault name="fault1">
 <soap:fault use="literal" name="fau lt1"/>
 </fault>
 </operation>
 </binding>
 <service name="TriggerConService">
 <port name="TriggerConPort" binding="tns:Tr iggerConBinding">
 <soap:address location=
 "http://localhost:${HttpDefaultPort}/Tr iggerConService/TriggerConPort"/>
 </port>
 </service>
 <plnk:partnerLinkType name="TriggerCon">

Chapter 5, 6

 <plnk:role name="TriggerConPortTypeRole" po rtType="tns:TriggerConPortType"/>
 </plnk:partnerLinkType>
</definitions>

This is a concrete interface. Remember to change the FQDN of the host in the WSDL to that of
your host.

5.4 Common XML Project

Let’s create a Project Group to contain projects developed in this chapter. This project group
will be called WSPolicyExploration and will contain the common XML artifacts, the Person
XML Schema, the PersonAbsSvc WSDL and the TriggerCon WSDL.

Let’s create a New Project … -> SOA -> BPEL Module, named CommonXML. Figures 5.4.1
and 5.4.2 show important steps in the process. This BPEL project is just a convenient location
for the XML documents we will be creating.

Figure 5.4.1 Create BPEL Module

Figure 5.4.2 Naming the project and specifying location

The skeleton BPEL process model, commonXML.bpel, can be deleted since it will not be used.

Chapter 5, 7

Right-click the project name and choose New … -> Other … -> XML -> XML Schema, Figure
5.4.3.

Figure 5.4.3 Create a new XML Schema

Name this schema Person and click Finish.

When the new XML Schema document opens in the editor window, switch to the Source view
and select all the text. Figure 5.4.4 illustrates this.

Figure 5.4.4 Select the content of the new XML Schema document

Paste XML Schema text from Listing 5.3.1 in place of the selected text. Check XML and
Validate XML, illustrated in Figure 5.4.5, and resolve any issues that might have arisen.

Chapter 5, 8

Figure 5.4.5 Check and Validate

Save the new schema.

Create a New … -> WSDL Document …, named PersonAbsSvc. This will be an Abstract WSDL
Document. Figure 5.4.6 illustrates the first dialogue box involved in the process.

Click Next to advance to the next panel.

Change the name of the operation to getPersonDetails. Change names of Input and Output
message parts to msgPersonDetailsReq and msgPersonDetaislRes respectively. Add a new Fault
message part and name it msgPersonDetaislFlt. Figure 5.4.7 illustrated the dialogue box at this
point in the process.

For each message part click the small ellipsis button and choose appropriate element from the
Person XML Schema. For msgPersonDetailsReq it will be PersonReq, for msgPersonDetailsRes
it will be PersonRes and for msgPersonDetailsFlt it will be PersonFlt. Figure 5.4.8 illustrates a
step in this process. Figure 5.4.9 shows the dialogue box with all parts with correct elements.

Click Finish to complete the wizard. The resulting WSDL should look like that shown in Listing
5.3.2.

Chapter 5, 9

Figure 5.4.6 Create a new Abstract WSDL, step 1

Figure 5.4.7 Name operation and message parts

Chapter 5, 10

Figure 5.4.8 Change message part types

Figure 5.4.9 Completed Abstract Configuration

Finally, let’s create the TriggerCon WSDL, which will be used to expose the client
implementation as a web service so it can be triggered by a SopaUI web service testing project.

Chapter 5, 11

Create a New -> WSDL Document, names TriggerCon. It will be a Concrete WSDL, SOAP
Binding, Document/Literal Type. Figure 5.4.10 shows the dialogue panel at this step in the
process.

Figure 5.4.10 Concrete WSDL, SOAP, Document/Literal

Click Next to advance o the next panel. Change operation name to triggerPerson. Change
message part names to msgPersonDetailsReq, msgPersonDetailsRes, add a Fault part and name it
msgPersonDetailsFlt. Change “Element or Type” for the message parts to Personreq, PersonRes
and PersonFlt, much the same way as was done for the PersonAbsSvc WSDL earlier. Figure
5.4.11 illustrates the final panel.

Figure 5.4.11 TriggerCon WSDL abstract configuration

Chapter 5, 12

Click Next, accept defaults and click Finish.

Our project, CommonXML, should look like that shown in Figure 5.4.12.

Figure 5.4.12 XML Schema and WSDL in CommonXML

5.5 PersonSvc BPEL Module

Let’s create the BPEL Module project, PersonSvc, to implement, in BPEL 2.0, the service
whose interface is defined by the PersonSvc WSDL, in CommonXML project.

Right-click in any blank area of the Project Explorer window and choose New Project … -> SOA
-> BPEL Module. Name the project PersonSvc.

Expand the node tree to “Referenced Resources”. Right-click “Referenced Resources” and
choose Add -> Project Resource …, as illustrated in Figure 5.5.1.

Figure 5.5.1 Add Project Resource

Locate the WSDL PersonAbsSvc and click Open, as illustrated in Figure 5.5.2.

Chapter 5, 13

Figure 5.5.2 Locate PersonAbsSvc WSDL

Open the BPEL process, personSvc.bpel, if it is not already open, and drag the reference
CommonXML/PersonAbsSvc onto the target marker in the left-hand swim line, as shown in
Figure 5.5.3.

Figure 5.5.3 Drag PersonAbsSvc WSDL reference onto the process canvas

Name the partner link PersonRR.

From the Web Service Palette drag Receive, Assign and Reply activities onto the target markers
inside the personSvc process scope, as shown in Figure 5.5.4.

Chapter 5, 14

Figure 5.5.4 Add Receive, Assign and Invoke activities

Connect Receive and Reply activities to the PersonRR partner Link, as illustrated in Figure 5.5.5.

Figure 5.5.5 Connect Receive and Reply activities to the Partner Link

Select the Receive activity, click the Edit icon, click the Create button alongside the “Input
variable”, change the name of the variable to GetPersonReq, click OK. This will add a variable,
GetPersonreq, which will contain the request message. Figure 5.5.6 illustrates the interesting
points.

Chapter 5, 15

Figure 5.5.6 Add variable to contain request message

Repeat the process for the Reply activity, naming the variable GetPersonRes, as shown in Figure
5.5.7.

Figure 5.5.7 Add variable GetPersonRes to the reply activity

Double-click the Assign activity, or select the Assign activity and switch to Mapper mode. When
in Mapper, map the request values and literal to the appropriate nodes of the response message.
Figure 5.5.8 illustrates the mapping. Feel free to provide your own values for the literals.

Chapter 5, 16

Figure 5.5.8 Mapping response values

Right-click the name of the project and choose Build. Figure 5.5.9 illustrates this.

Figure 5.5.9 Build the project

The PersonSvc project, which implements service logic, is ready. We will develop the composite
application that will encapsulate this logic and deploy it to runtime in subsequent sections.

Chapter 5, 17

5.6 PersonCli BPEL Module

Let’s create the BPEL Module project, PersonCli, to implement, in BPEL 2.0, the invoker of
the PersonSvc service. The BPEL process, implemented in this project, will be exposed as a web
service using the TriggerCon WSDL, developed earlier. This process will, in turn, invoke the
PersonSvc service using the Abstract WSDL interface defined in PersonAbsSvc.

In the new BPEL Module project add two project resource references, the PersdonAbsSvc
WSDL and the TriggerCon WSDL. Figure 5.6.1 illustrates project hierarchy after these resources
have been added.

Figure 5.6.1 PersonAbsSvc and TriggerCon WSDL References Resources

Open the personCli business process, if it is not already open. Drag the TriggerCon WSDL
reference to the left-hand (provide) swim line and the PersonAbsSvc WSDL reference to the
right-hand (invoke) swim line. Name the partner links TriggerRR and PersonWS respectively, as
shown in Figure 5.6.2.

Figure 5.6.2 Provide and Invoke Partner Links

Recall that both TriggerCon and PersonAbsSvc use the same request and response structures.
BPEL logic we are developing will consist of copying the request message from TriggerCon to
PersonAbsSvc and the response message from PersonAbsSvc to TriggerCon. The TriggerCon

Chapter 5, 18

interface will not be secured in any way so we can conveniently invoke the client service using
SoapUI. Security policies, if any, will be applied to the PersonAbsSvc interaction.

Let’s add Receive, Assign, Invoke, Assign and Reply activities to the process canvas, connect
Request and Reply to the TriggerRR partner Link and Invoke activity to the PersonWS Partner
Link. Figure 5.6.3 illustrates the process at this point in development.

Figure 5.6.3 Activities added and connected

Note the “error indicators”. These tell us that activities are not configured. Figures 5.6.4 and
5.6.5 show error messages for the Assign and the Reply activities.

Figure 5.6.4 Assign error – no mapping

Chapter 5, 19

Figure 5.6.5 Error on Reply activity

BPEL Editor performs continuous background validation so it picks up the fact that we did not
finish configuring activities. All these error will be resolved as we continue to work in the
process.

Edit Receive, Reply and Invoke activities and add variables that will contain messages –
vTriggerReq for Receive, vTriggerRes for the Reply and vPersonReq and vPersonRes for the
Invoke. This is done the same way as has been done in the ProcessSvc so no pictures should be
necessary. Figure 5.6.6 calls out variable names configured for the Invoke activity.

Figure 5.6.6 Variable names for the Invoke activity

We can now complete the Assign activities. Mapping in Assign1 are shown in Figure 5.6.7.

Figure 5.6.7 Mapping in Assign1

Chapter 5, 20

Mapping in Assign2 are shown in Figure 5.6.8.

Figure 5.6.8 Mapping in Assign2

In Assign2 we map the root nodes, instead of mapping each individual field. We can do this
because both the source and the destination messages are of the same structure.

Finally, let’s configure the process so that it is lenient with respect to missing data. Switch to
Design view, click the personCli process scope and choose “Yes” for the value of process
property “Ignore Missing From Data”. Figure 5.6.9 illustrates this.

Figure 5.6.9 Set “Ignore Missing From Data” to “Yes”

The PersonCli project, which implements client-side logic, is ready. Build the project.

We will develop the composite application that will encapsulate this logic module and deploy it
to runtime in the subsequent sections.

Chapter 5, 21

5.7 Person Service – Plain End-to-End

The service provider and service invoker BPEL Module are ready. We are now in a position
to create Composite Applications for each and to exercise the solution end-to-end.

Let’s start by creating the composite application, PersonSvc_CA_Plain, for the PersonSvc BPEL
module, a web service testing project, PersonSvc_WSTP, to exercise this application, then
perform the service implementation test.

Create a New Project -> SOA -> Composite Application, named PersonSvc_CA_Plain. Once
created, drag the BPEL Module PersonSvc onto the Composite Application Service Assembly
canvas and click Build. Figure 5.7.1 illustrates this.

Figure 5.7.1 Add BPLE Module to the CASA canvas and Build

Because the service interface WSDL is an Abstract WSDL we don’t see a Binding Component
on the CASA canvas once the build is finished. We need to provide a concrete binding. AT this
point we could use any available binding. Since we are building a web service implementation
we will drag the soap binding to the canvas. Figure 5.7.2 illustrates this.

Figure 5.7.2 Add soap binding to the CASA canvas

Connect Consume connector of the SOAP BC to the Provide connector of the BPEL Module
then build the process again. Figure 5.7.3 illustrates the final CASA map.

Chapter 5, 22

Figure 5.7.3 Completed CASA map

Click the “pencil and paper” icon to open SOAP BC properties and note the endpoint address in
the Location property, shown in Figure 5.7.4.

Figure 5.7.4 Location property

Note the construction “${HttpDefaultPort}”. The HttpDefaultPort is the name of the
environment variable that gets replaced, at build time, with the value configured for the default
HTTP port used by the JBI container. By default this will be 9080. For me this will be 29080.
You can find out what it is by looking at properties of Services -> Servers -> GlassFish v2 -> JBI
-> Binding Components -> sun-http-binding, specifically property named “Default HTTP Port
Number”. While at it, also note the value of the “Default HTTPS Port Number”. This is the port
for the SSL/TLS protocol. More on that later.

Deploy the project to the local GlassFish instance. For me this will be the “GlassFish v2”
running on host mcz02.aus.sun.com.

Chapter 5, 23

Let’s now create a New Project … -> Java EE -> Web Service Testing Project and name it
PersonSvc_WSTP. We will use this project to submit a SOAP request to the
PersonSvc_CA_Plain service, which we just built and deployed, to verify that it works. Enter, or
paste, the endpoint URL from the Location property, discussed above, with host and port
configured as required, into the property “Initial WSDL (URL)”. For me this will be:

http://mcz02.aus.sun.com:29080/casaService1/casaPor t1?WSDL

For you the FQDN of the host will be different and the port number will be 9080 if you have a
default GlassFish installation.

Once the project is created, expand the nodes all the way to getPersonDetails, right-click and
choose New Request. Figure 5.7.5 illustrates this.

Figure 5.7.5 Create new Soap Request

Modify the request by replacing “gero et” with “q2345”, or whatever value you find attractive,
and submit the request as shown in Figure 5.7.6.

Figure 5.7.6 Submit SOAP Request with the PersonID of 12345

With mapping in the PersonSvc BPEL Module as shown in Figure 5.5.8 the SOAP Response will
look like that in Figure 5.7.7.

Chapter 5, 24

Figure 5.7.7 SOAP Response

 The service PersonSvc works as expected. We will not use the testing project PersonSvc_WSTP
again. We will create t6he composite application for the PersonCli BPEL Module and will use it
to exercise the end-to-end solution.

Create a New Project -> SOA -> Composite Application, named PersonCli_CA_Plain. Drag the
PersonCli BPEL Module onto the CASA canvas and Build. Figure 5.7.8 illustrates the key
points.

Figure 5.7.8 Create PersonCli_CA_Plain Composite Application

Note that the Consume connector of the PersonCli BPEL Module is not connected to a binding
component. This is because the PersonAbsSvc WSDL, which we used in the BPEL process, is an
Abstract WSDL. Figure 5.7.9 illustrates the CASA canvas at this point.

Chapter 5, 25

Figure 5.7.9 CASA canvas with unconnected PersonWS Partner Link

We will add a concrete WSDL to this composite application project to provide concrete binding
for the PersonWS partner link.

Copy the WSDL URL of the PersonSvc_CA_Plain service to the clipboard. For me this will be:

http://mcz02.aus.sun.com:29080/casaService1/casaPor t1?WSDL

For you the FQDN of the host will be different and the port number will be 9080 if you have a
default GlassFish installation.

Right-click on the name of the project, PersonCli_CA_Pain, choose New -> Other -> XML ->
“External WSDL Document(s)” and paste the WSDL URL into the “From URL” text box. Figure
5.7.10 illustrates the dialogue box.

Figure 5.7.10 New External WSDL document being created

New WSDL and XSD objects will be added under the Process File node in the project hierarch.
Figure 5.7.11 illustrates this.

Chapter 5, 26

Figure 5.7.11 WSDLs and XSD added to the Composite Application project

Right-click on the CASA canvas inside the “WSDL Ports” swim line and choose “Load WSDL
Port…”, as shown in Figure 5.7.12, to add the SOAP BC, configured to communicate with the
PersonSVc service, to the CASA canvas.

Figure 5.7.12 Load WSDL Port, part 1

In the dialogue box that appears select the one and only WSDL Port, as shown in Figure 5.7.13,
and click OK. Build the CA project.

Chapter 5, 27

Figure 5.7.13 Select WSDL Port to add

The CASA canvas should now look like that shown in Figure 5.7.14.

Figure 5.7.14 CASA canvas with both binding components added and connected

Deploy the project to the local instance of the GlassFish Applciatin Server. For me this will be
“GlassFish v2” running on mcz02.aus.sun.com.

Locate and copy to the clipboard the endpoint URL for the TriggerCon connector. The WSDL
associated with that endpoint, TriggerCon.wsdl in project CommonXML, will have that value.
For me this is:

http://localhost:${HttpDefaultPort}/TriggerConServi ce/TriggerConPort

Replace ${HttpDefaultPort} with the correct value. For me this will be 29080, and append
“?WSDL? to the end of the URL. For me the final value will be:

http://localhost:29080/TriggerConService/TriggerCon Port?WSDL

This is the URL to which the web service testing project, created next, will submit SOAP
requests. Create a New -> Java EE -> Web Service testing Project, names PersonCli_WSTP. Use
the URL shown above as the “Initial WSDL (URL/file)”.

Chapter 5, 28

Expand the nodes, right-click on triggerPerson binding, choose “New Request” and create a
request. Modify PersonID value to 54321, or whatever value you find attractive, ans submit the
request. Figure 5.7.15 illustrates the request.

Figure 5.7.15 SOAP Request to be submitted to the PersonCli service

Observe the response – it should be like that shown in Figure 5.7.16.

Figure 5.7.16 SOAP Response

We have the client / invoker (PersonCli) invoking the service / provider, PersonSvc. The end-to-
end project works, as does the BPEL logic in the client and the service implementations.

Note that we did not do anything about security policies, nor did we even mention them until
now. SOAP requests and SOAP responses are exchanged “in the clear”, in plain text. Anybody
eavesdropping on the wire can see the content of the messages.

Before proceeding to the next section undeploy both the invoker and the provider projects.

5.8 Person Service - SSL Server-side Authentication

One way to prevent eavesdropping on messages being exchange between the invoker and the
provider is to encrypt the channel between the two. Since web services use the HTTP protocol
one can use the Secure Sockets Layer (SSL) / Transport Layer Security (TLS) to encrypt the

Chapter 5, 29

channel. This is a common mechanism used for securing message exchange with electronic
commerce sites in order to prevent intercept of credit card details and other sensitive commercial
information submitted by purchasers.

There is a great deal to SSL /TLS. More then I am prepared to discuss in this section. I assume
that the reader is either sufficiently familiar with the protocol’s operation to not require
elaboration, or that the reader does not care for the theory and will be satisfied with the practice
as discussed here. All others are referred to the excellent book by Eric Rescorla, “SSL and TLS:
Designing and Building Secure Systems”, ISBN-10: 0201615983, for elaboration.

SSL with Server-side Authentication adds security to the message exchange in two ways.

By requiring the server to provide the X.509 Certificate, expected to be issued by a trusted
Certification Authority (CA) for a specific Host, the client is able to assure itself that the FQDN
of the server is the same as the FQDN of the host in the certificate, therefore no substitution of
hosts took place. The client is also able to validate the server certificate by verifying the digital
signature of the CA, if the certificate was issued by a well know CA. Signature verification
ensures that the certificate was not tampered with and the FQDN of the host was not altered. If
the certificate signature is not valid, the certificate FQDN host name is not the same as the server
host name, the certificate is a self-signed certificate or the CA is not a well know CA, then client
would typically reject the certificate and abort the SSL Handshake. It is possible that the FQDN
of the server will not be the same as the FQDN in the certificate. This may be legitimate inside
an enterprise. To prevent rejection of the certificate a custom Hostname Verifier class can be
provided that resolves this discrepancy. This is beyond the scope of this text. To prevent
rejection of a certificate issued by a non-well know CA one can add the CA’s certificate to the
Client’s truststore and mark it as trusted. This will make all certificates issued by the CA trusted
by extension. This can also be legitimate inside an enterprise or between enterprises that
explicitly trust each other. A self-signed certificate can be made trusted, therefore acceptable, the
same way as an unknown CA can be made trusted – by being added to the Client’s truststore and
marked as trusted.

By encrypting the channel over which messages travel both the Client and the Server ensure that
message exchange can not be profitably eavesdropped upon.

These two ways are typically used together. It is possible, though not common, to use channel
encryption without certificate exchange. An internal enterprise application concerned with
channel security, but not with endpoint authentication, might do that. Endpoint authentication in
such an application might be provided in some other way, for example by embedding credentials
in messages themselves. Channel encryption will protect these credentials.

Before proceeding with development let’s do some groundwork.

SSL Handshake can be logged to the server.log by adding “-Djavax.net.debug=ssl:handshake” to
the GlassFish Application Server’s JVM Options. Figure 5.8.1 illustrates this in the GlassFish
Application Server Admin Console.

Chapter 5, 30

Figure 5.8.1 JVM Options

If you don’t have this incantation in the JVM Options at both end of the SSL Handshake you will
not be able to see the log of the handshake. Please add the JVM Option to both instances of the
GlassFish Application Server, if you are using two as I am doing. My local instance runs on
mcz02.aus.sun.com and my remote instance runs on orad1.ssc.

When looking at the JVM Options also note the names and locations of the keystore.jks and
cacerts.jks, see Figure 5.8.2. These are the cryptographic stores GlassFish uses at runtime. We
will work with both in the not too distant future.

Figure 5.8.2 Cryptographic objects stores

Recall, or note, that at installation time the GlassFish installer generates the cryptographic key
pair and the server certificate, which embeds the FQDN of the host on which it is being installed.
This private key gets added to the keystore.jks, which by default resides in <glassfishinstallroot
>/domains/domain1/config, under the alias a1as. When requested to provide a certificate, as is
the case when SSL with Server-side Authentication is configured, the server will return its X.509
certificate as part of the SSL Handshake. The client/invoker is expected to use that certificate to
verify whether it “trusts” the server enough to allow the SSL Handshake to succeed. The client
verifies that the certificate is “trusted”, that is it is either signed by a trusted certification
authority (CA) or it is explicitly trusted, if it is a self-signed certificate, by there being a copy of
it in the client’s trust store, typically <glassfishinstallroot>/domains/domain1/config/cacerts.jks.

Using a tool like “Portecle Key Manager”, http://linux.softpedia.com/progDownload/Portecle-
Download-3110.html, inspect the keystore.jks. Note the presence of the one and only private key,

Chapter 5, 31

with the alias of s1as. Note, too, that its corresponding certificate is associated with the host
mcz02.aus.sun.com - for you it will be the fully qualified name of the host on which you installed
the GlassFish Application Server whose keystore,jks you are inspecting. Figure 5.8.3 illustrates
this.

Figure 5.8.3 Private key, s1as, and its certificate

You can surmise form this that if mcz02.aus.sun.com is the server hosting the PersonSvc web
service, and it is required to provide the client with a certificate, the certificate associated with
the alias a1as will be provided to the client.

Note, also, that the Issuer of the certificate is the same as the Subject of the certificate in Figure
5.8.3. That makes this certificate a self-signed certificate. There is no separate Certification
Authority which issued the certificate so it is unlikely that this certificate will be trusted by any
other host unless explicitly told to do so.

Let’s interrupt the certificate discussion at this point. We will resume it later.

Let’s create the PersonSvc_CA_SSLServerAuth Composite Application, drag the PersonSvc
BPEL Module onto the CASA canvas, add and connect a SOAP binding and Build, much as was
illustrated in Figures 5.7.1, 5.7.2 and 5.7.3.

Click on the “pencil and paper” icon to open properties of the SOAP BC and modify Location
URL to a) use the https scheme instead of the http scheme, b) use the FQDN of the remote host
(for me this will be orad1.ssc) and c) modify port number variable name from HttpDefaultPort to
HttpsDefaultPort. For me, the modified URL will be:

Chapter 5, 32

https://orad1.ssc:${HttpsDefaultPort}/casaService1/ casaPort1

Figure 5.8.4 illustrates the key points.

Figure 5.8.4 Modified Location property

Here comes a twist. The original WSDL does not use any security policies at all. In fact it can
not because most security policies are applied to the concrete part of he WSDL and our original
WSDL does not have a concrete part. By dragging the SOAP BC onto the CASAS canvas and
connecting it to the BPEL Module we created a WSDL which imports our original WSDL and
adds the concrete part. Explore the PersonSvc_CA_SSLServerAuth -> Process Files, Figure
5.8.5, and note the WSDL PersonSvc_CA_SSLServerAuth. Open this WSDL and look at the
concrete part, Figure 5.8.5.

Figure 5.8.5 Concrete WSDL

Chapter 5, 33

Note that the imported WSDL location is relative to the location of this WSDL. At build time
NetBeans will be able to resolve this but at runtime it will not. To make sure the project can
deploy successfully we need to “import” the abstract WSDL from the CommonXML Project to
this project’s “Process Files” folder. Right-click on the “process File” folder, choose “New” ->
“External WSDL Document(s)”, locate the WSDL in the CommoXML/src folder, select it and
import it into the CASA project. This should not be required but … Figure 5.8.9 shows the
project structure after this activity.

Figure 5.8.9 Project structure with abstract WSDL and XSD “imported”

Switch back to the CASA canvas, click the “paper with a key” icon and choose “Server
Configuration”. Figure 5.8.10 illustrates this step.

Figure 5.8.10 Edit Server Configuration

Check the “Secure Service” checkbox, choose “Transport Security (SSL)” from the Security
Mechanism drop-down and click “Configure”, as shown in Figure 5.8.11.

Chapter 5, 34

Figure 5.8.11 Enable and configure SSL / TLS channel security

Choose a suitable algorithm suite from the dropdown of supported algorithm suites. This
selection does not guarantee that the specified algorithm suite will be used. Final algorithm suite
is subject to negotiation between the client and the server and is settled during the SSL
Handshake. Leave “Require Client Certificate” checkbox unchecked. We are configuring Server-
side Authentication here so we don’t need client’s certificate. Figure 5.8.12 illustrates the
dialogue box.

Figure 5.8.12 Choose algorithm suite

Dismiss the dialog and look again at the PersonSvc_CA_SSLServerAuth WSDL. Switch to the
Source view and inspect the policy formulation.

Note, on line 20, that a policy reference attribute, shown in Figure 5.8.13, was added to the
Biding.

Chapter 5, 35

Figure 5.8.13 Policy Reference in the Binding

Were we to remove this attribute and its value no policy would be applied to the binding, even if
one was there in the WSDL.

Scroll down and note the following, called out in Figure 5.8.14:

Figure 5.8.14 Policy elements of special interest

• Line 43: <wsam:Addressing wsp:Optional="false"/>
One would expect this to mean “WS-Addressing is mandatory”. The presence of the
wsp:Optional=”false” attribute make the implementation ignore WS-Addressing
altogether. WS-Addressing is not required for SSL and is unrelated to SSL so let’s get
rid of this element.

• Line 48: <sp:HttpsToken RequireClientCertificate="false"/>
This attribute indicates that Server-side authentication is used – no client certificate is
required.

• Line 56: <sp:IncludeTimestamp/>
This element requires addition of a timestamp token. Timestamp token is not related to
or required by SSL so delete this element.

• Line 59: <sp:Basic256Rsa15/>
This specified the preferred algorithm suite

Chapter 5, 36

The final policy, after removal of addressing and timestamp elements, is shown in Figure 5.8.15.

Figure 5.8.15 Final policy

Save and close the modified WSDL and Build, but do not Deploy the project.

This project will be deployed to the remote instance of the GlassFish Application Server – for me
orad1.ssc. Before we can deploy the project we need to add the GlassFish instance to the
NetBeans IDE so it can address it at deployment time. Switch to the Services Tab in the project
explorer, right-click on the Servers node and choose Add Server. Figure 5.8.16 illustrates this. If
you already have the remote server in the list, skip this.

Figure 5.8.16 Add Server …

Choose GlassFish v2, modify the name to reflect host name and click Next, as shown in Figure
5.8.17.

Chapter 5, 37

Figure 5.8.17 Choose server type and name it

Choose “Register Remote Domain” and click Next. Figure 5.8.18 illustrates key points.

Figure 5.8.18 Choose to Register Remote Domain

Enter FQDN of the remote host, as specified for the server certificate when the remote GlassFish
instance was installed, specify the appropriate administrative port number, if different from
default, and click Next. Figure 5.8.19 illustrates this.

Chapter 5, 38

Figure 5.8.19 Specify host and port

Provide credentials and Finish.

If the remote GlassFish instance is running and correct configuration information was provided
to NetBeans, the GlassFish instance will appear in the list of servers, as shown in Figure 5.8.20.

Figure 5.8.20 Remote GlassFish instance in NetBeans

Switch back to the Project Explorer’s Project tab, right-click on the name
PersonSvc_CA_SSLServerAuth, choose Properties, click the “Running Project” property and
select the remote GlassFish instance as the deployment target. Figure 5.8.21 illustrates key
points.

Figure 5.8.21 Choose the remote GlassFish instance as the deployment target

Chapter 5, 39

Build the project and Deploy it.

Because this is a project that requires SSL with Server-side Authentication we can use the
SoapUI plugin to test the service and observe SSL Handshake at the server side. We will
implement and exercise the PersonCli SSL with Server-side Authenticatin project a little later.

Let’s create a “New Project” -> “Java EE” -> “Web Service Testing Project”, named
PersonSvc_SSLServerAuth_WSDP, using the WSDL location from the CASA SOAP BC’s
Location Property, replacing the ${HttpsDefaultPort} with the appropriate port number, For me
this will be:

https://orad1.ssc:29181/casaService1/casaPort1?WSDL

As the project is created, a dialogue box my pop up asking you to accept remote GlassFish
instance’s certificate, similar to what I saw for orad1, Figure 5.8.22.

Figure 5.8.22 Accept remote GlassFish instance’s certificate

This will happen once, the first time a reference is made to the remote host. Thereafter NetBeans
will trust the certificate and will not ask for confirmation.

Once the project is created add a New Request to the getPersonDetai;ls interface, modify
PersonID to 342312 and submit the request. Figure 5.8.23 illustrates the request.

Chapter 5, 40

Figure 5.8.23 SOAP Request

Observe a SOAP Response response. Click on the “SSL Info” tab and observe the orad1.ssc’s
certificate, figure 5.8.24.

Figure 5.8.24 SOAP Response and orad1.ssc’s certificate

Chapter 5, 41

The SSL Handshake was successful. Let’s look at selected lines from the server.log of the remote
GlassFish instance to see how the SSL Handshake looked like there. Listing 5.8.1 shows just key
lines.

Listing 5.8.1 Key lines from the SSL Handshake log

[#|2009-09-07T13:51:55.324+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=25;_ThreadName=SelectorThread-
29181;|
Using SSLEngineImpl .|#]
[#|2009-09-07T13:51:55.326+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, READ: SSL v2, contentType = Handshake , translated length =
149|#]
[#|2009-09-07T13:51:55.327+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** ClientHello, TLSv1 |#]
…
[#|2009-09-07T13:51:55.337+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Session ID: |#]
[#|2009-09-07T13:51:55.337+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|{}|#]
[#|2009-09-07T13:51:55.337+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_W ITH_RC4_128_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_RC4_128_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SHA,
SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_RSA_EXPORT_WITH_DES40_CBC_SHA,
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA,
SSL_RSA_WITH_NULL_MD5, SSL_RSA_WITH_NULL_SHA, TLS_ECDH_ECDSA_WITH_NULL_SHA,
TLS_ECDH_RSA_WITH_NULL_SHA, TLS_ECDHE_ECDSA_WITH_NULL_SHA, TLS_ECDHE_RSA_WITH_NULL_SHA,
SSL_DH_anon_WITH_RC4_128_MD5, TLS_DH_anon_WITH_AES_128_CBC_SHA,
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA, SSL_DH_anon_WITH_DES_CBC_SHA,
TLS_ECDH_anon_WITH_RC4_128_SHA, TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, SSL_DH_anon_EXPORT_WITH_RC4_40_MD5,
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA, TLS_ECDH_anon_WITH_NULL_SHA,
TLS_KRB5_WITH_RC4_128_SHA, TLS_KRB5_WITH_RC4_128_MD5, TLS_KRB5_WITH_3DES_EDE_CBC_SHA,
TLS_KRB5_WITH_3DES_EDE_CBC_MD5, TLS_KRB5_WITH_DES_CBC_SHA, TLS_KRB5_WITH_DES_CBC_MD5,
TLS_KRB5_EXPORT_WITH_RC4_40_SHA, TLS_KRB5_EXPORT_WITH_RC4_40_MD5,
TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA, TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5]|#]
[#|2009-09-07T13:51:55.338+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Compression Methods: { |#]
[#|2009-09-07T13:51:55.338+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|0|#]
…

SSL Engine starts processing

Start SSL Handshake

Client Hello message received

No Session ID – need new session

Client is willing to accept any of the cipher suites listed

Client will not use compression

Chapter 5, 42

[#|2009-09-07T13:51:55.338+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
%% Created: [Session-19, SSL_RSA_WITH_RC4_128_MD5]|#]
[#|2009-09-07T13:51:55.339+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** ServerHello, TLSv1 |#]
…
[#|2009-09-07T13:51:55.349+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Session ID: |#]
[#|2009-09-07T13:51:55.349+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|{ 74, 164, 131, 91, 63, 222, 251, 80, 243, 87, 244, 5 1, 122, 138, 49, 114, 24,
244, 67, 8, 250, 124, 74, 146, 191, 69, 3, 249, 26, 3, 159, 81 }|#]
[#|2009-09-07T13:51:55.350+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Cipher Suite: SSL_RSA_WITH_RC4_128_MD5 |#]
[#|2009-09-07T13:51:55.350+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Compression Method: 0 |#]
[#|2009-09-07T13:51:55.350+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
***|#]
[#|2009-09-07T13:51:55.350+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Cipher suite: SSL_RSA_WITH_RC4_128_MD5 |#]
[#|2009-09-07T13:51:55.350+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** Certificate chain |#]
[#|2009-09-07T13:51:55.351+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
chain [0] = [
[
 Version: V3

 Subject: CN= orad1.ssc , OU=Sun GlassFish Enterprise Server, O=Sun Microsy stems,

L=Santa Clara, ST=California, C=US
 Signature Algorithm: SHA1withRSA, OID = 1.2.840.1 13549.1.1.5

 Key: Sun RSA public key, 1024 bits
 modulus:
102121541157065069575568250270437214984350336338157 998094768569148500536018031894819145491
113311079336949399472032140208618356816163637202618 727298710465300230334324506184949208474
446933178623253726110968175800084405517043740120715 529443624373833850530287673442674333181
408072531272948503339758724948550982873
 public exponent: 65537
 Validity: [From: Sat Sep 05 13:48:28 EST 2009,
 To: Tue Sep 03 13:48:28 EST 2019]
 Issuer: CN=orad1.ssc, OU=Sun GlassFish Enterprise Server, O=Sun Microsystems, L=Santa
Clara, ST=California, C=US
 SerialNumber: [4aa1df8c]

Certificate Extensions: 1
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [

Crteate new session

Server sends Hello message

Session ID generated

Server chose the cipher suite

Server sends its certificate

Chapter 5, 43

0000: 9E 79 9C E9 59 86 34 8F FD 75 09 F7 82 D0 8 2 CE .y..Y.4..u......
0010: BE 9A 44 EE ..D.
]
]

]
 Algorithm: [SHA1withRSA]
 Signature:
0000: 23 A7 FD 51 1F 81 9E 8C 34 3A 58 01 EF 5A 0 4 CD #..Q....4:X..Z..
0010: AD 35 2C 67 17 40 3A B8 EA 19 37 DB B2 B3 C 8 EA .5,g.@:...7.....
0020: 5B 4F 0E 30 4E 9D 42 23 52 FE E8 53 44 8B 6 4 21 [O.0N.B#R..SD.d!
0030: CF 5F EE 07 D5 60 1E F2 1B EA 68 99 E4 BB 6 C 89 ._...`....h...l.
0040: 02 21 1D A5 AE 6C 26 14 8C 92 02 92 E3 C1 7 4 56 .!...l&.......tV
0050: 6A 69 96 8E 2D 1E 7D 6C 52 5E 99 38 20 8B 1 9 C4 ji..-..lR^.8 ...
0060: 52 11 89 B3 73 D0 6C 61 B2 DB BF CA 58 0A 3 A 5D R...s.la....X.:]
0070: 40 81 97 CC 3F 60 A6 1E B5 D6 60 8A C6 6B B 6 F6 @...?`....`..k..

] |#]
 [#|2009-09-07T13:51:55.352+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** ServerHelloDone |#]
[#|2009-09-07T13:51:55.352+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, WRITE: TLSv1 Handshake, length = 794 |#]
[#|2009-09-07T13:51:55.524+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, READ: TLSv1 Handshake, length = 134 |#]
[#|2009-09-07T13:51:55.527+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** ClientKeyExchange, RSA PreMasterSecret, TLSv1 |#]
[#|2009-09-07T13:51:55.528+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
SESSION KEYGEN:|#]
[#|2009-09-07T13:51:55.528+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
PreMaster Secret: |#]
[#|2009-09-07T13:51:55.528+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.528+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|03 |#]
…
[#|2009-09-07T13:51:55.543+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
CONNECTION KEYGEN:|#]
[#|2009-09-07T13:51:55.543+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Client Nonce: |#]
[#|2009-09-07T13:51:55.544+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
…

Hello exchange done, perform secrets exchange

Chapter 5, 44

[#|2009-09-07T13:51:55.554+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Server Nonce: |#]
[#|2009-09-07T13:51:55.554+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.554+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|4A |#]
…
[#|2009-09-07T13:51:55.564+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Master Secret: |#]
[#|2009-09-07T13:51:55.564+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.564+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|6F |#]
…
[#|2009-09-07T13:51:55.577+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;| Client MAC write Secret: |#]
[#|2009-09-07T13:51:55.577+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.577+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|C3 |#]
…
[#|2009-09-07T13:51:55.582+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
Server MAC write Secret: |#]
[#|2009-09-07T13:51:55.582+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.583+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|6F |#]
…
[#|2009-09-07T13:51:55.587+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;| Client write key: |#]
[#|2009-09-07T13:51:55.587+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
0000: |#]
[#|2009-09-07T13:51:55.587+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|C2 |#]
…
[#|2009-09-07T13:51:55.592+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;| Server write key: |#]
[#|2009-09-07T13:51:55.592+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|

Chapter 5, 45

0000: |#]
[#|2009-09-07T13:51:55.593+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|BF |#]
…
[#|2009-09-07T13:51:55.598+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;| ... no IV used for this cipher |#]
[#|2009-09-07T13:51:55.598+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, READ: TLSv1 Change Cipher Spec, length = 1 |#]
[#|2009-09-07T13:51:55.599+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, READ: TLSv1 Handshake, length = 32 |#]
[#|2009-09-07T13:51:55.599+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** Finished |#]
[#|2009-09-07T13:51:55.599+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
verify_data: { |#]
[#|2009-09-07T13:51:55.599+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|58|#]
…
[#|2009-09-07T13:51:55.603+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, WRITE: TLSv1 Change Cipher Spec, length = 1 |#]
[#|2009-09-07T13:51:55.604+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
*** Finished |#]
[#|2009-09-07T13:51:55.604+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
verify_data: { |#]
[#|2009-09-07T13:51:55.604+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|220|#]
…
[#|2009-09-07T13:51:55.609+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
httpSSLWorkerThread-29181-1, WRITE: TLSv1 Handshake, length = 32 |#]
[#|2009-09-07T13:51:55.609+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=35;_ThreadName=httpSSLWorkerThre
ad-29181-1;|
%% Cached server session: [Session-19, SSL_RSA_WITH _RC4_128_MD5]|#]
[#|2009-09-07T13:51:55.662+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=36;_ThreadName=httpSSLWorkerThre
ad-29181-0;|
---[HTTP request]---|#]
…

The listing shows key points in the SSL Handshake, as seem at the server. The client view will
be looked at shortly. The SoapUI plugin does not produce a log I can see, however it received the
server certificate as can be seen in Figure 5.8. SoapUI plugin did not object to the certificate as

Successful SSL Handshake begin data transfer

Chapter 5, 46

not being trusted. It seems that SoapUI will accept any certificate. It is a testing tool, after all, not
an application used to exchange real data.

Let’s now create a composite application, PersonCli_CA_SSLServerAuth, for the client side.
Drag the PersonCli BPEL module onto the CASA canvas and click Build. Right-click on the
name of the project and create a “New” -> “External WSDL Document(s)”, providing the
endpoint URL exposed by the PersonSvc_CA_SSLServerAuth composite application, with the
suffix “?WSDL”. Accept the thertificate if the dialog box, like that shown in Figure 5.8.22 pops
up.

Right-click on the WSDL Ports swim line and choose “Load WSDL Port”. Accept the one and
only port and click Build to build the project. These steps are illustrated in Figures 5.7.8 through
5.7.14.

Click on the “paper and key” icon on the SOAP BC and choose Client Configuration, as shown
in Figure 5.8.25.

Figure 5.8.25 Client policy configuration

Note, as shown in Figure 5.8.26, that there are no specific configuration options for SSL with
Server-side Authentication.

Figure 5.8.26 No SSL configuration options at the client side

Build the project.

Attempt to deploy the project to the local GlassFish instance. The expectation is that deployment
will fail with an unenlightening message like that shown in Listing 5.8.2.

Chapter 5, 47

Listing 5.8.2 Deployment error messages

ERROR: Successful execution of Deploy:
G:\GlassFishESBv21Projects\WSPolicyExploration\Pers onCli_CA_SSLServerAuth/dist/P
ersonCli_CA_SSLServerAuth.zip
WARNING: (JBIMA0404) Deployment of service assembly PersonCli_CA_SSLServerAuth
succeeded partially; some service units failed to d eploy.
 * Component: sun-http-binding
 ERROR: (SOAPBC_DEPLOY_2) HTTPBC-E00201: Deplo yment failed.
javax.wsdl.WSDLException: WSDLException (at /defini tions/import):
faultCode=OTHER_ERROR: Unable to resolve imported d ocument at
''https://orad1.ssc:29181/PersonSvc_CA_SSLServerAut h-sun-http-
binding/PersonAbsSvc.wsdl'', relative to
''file:/C:/GlassFishESBv21_16016/glassfish/domains/ domain1/jbi/service-
assemblies/PersonCli_CA_SSLServerAuth.1/PersonCli_C A_SSLServerAuth-sun-http-
binding/sun-http-binding/orad1.ssc_29181/casaServic e1/casaPort1.wsdl'':
javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
G:\GlassFishESBv21Projects\WSPolicyExploration\Pers onCli_CA_SSLServerAuth\nbproj
ect\build-impl.xml:201: Deployment failure.
BUILD FAILED (total time: 2 seconds)

What happened? The deployer attempted to start the composite application and the SOAP
Binding Component in the PersonCli_CA_SSLServerAuth on mcz02.aus.sun.com attempted to
connect to the SOAP BC in the PersonSvc_CA_SSLServerAuth on orad1.ssc. Since the
GalssFish instance on mcz02.aus.sun.com does not know about the certificate returned by the
GlassFish instance on orad1.ssc it rejected it with a rude message.

Listing 5.8.3 shows selected messages from the mcz02.aus.sun.com’s server.log, relating ot the
SSL Handshake failure.

Listing 5.8.3 Client-side SSL Handshake

[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
%% No cached client session|#]
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
*** ClientHello, TLSv1|#]
...
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Session ID: |#]
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|{}|#]
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_W ITH_RC4_128_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SHA,

Chapter 5, 48

SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_RSA_EXPORT_WITH_DES40_CBC_SHA,
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA]|#]
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Compression Methods: { |#]
...
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, WRITE: TLSv1 Handshake , length = 73|#]
[#|2009-09-07T18:18:18.343+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, WRITE: SSLv2 client hello message , length =
98|#]
[#|2009-09-07T18:18:18.640+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, READ: TLSv1 Handshake , length = 794|#]
[#|2009-09-07T18:18:18.640+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
*** ServerHello, TLSv1|#]
...
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Session ID: |#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|{74, 164, 193, 203, 245 , 191, 123, 38, 91, 15, 20, 255, 117,
203, 207, 130, 17, 102, 76, 59, 54, 207, 0, 9, 12, 125, 143, 33, 189, 59, 111, 26}|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Cipher Suite: SSL_RSA_WITH_RC4_128_MD5|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
Compression Method: 0|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
***|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
%% Created: [Session-3, SSL_RSA_WITH_RC4_128_MD5]| #]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
** SSL_RSA_WITH_RC4_128_MD5|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
*** Certificate chain|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
chain [0] = [
[
 Version: V3

Chapter 5, 49

 Subject: CN= orad1.ssc , OU=Sun GlassFish Enterprise Server, O=Sun Microsy stems,

L=Santa Clara, ST=California, C=US
 Signature Algorithm: SHA1withRSA, OID = 1.2.840.1 13549.1.1.5

 Key: Sun RSA public key, 1024 bits
 modulus:
102121541157065069575568250270437214984350336338157 998094768569148500536018031894819145491
113311079336949399472032140208618356816163637202618 727298710465300230334324506184949208474
446933178623253726110968175800084405517043740120715 529443624373833850530287673442674333181
408072531272948503339758724948550982873
 public exponent: 65537
 Validity: [From: Sat Sep 05 13:48:28 EST 2009,
 To: Tue Sep 03 13:48:28 EST 2019]
 Issuer: CN=orad1.ssc, OU=Sun GlassFish Enterprise Server, O=Sun Microsystems, L=Santa
Clara, ST=California, C=US
 SerialNumber: [4aa1df8c]

Certificate Extensions: 1
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 9E 79 9C E9 59 86 34 8F FD 75 09 F7 82 D0 8 2 CE .y..Y.4..u......
0010: BE 9A 44 EE ..D.
]
]

]
 Algorithm: [SHA1withRSA]
 Signature:
0000: 23 A7 FD 51 1F 81 9E 8C 34 3A 58 01 EF 5A 0 4 CD #..Q....4:X..Z..
0010: AD 35 2C 67 17 40 3A B8 EA 19 37 DB B2 B3 C 8 EA .5,g.@:...7.....
0020: 5B 4F 0E 30 4E 9D 42 23 52 FE E8 53 44 8B 6 4 21 [O.0N.B#R..SD.d!
0030: CF 5F EE 07 D5 60 1E F2 1B EA 68 99 E4 BB 6 C 89 ._...`....h...l.
0040: 02 21 1D A5 AE 6C 26 14 8C 92 02 92 E3 C1 7 4 56 .!...l&.......tV
0050: 6A 69 96 8E 2D 1E 7D 6C 52 5E 99 38 20 8B 1 9 C4 ji..-..lR^.8 ...
0060: 52 11 89 B3 73 D0 6C 61 B2 DB BF CA 58 0A 3 A 5D R...s.la....X.:]
0070: 40 81 97 CC 3F 60 A6 1E B5 D6 60 8A C6 6B B 6 F6 @...?`....`..k..

]|#]
...
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|, SEND TLSv1 ALERT : |#]

[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;| fatal , |#]

[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;| description = certificate_unknown |#]

[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, WRITE: TLSv1 Alert , length = 2|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, called closeSocket()|#]
[#|2009-09-07T18:18:18.656+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=81;_ThreadName=PersonCli_CA_SSLS
erverAuth-sun-http-binding;|
PersonCli_CA_SSLServerAuth-sun-http-binding, handli ng exception:
javax.net.ssl.SSLHandshakeException: sun.security.v alidator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.Sun CertPathBuilderException: unable to
find valid certification path to requested target|#]

Chapter 5, 50

[#|2009-09-07T18:18:18.671+1000|SEVERE|sun-
appserver2.1|com.sun.jbi.httpsoapbc.HttpSoapBinding Deployer|_ThreadID=81;_ThreadName=Perso
nCli_CA_SSLServerAuth-sun-http-binding;_RequestID=c 5817253-ec00-4d70-9d29-
218bfc560ba3;|HTTPBC-E00201: Deployment failed. jav ax.wsdl.WSDLException: WSDLException
(at /definitions/import): faultCode=OTHER_ERROR: Un able to resolve imported document at
'https://orad1.ssc:29181/PersonSvc_CA_SSLServerAuth -sun-http-binding/PersonAbsSvc.wsdl',
relative to 'file:/C:/GlassFishESBv21_16016/glassfi sh/domains/domain1/jbi/service-
assemblies/PersonCli_CA_SSLServerAuth.1/PersonCli_C A_SSLServerAuth-sun-http-binding/sun-
http-binding/orad1.ssc_29181/casaService1/casaPort1 .wsdl':
javax.net.ssl.SSLHandshakeException: sun.security.v alidator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.Sun CertPathBuilderException: unable to
find valid certification path to requested target
javax.jbi.JBIException: javax.wsdl.WSDLException: W SDLException (at /definitions/import):
faultCode=OTHER_ERROR: Unable to resolve imported d ocument at
'https://orad1.ssc:29181/PersonSvc_CA_SSLServerAuth -sun-http-binding/PersonAbsSvc.wsdl',
relative to 'file:/C:/GlassFishESBv21_16016/glassfi sh/domains/domain1/jbi/service-
assemblies/PersonCli_CA_SSLServerAuth.1/PersonCli_C A_SSLServerAuth-sun-http-binding/sun-
http-binding/orad1.ssc_29181/casaService1/casaPort1 .wsdl':
javax.net.ssl.SSLHandshakeException: sun.security.v alidator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.Sun CertPathBuilderException: unable to
find valid certification path to requested target
 at
com.sun.jbi.httpsoapbc.ServiceUnitImpl.createEndpoi nts(ServiceUnitImpl.java:601)
 at com.sun.jbi.httpsoapbc.ServiceUnitImpl.deploy(S erviceUnitImpl.java:201)
 at
com.sun.jbi.httpsoapbc.HttpSoapBindingDeployer.depl oy(HttpSoapBindingDeployer.java:146)
 at
com.sun.jbi.framework.ServiceUnitOperation.process(ServiceUnitOperation.java:177)
 at com.sun.jbi.framework.Operation.run(Operation.j ava:104)
 at java.lang.Thread.run(Thread.java:619)
Caused by: javax.wsdl.WSDLException: WSDLException (at /definitions/import):
faultCode=OTHER_ERROR: Unable to resolve imported d ocument at
'https://orad1.ssc:29181/PersonSvc_CA_SSLServerAuth -sun-http-binding/PersonAbsSvc.wsdl',
relative to 'file:/C:/GlassFishESBv21_16016/glassfi sh/domains/domain1/jbi/service-
assemblies/PersonCli_CA_SSLServerAuth.1/PersonCli_C A_SSLServerAuth-sun-http-binding/sun-
http-binding/orad1.ssc_29181/casaService1/casaPort1 .wsdl':
javax.net.ssl.SSLHandshakeException: sun.security.v alidator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.Sun CertPathBuilderException: unable to
find valid certification path to requested target
 at com.ibm.wsdl.xml.WSDLReaderImpl.parseImport(WSD LReaderImpl.java:561)
 at com.ibm.wsdl.xml.WSDLReaderImpl.parseDefinition s(WSDLReaderImpl.java:331)
 at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLRe aderImpl.java:2324)
 at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLRe aderImpl.java:2288)
 at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLRe aderImpl.java:2341)
 at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLRe aderImpl.java:2249)
 at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLRe aderImpl.java:2211)
 at
com.sun.jbi.wsdlvalidator.impl.ValidatingWSDLReader Impl.readWSDL(ValidatingWSDLReaderImpl.
java:88)
 at
com.sun.jbi.wsdlvalidator.impl.ValidatingWSDLReader Impl.readWSDL(ValidatingWSDLReaderImpl.
java:95)
 at
com.sun.jbi.wsdlvalidator.impl.ValidatingWSDLReader Impl.readWSDL(ValidatingWSDLReaderImpl.
java:95)
 at
com.sun.jbi.wsdlvalidator.impl.ValidatingWSDLReader Impl.readWSDL(ValidatingWSDLReaderImpl.
java:95)
 at
com.sun.jbi.httpsoapbc.ServiceUnitImpl.createEndpoi nts(ServiceUnitImpl.java:486)
 ... 5 more
Caused by: javax.net.ssl.SSLHandshakeException: sun .security.validator.ValidatorException:
PKIX path building failed: sun.security.provider.ce rtpath.SunCertPathBuilderException:
unable to find valid certification path to requeste d target
 at com.sun.net.ssl.internal.ssl.Alerts.getSSLExcep tion(Alerts.java:174)

Chapter 5, 51

 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.fata l(SSLSocketImpl.java:1611)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE (Handshaker.java:187)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE (Handshaker.java:181)
 at
com.sun.net.ssl.internal.ssl.ClientHandshaker.serve rCertificate(ClientHandshaker.java:1035
)
 at
com.sun.net.ssl.internal.ssl.ClientHandshaker.proce ssMessage(ClientHandshaker.java:124)
 at com.sun.net.ssl.internal.ssl.Handshaker.process Loop(Handshaker.java:516)
 at com.sun.net.ssl.internal.ssl.Handshaker.process _record(Handshaker.java:454)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.read Record(SSLSocketImpl.java:884)
 at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.performI nitialHandshake(SSLSocketImpl.java:1112
)
 at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.startHan dshake(SSLSocketImpl.java:1139)
 at
com.sun.net.ssl.internal.ssl.SSLSocketImpl.startHan dshake(SSLSocketImpl.java:1123)
 at sun.net.www.protocol.https.HttpsClient.afterCon nect(HttpsClient.java:434)
 at
sun.net.www.protocol.https.AbstractDelegateHttpsURL Connection.connect(AbstractDelegateHttp
sURLConnection.java:166)
 at
sun.net.www.protocol.http.HttpURLConnection.getInpu tStream(HttpURLConnection.java:1049)
 at
sun.net.www.protocol.https.HttpsURLConnectionImpl.g etInputStream(HttpsURLConnectionImpl.ja
va:234)
 at java.net.URL.openStream(URL.java:1010)
 at com.ibm.wsdl.util.StringUtils.getContentAsInput Stream(StringUtils.java:184)
 at com.ibm.wsdl.xml.WSDLReaderImpl.parseImport(WSD LReaderImpl.java:442)
 ... 16 more
Caused by: sun.security.validator.ValidatorExceptio n: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderEx ception: unable to find valid
certification path to requested target
 at sun.security.validator.PKIXValidator.doBuild(PK IXValidator.java:285)
 at sun.security.validator.PKIXValidator.engineVali date(PKIXValidator.java:191)
 at sun.security.validator.Validator.validate(Valid ator.java:218)
 at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.v alidate(X509TrustManagerImpl.java:126)
 at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.c heckServerTrusted(X509TrustManagerImpl.
java:209)
 at
com.sun.net.ssl.internal.ssl.X509TrustManagerImpl.c heckServerTrusted(X509TrustManagerImpl.
java:249)
 at
com.sun.net.ssl.internal.ssl.ClientHandshaker.serve rCertificate(ClientHandshaker.java:1014
)
 ... 30 more
Caused by: sun.security.provider.certpath.SunCertPa thBuilderException: unable to find
valid certification path to requested target
 at
sun.security.provider.certpath.SunCertPathBuilder.e ngineBuild(SunCertPathBuilder.java:174)
 at java.security.cert.CertPathBuilder.build(CertPa thBuilder.java:238)
 at sun.security.validator.PKIXValidator.doBuild(PK IXValidator.java:280)
 ... 36 more
|#]

The client commenced SSL Handshake by sending the Client Hello message nominating
cryptographic algorithms and compression method it is willing to use, the server responded with
the Server Hello message, nominating the selected cryptographic algorithm, session id and its

Chapter 5, 52

server certificate. The client looked at the certificate, did not found the CA that issued it in its
truststore and aborted the SSL Handshake.

Recall from earlier discussion that for a self-signed certificate, which the one returned by
orad1.ssc is, it must be explicitly imported into the client’s GlassFish instance’s cecerts.jks
truststore. Whe I look at the client’s (mcz02) GlassFish instance’s cacert.jks I don’t see the
certificate that corresponds to orad1.ssc. Figure 5.8.27.

Figure 5.8.27 Default GlassFish list of trusted certificates

We need to extract the orad1.ssc’s certificate from its keystore.jks and import it into the mcz02’s
cacerts.jks.

The steps to extract a certificate from a keystore using the Prtacle tool are discussed in the next
few paragraphs. If you have the certificate of the remote host, as you might, or use another tool to
work with keystores, skip past this section.

Chapter 5, 53

I transferred the truststore.jks and the cacerts.jsk from orad1.ssc to the machine on which I have
Portacle installed so I can easily manipulate them.

Open the remote host’s (orad1 for me) truststore.jsk with Prtacle. Password, by default, is
changeit. Figure 5.8.28 shows the keystore content and the content of the s1as certificate.

Figure 5.8.28 orad1’s keystore with s1as private key and certificate

Right-click s1as key and choose “Export”, as shown in Figure 5.8.29.

Figure 5.8.29 Trigger export of s1as certificate

Chapter 5, 54

Choose to export just the “head certificate” and store it in PEM Encode form – Figure 5.8.30.
Since the certificate is a self-signed certificate it does not matter whether we export the head
certificate (just the certificate itself) or the Certificate Chanin (including all related CA
certificates). The PEM Encoded, for Privacy Enhanced Mail (PEM) is basically a Base64
encoded binary certificate.

Figure 5.8.30 Choose export options

Complete the wizard by nominating the folder to which to save the certificate. By default the
name of the file will be derived from the CN (Common Name) value in the certificate. Figure
5.8.31 illustrates this for my environment.

Figure 5.8.31 Save certificate to a file

If you happen to be on a Windows machine, as I am for the client-side development, you can
inspect the certificate with windows tools. Merely double-click the certificate file and see what
you see. What I see is shown in Figure 5.8.32.

Chapter 5, 55

Figure 5.8.32 orad1_ssc.cer shown in Windows

Now let’s import the certificate to the local GlassFish instance’s, mcz02 for me, cacerts.jsk
truststore. Figure 5.8.33 illustrates the first step in this process.

Figure 5.8.33 Start the certificate import process

Locate the certificate and select it for import, as is shown in Figure 5.8.34.

Chapter 5, 56

Figure 5.8.34 Select and import the certificate

This is a self-signed certificate so the tool will advise that it can not establish trust for the
certificate, as shown in Figure 5.8.35. Acknowledge the message.

Figure 5.8.45 Trust path can not be established message

Then the certificate details will be shown, as can be seen in Figure 5.8.36. Acknowledge this by
clicking OK.

Figure 5.8.36 Certificate details

Chapter 5, 57

Finally, click the Yes button to accept the certificate as trusted, Figure 5.8.37, and accept the
provided or modified certificate alias, Figure 5.8.38.

Figure 5.8.37 Accept certificate as trusted

Figure 5.8.38 Accept certificate alias

Once this is done the certificate will be imported into the cacerts.jsk truststore, as trusted
certificate with alias of orad1.ssc. Figure 5.8.39 shows the final feedback.

Figure 5.8.39 Certificate was imported

Exit from Portacle Key Manager, saving the modified cacerts.jsk keystore on the way.

The GlassFish Application Server appear to be caching the truststore content. It is necessary to
re-start GlassFish after corticated is imported.

We are ready to attempt to deploy the client application again. This time, since the remote
GlassFish instance’s certificate is in the cacerts.jsk truststore, and is trusted, we should succeed.
Listing 5.8.4 shows the feedback fro the NetBeans IDE.

Listing 5.8.4 Deployment successful

run-jbi-deploy:
[undeploy-service-assembly]
 Undeploying a service assembly...
 host=localhost
 port=24848

Chapter 5, 58

 name=PersonCli_CA_SSLServerAuth
[deploy-service-assembly]
 Deploying a service assembly...
 host=localhost
 port=24848

file=G:\GlassFishESBv21Projects\WSPolicyExploration \PersonCli_CA_SSLServerAuth/dist/Person
Cli_CA_SSLServerAuth.zip
[start-service-assembly]
 Starting a service assembly...
 host=localhost
 port=24848
 name=PersonCli_CA_SSLServerAuth
run:
BUILD SUCCESSFUL (total time: 8 seconds)

The service implementation composite application, PersonSvc_CA_SSLServerAusth, is
deployed to host orad1.wa.gov.ssc. The client implementation composite application,
PersonCli_CA_SSLServerAuth, is deployed to mcz02.aus.sun.com.

Let’s exercise the solution using the PersonCli_WSTP web service testing project by submitting
the SoapUI request, as we did before. Listing 5.8.5 shows abbreviated trace of the SSL
Handshake as seen on the client side.

Listing 5.8.5 Client-side SSL Handshake trace

[#|2009-09-07T20:52:16.500+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
%% Client cached [Session-1, SSL_RSA_WITH_RC4_128_M D5]|#]
[#|2009-09-07T20:52:16.500+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
%% Try resuming [Session-1, SSL_RSA_WITH_RC4_128_MD 5] from port 4707|#]
[#|2009-09-07T20:52:16.500+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
*** ClientHello, TLSv1|#]
...
[#|2009-09-07T20:52:16.515+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Session ID: |#]
[#|2009-09-07T20:52:16.515+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|{74, 164, 228,
147, 242, 12, 228, 182, 189, 239, 197, 106, 83, 181 , 198, 176, 62, 55, 7, 142, 242, 27,
58, 223, 237, 12, 12, 62, 224, 73, 109, 208}|#]
[#|2009-09-07T20:52:16.515+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_W ITH_RC4_128_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SHA,

Chapter 5, 59

SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_RSA_EXPORT_WITH_DES40_CBC_SHA,
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA]|#]
[#|2009-09-07T20:52:16.515+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Compression Methods: { |#]
...
[#|2009-09-07T20:52:16.515+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, WRITE: TLSv1 Handshake, length = 105|#]
[#|2009-09-07T20:52:16.843+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, READ: TLSv1 Handshake, l ength = 74|#]
[#|2009-09-07T20:52:16.843+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
*** ServerHello, TLSv1|#]
...
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Session ID: |#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|{74, 164, 228,
147, 242, 12, 228, 182, 189, 239, 197, 106, 83, 181 , 198, 176, 62, 55, 7, 142, 242, 27,
58, 223, 237, 12, 12, 62, 224, 73, 109, 208}|#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Cipher Suite: SSL_RSA_WITH_RC4_128_MD5|#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Compression Method: 0|#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
***|#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
CONNECTION KEYGEN:|#]
[#|2009-09-07T20:52:16.890+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Client Nonce:|#]
...
Server Nonce:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-

Chapter 5, 60

OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Master Secret:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Client MAC write Secret:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|Server MAC write
Secret:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
Client write key:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|Server write
key:|#]
[#|2009-09-07T20:52:16.906+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
0000: |#]
...
...
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
... no IV used for this cipher|#]

Chapter 5, 61

[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
%% Server resumed [Session-1, SSL_RSA_WITH_RC4_128_ MD5]|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, READ: TLSv1 Change Ciphe r Spec, length = 1|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, READ: TLSv1 Handshake, l ength = 32|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
*** Finished|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
verify_data: { |#]
...
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, WRITE: TLSv1 Change Ciph er Spec, length = 1|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
*** Finished|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
verify_data: { |#]
...
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, WRITE: TLSv1 Handshake, length = 32|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, WRITE: TLSv1 Application Data, length = 323|#]
[#|2009-09-07T20:52:16.921+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, WRITE: TLSv1 Application Data, length = 549|#]
[#|2009-09-07T20:52:17.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-
OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
HTTPBC-OutboundReceiver-2, READ: TLSv1 Application Data, length = 856|#]
[#|2009-09-07T20:52:17.187+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=58;_ThreadName=HTTPBC-

Chapter 5, 62

OutboundReceiver-2;Context=PersonCli_CA_SSLServerAu th-sun-http-binding-
{http://j2ee.netbeans.org/wsdl/CommonXML/PersonAbsS vc}getPersonDetails;|
---[HTTP response 200]---|#]
...
*** a lot of stuff here - messages exchanged and so on ****
...
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|
Keep-Alive-Timer, called close()|#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|
Keep-Alive-Timer, called closeInternal(true)|#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|
Keep-Alive-Timer|#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|, SEND TLSv1 ALERT: |#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|warning, |#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|description = close_notify|#]
[#|2009-09-07T20:52:27.171+1000|INFO|sun-
appserver2.1|javax.enterprise.system.stream.out|_Th readID=61;_ThreadName=Keep-Alive-
Timer;|
Keep-Alive-Timer, WRITE: TLSv1 Alert, length = 18|#]

Note, in Listing 5.8.5, that rather than establishing a new session, the two parties resumed an
earlier SSL session. The client requested session resumption and the server agreed to resume the
session. No certificate was sent from the server to the client.

When the session expires a complete SSL Handshake will be performed again, including supply
of the server certificate to the client. Host validation and certificate trust path validation.

The end-to-end solution using SSL with Server-side Authentication works. Let’s undeploy both
composite applications in preparation for the next section – channel security using SSL with
Mutual Authentication.

5.9 Person Service - SSL Mutual Authentication

SSL with Server-side Authentication is a good choice for enforcing message privacy as it
travels between two end points. It is also a good choice if the client cares about authenticity of
the server but the server does not use SSL to establish authenticity of the client. This is common
in electronic commerce application where the client needs to make sure it is communicating with
the expected server before providing credit card and similar information to it. Channel security

What is described in this section ought to work.
Note that at this point in time this configuration does not work so this
discussion is theoretical.

Chapter 5, 63

takes care of privacy for the credit card details and server certificate allows the client to validate
the server. The commerce site uses credit card information to obtain the payment, activity which
is completely unrelated to the message exchange between two endpoints. All that the commerce
site cares about is that credit card information is valid and the payment can be exacted. It does
not need to authenticate the client machine because it is not relevant to the transaction.

Still, there are situations where both the server and the client, in addition to maintaining message
privacy through channel encryption, need to authenticate one another. SSL with Mutual
Authentication can be used for this purpose. The SSL Handshake is modified in such a way that
as well as server sending its certificate to the client for verification the client sends its certificate
to the server for validation. Either side can abort the handshake if it is not happy with the other’s
certificate. Once the handshake completes successfully the channel is encrypted as normal and
the same protocol operating applies (periodic change of keys, etc.).

In this section the end-to-end solution which uses secures the channel using SSL with Mutual
Authentication will be developed and exercised.

As, hopefully, is clear by now, security policies, if any, can be applied to a service endpoint in a
composite application without having to disturb or redevelop application logic. PersonSvc BPEL
Module and PersonCli BPEL Module implement business logic. PersonSvc_CA_xxx and
PersonCli_CA_xxx are used to configure varying policies.

To save ourselves the trouble of creating a composite application from scratch, not that is is a big
deal, let’s copy the PersonSvc_CA_SSLServerAuth composite application as
PersonSvc_CA_SSLMutualAuth. Figure 5.9.1 provides an illustration of this.

Figure 5.9.1 Clone PersonSvc_CA_SSLServerAuth as PersonSvc_CA_SSLMutualAuth

Open “Server Configuration” properties pane as illustrated in Figure 5.9 2.

Chapter 5, 64

Figure 5.9.2 Open Server Configuration Properties Pane

Click the Configure button, check the “Require Client Certificate” checkbox and dismiss both
dialogue boxes by clicking OK. Figure 5.9.3 illustrates key points.

Figure 5.9.3 Require Client Certificate

Build and Deploy the application to the remote GlassFish instance.

Since the service WSDL has changed we can not re-use the PersonCli_CA_SSLServerAuth and
trivially modify configuraitn before re-deploying, as we have done with the
PersonSvc_CA_SSLServerAuth. This is because the composite application has a copy of the
server WSDL, provided when we create a “New -> External WSDL Document(s)”. This copy of
the WSDL is a copy of the old WSDL and there is no way to refresh it short of rdeleting and re-
creating it from scratch. By the time we do that we might as well create a new
PersonCli_CA_SSLMutualAuth project form scratch. This is what we will do.

Create a “New Project” -> SOA -> “Composite Application”, named
PersonCli_CA_SSLMutualAuth.

Determine the WSDL URL for the PersonSvc_CA_SSLMutualAuth service. For me this will be:

https://orad1.ssc:29181/casaService1/casaPort1?WSDL

Using this WSDL URL create a “New” -> “External WSDL Document(s)” in the new composite
application project. Figure 5.9.4 illustrates the outcome of this process.

Chapter 5, 65

Figure 5.9.3 External WSDL in the composite application project

As we have done twice before, drag the PersonCli BPEL module onto the CASA and build the
project. Notice two SOAP BCs on the canvas, connected to the BPEL Module. The Provider
(TriggerCon) and the consumer (PersonSvc).

Open and inspect “Client Configuration” properties of the Consume SOAP BC, illustrated in
figure 5.9.4. Notice that, as before, there are no SSL-related properties to configure.

Figure 5.9.4 Open Client Configuration of the service consumer endpoint

We are expecting the SSL Handshake to call for client’s certificate. The only certificate the
client’s (local) GlassFish instance know about is the one with the alias of s1as in the GlassFish
instance’s keystore.jsk (<glassfish_root>/domains//domain1/config/keystore.jks).

Build and deploy the project to the local GlassFish instance. Inspecting the local server.log will
show that the deployment process results in a SSL Handshake and that the SSL session
established when we created a new external WSDL is resumed. SSL session gets resumed if it is
between the same two hosts and it is still “fresh” enough.

Use the SOAP request in PersonCli_WSTP web service testing project to trigger this solution.

5.10 EJB-based Person Svc with No Channel Security

In this section the EJB-based web service provider and consumer will be built and exercised,
in preparation for configuration of security policies in subsequent sections.

Listing 5.3.2 shows the Abstract WSDL that describes the interface to our service. In this section
we will implement this service in Java as an EJB-based web service.

Create “New Project” -> “Java EE” -> “EJB Module”, choosing the remote GlassFish instance as
the deployment target. Name this module EJBPersonNoSecSvc.

In the new project create “New” -> “Web Service From WSDL”, naming the service
EJBPersonNoSecSvc, placing it in the package pkg.EJBPersonNoSecSvc and using the
CommonXML/PersonAbsSvc “Local WSDL File”.

Chapter 5, 66

Figure 5.10.1 shows the source of the service implementation, at this point in time, reformatted
for better readability.

Figure 5.10.1 Skeleton service implementation

Replace lines 29-30 (in my source) with the java code shown in Listing 5.10.1.

Listing 5.10.1 Service implementation

 System.out.println("\n%%%%%%% PersonID: " + msgPersonDetailsReq.getPersonID());

 org.netbeans.xml.schema.person.PersonRes sR es
 = new org.netbeans.xml.schema.perso n.PersonRes();
 sRes.setPersonID(msgPersonDetailsReq.getPer sonID());
 sRes.setFamilyName("Doe");
 sRes.setGivenName("John");
 sRes.setGender("M");

 org.netbeans.xml.schema.person.PersonRes.Ad dressDetails addr
 = new org.netbeans.xml.schema.perso n.PersonRes.AddressDetails();

 addr.setStreetAddress("33 Berry Street");
 addr.setCityTown("North Sydney");
 addr.setStateProvince("NSW");
 addr.setPostCode("2160");
 addr.setCountry("Australia");
 sRes.setAddressDetails(addr);

 org.netbeans.xml.schema.person.PersonRes.Cr editCardDetails card

Chapter 5, 67

 = new org.netbeans.xml.schema.perso n.PersonRes.CreditCardDetails();
 card.setCardNumber("123-456-7689-0123");
 card.setCardType("Passport");
 card.setExpiryDate("01/21");
 card.setSecurityCode((new java.util.Date()) .toString());
 sRes.setCreditCardDetails(card);

 if (msgPersonDetailsReq.getPersonID().equal sIgnoreCase("FAULT")) {
 PersonFlt pFlt = new PersonFlt();
 pFlt.setPersonID(msgPersonDetailsReq.ge tPersonID());
 pFlt.setFaultDetail("Induced GetPersonD etailsFault");
 GetPersonDetailsFault sFlt
 = new GetPersonDetailsFault
 ("Induced GetpersonDetailsF ault"
 ,pFlt);
 throw sFlt;
 }
 return sRes;

Right-click inside the source window and choose “Fix Imports” to resolve import-related issues.

Build and Deploy the project.

Create “New Project” -> “Java EE” -> “EJB Module”, named EJBPersonNoSecCli, to be
deployed to the local GlassFish instance.

Create “New” -> “Web Service From WSDL”, named EJBPersonNoSecCli, in package
pkg.EJBPersonNoSecCli, using WSDL from the CommonXML/TriggerCon.wsdl.

Create “New” -> “Web Service Client”. Click “Project”, browse to the EJBPersonNoSecSvc
project and choose the web service implementation. Figure 5.10.2 illustrates this step.

Figure 5.10.2 Choose web service implementation for the client to invoke

Chapter 5, 68

Replace the two lines of code, “//TODO …” and “throw new Unsupported…” with the code
shown in Listing 5.10.2.

Listing 5.10.2 Replacement code

 org.netbeans.xml.schema.person.PersonReq cR eq
 = new org.netbeans.xml.schema.perso n.PersonReq();
 cReq.setPersonID(msgPersonDetailsReq.getPer sonID());

 org.netbeans.xml.schema.person.PersonRes cR es
 = new org.netbeans.xml.schema.perso n.PersonRes();
 cRes.setPersonID(msgPersonDetailsReq.getPer sonID());

 // invoke service here

 return cRes;

The source, reformatted for better readability, is shown in Figure 5.10.3.

Figure 5.10.3 Client implementation code before service invocation is added

Variables cReq and cRes will contain request to the service and response from the service
respectively.

Expand Web Service References node all the way to the service operation and drag the service
operation onto the source window following the comment “// invoke service here”, as shown in
Figure 5.10.4.

Chapter 5, 69

Figure 5.10.4 Drag the service operation onto the source window

The code fragment, which was generated by the NetBeans tooling, reformatted for better
readability, is shown in Figure 5.10.5.

Figure 5.10.5 Service invocation skeleton code

Replace the lines inside the try { … } catch block with the code in Listing 5.10.3.

Listing 5.10.3 Code to invoke the service and process the reply

org.netbeans.j2ee.wsdl.commonxml.personabssvc.Perso nAbsSvcPortType port
 = service.getPersonAbsSvcPort();
org.netbeans.xml.schema.person.PersonRes result = p ort.getPersonDetails(cReq);

System.out.println("\n===>>> " + result.getFamilyNa me());

cRes.setFamilyName(result.getFamilyName());
cRes.setMiddleInitials(result.getMiddleInitials());
cRes.setGivenName(result.getGivenName());
cRes.setGender(result.getGender());

org.netbeans.xml.schema.person.PersonRes.AddressDet ails cAddr
 = new org.netbeans.xml.schema.person.Person Res.AddressDetails();
cAddr.setStreetAddress(result.getAddressDetails().g etStreetAddress());

Chapter 5, 70

cAddr.setCityTown(result.getAddressDetails().getCit yTown());
cAddr.setStateProvince(result.getAddressDetails().g etStateProvince());
cAddr.setPostCode(result.getAddressDetails().getPos tCode());
cAddr.setCountry(result.getAddressDetails().getCoun try());
cRes.setAddressDetails(cAddr);

org.netbeans.xml.schema.person.PersonRes.CreditCard Details cCard =
 new org.netbeans.xml.schema.person.PersonRe s.CreditCardDetails();
cCard.setCardNumber(result.getCreditCardDetails().g etCardNumber());
cCard.setCardType(result.getCreditCardDetails().get CardType());
cCard.setExpiryDate(result.getCreditCardDetails().g etExpiryDate());
cCard.setSecurityCode(result.getCreditCardDetails() .getSecurityCode());
cRes.setCreditCardDetails(cCard);

I will leave analysis of what this slab of code does to the reader. Suffices it to say that the new
request, cReq, populated with the PersonID from the client, is submitted to the service and the
response, cRes, is sued to populate the response of the client.

The resulting source is illustrated in Figure 5.10.6.

Figure 5.10.6 Submit request and process response

To complete client implementation let’s replace the one line comment “// TODO handle …” with
the slab of code shown in Listing 5.10.4, then right-click inside the source window and choose
“Fix Imports”.

Listing 5.10.4 Convert exception into a Fault

Chapter 5, 71

ex.printStackTrace();
String sFltMsg = ex.getMessage();
PersonFlt pFlt = new PersonFlt();
pFlt.setPersonID(msgPersonDetailsReq.getPersonID()) ;
pFlt.setFaultDetail(sFltMsg);
org.netbeans.j2ee.wsdl.commonxml.triggercon.Trigger PersonFault sFlt
 = new org.netbeans.j2ee.wsdl.commonxml.trig gercon.TriggerPersonFault
 (sFltMsg, pFlt);
throw sFlt;

Figure 5.10.7 shows the completed implementation code.

Figure 5.10.7 Client implementation

Build and Deploy the project.

The web service client we just built is itself a web service. We designed this client in this way so
that we can use the SoapUI plugin to invoke the client, rather then go to the trouble of working
out how else to invoke it and to build the appropriate implementation.

Chapter 5, 72

To create a SopUI project we need a WSDL URL. Expand the Web Service node in the client
project, right-click the web service name and choose Test Web Service, as illustrated in Figure
5.10.8.

Figure 5.10.8 Choose to test Web Service

Once the web browser window opens with the test page, right-click the WSDL link and choose
Copy Link Location, or equivalent. Figure 5.10.9 shows this in the Firefox web browser.

Figure 5.10.9 Copy WSDL link location

For me the URL will be:

http://localhost:28080/TriggerConService/EJBPersonN oSecCli?WSDL

Default port number is 8080. I changed mine to 28080.

Chapter 5, 73

We can not actually test this service through the web browser. The service expects a structured
message, conforming to Person XML Schema. We would have to construct a XML instance
document and paste it into the text box. Even if we did go to that trouble the XML text would
have gotten “escaped” by the form processor and the resulting message would have been garbled
anyway.

As mentioned, we will use the SoapUI to trigger the client.

Create “New Project” -> “Java EE” -> “Web Service Testing Project”, named
EJBPersonNoSecCli_WSTP (this assumes that the SoapUI plugin has been installed – if it has
not then now is the time to obtain and install it). Use the WSDL URL just copied to the clipboard
as the service URL. Figure 5.10.10 illustrates this step.

Figure 5.10.10 Create new web service testing project

Once the project is created expand the nodes, right-click the service operation and choose “New
request”, as illustrated in Figure 5.10.11.

Figure 5.10.11 Add new request

Set PersonID to some favourite value and click the Submitt request “button”. This is illustrated in
Figure 5.10.12.

Chapter 5, 74

Figure 5.10.12 Submit SOAP Request

If all goes well, the service response will look similar to that shown in Figure 5.10.13.

Figure 5.10.13 Service Response

To test exception processing in the client, undeploy the service and submit the request again.
Figure 5.10.14 shows the Fault response.

Figure 5.10.14 Fault response

Chapter 5, 75

The service provider and the service consumer were implemented and exercised. This will help
with the next section. Before going on let’s undeploy the client as well so that neuither the client
nor the service are deployed.

5.11 EJB-based Person Svc with Server-side Authentication

In this section I will discuss how to configure SSL with Server-side Authentication for an
EJB-based Web Service, using the “Interface First” programming model, though this equally
applies to “Implementation First” programming model for EJB Web Services.

WS-Security Policy and Metro / WSIT are not used for this. A far as I can tell the EJB-based
web service implementation, and the infrastructure that supports it, completely ignores the WS-
Security Policy and Metro / WSIT policies relating to channel security – SSL / TLS, whether
with Server-side or Mutual Authentication. This section is not, then, an exploration of security
policy but an exploration of a practical implementation of SSL- / TLS-based channel security.

The security parameters, port, certificate alias, cryptographic suites, are configured in the
GlassFish Application Server. Figures 5.11.1 and 5.11.2 show the areas of particular interest.

Figure 5.11.1 http-listener-2 port configuration

Chapter 5, 76

Figure 5.11.2 SSL / TLS Configuration

Unlike in the JBI world, where logic and policy can be separated into a BPLE Module and a
Composite Application projects, with EJB-based Web Services a single project will implement
both.

Click anywhere in the empty area of the Project Explorer and create “New Project” -> “Java EE”
-> “EJB Module”. Name this module EJBPersonSSLServerAuthSvc and have it deploy to the
remote GlassFish instance.

Right-click on the name of the new project. Choose “New” -> “Other” -> “Web Services” ->
“Web Service From WSDL”. Name the service EJBPersonSSLServerAuthSvc, name the package
pkg.EJBPersonSSLServerAuthSvc, browse to the CommonXML/PersonAbsSvc WSDL, select it
and click Finish.

As the wizard completes a skeleton Java Source of the implementation class will appear in a
window.

Replace the line containing the comment “// TO DO …” and the following line with the java
statements shown in Listing 5.11.1.

Listing 5.10.1 Method body

PersonRes res = new PersonRes();
res.setPersonID(msgPersonDetailsReq.getPersonID());
res.setFamilyName("Doe");
res.setGivenName("John");
res.setGender("M");

PersonRes.AddressDetails addr = new PersonRes.Addre ssDetails();

addr.setStreetAddress("33 Berry Street");
addr.setCityTown("North Sydney");
addr.setStateProvince("NSW");
addr.setPostCode("2160");
addr.setCountry("Australia");

Chapter 5, 77

res.setAddressDetails(addr);

PersonRes.CreditCardDetails card = new PersonRes.Cr editCardDetails();
card.setCardNumber("123-456-7689-0123");
card.setCardType("Passport");
card.setExpiryDate("01/21");
card.setSecurityCode("SecurityCode");
res.setCreditCardDetails(card);

return res;

The class implementation should look like that shown in Figure 5.11.3.

Figure 5.11.3 Implementation code

Move the “@Stateless” annotation from its location on line 23 to just before the “@WebService
annotation”. Figures 5.11.4 and 5.11.5 illustrate the “before” and “after” state.

Chapter 5, 78

Figure 5.11.4 “Before” state

Figure 5.11.5 “After” state

The empirical reason for this is that processing of the @WebService annotation before the
@Stateless annotation generates code that ignores channel security.

Build the project.

Click on the “Configuration Files” folder to select it. Click on the drop down “File” NetBeans
menu. Choose “New File” -> “Other” -> “Empty File”. Figure 5.11.6 illustrates a step in this
process.

Figure 5.11.6 Create Empty File in the Configuration Files folder

Chapter 5, 79

Name the new file “sun-ejb-jar.xml”.

Paste the XML content shown in Listing 5.10.2 into the sun-ejb-jar.xml.

Listing 5.11.2 Content of the sun-ejb-sar.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Application Server 9.0 EJB 3.0//EN'
'http://www.sun.com/software/appserver/dtds/sun-ejb -jar_3_0-0.dtd'>
<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>EJBPersonSSLServerAuthSvc</ej b-name>
 <webservice-endpoint>
 <port-component-name>EJBPersonSSLSe rverAuthSvc</port-component-name>
 <transport-guarantee>CONFIDENTIAL</ transport-guarantee>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

This seems to be the standard way of requiring SSL-based channel security for EJB-based web
endpoints deployed to the GlassFish Application Server. See http://java.sun.com/developer/EJTe
chTips/2006/tt0527.html for discussion. The ejb-name and port-component-name values are the
name of the implementation class, EJBPersonSSLServerAuthSvc.

Save the project, Build and Deploy.

Expand the “Web Service” node, right click on the port name and choose “Test Web Service”.

When the Web Browser opens, with the web service tester URL, there will be an error message
in the content windows. Figure 5.17.7 shows the error message in the Firefox browser.

Figure 5.11.7 Error invoking web service test functionality

Clearly, there is no way to access the service over non-secure channel.

For me, because I don’t use default port numbers, the secure channel URL will be:

https://orad1.ssc:28181/PersonAbsSvcService/ EJBPersonSSLServerAuthSvc

The default port number of the SSL-enabled listener will be 8181.

Let’s attempt to access the WSDL for this service using the following URL:

https://orad1.ssc:28181/PersonAbsSvcService/ EJBPersonSSLServerAuthSvc ?WSDL

Access succeeds. Figure 5.11.8 shows the WSDL in Firefox.

Chapter 5, 80

Figure 5.11.8 WSDL obtained over the secure channel

Let’s now try to use the non-secure channel to get the WSDL. For me, the URL will be:

http://orad1.ssc:28080/PersonAbsSvcService/EJBPerso nSSLServerAuthSvc?WSDL

Access will fail. The browser will show a blank page and the server.log will have a WARNING-
level message:

[#|2009-09-19T11:46:16.556+1000|WARNING|sun-
appserver2.1|javax.enterprise.system.container.ejb| _ThreadID=30;_ThreadName=http
SSLWorkerThread-28080-2;_RequestID=b4cbae17-fdd9-40 51-991b-71482e166246;|Invalid
request scheme for Endpoint EJBPersonSSLServerAuthS vc. Expected https . Received
http|#]

Let’s now create a “New Project” -> “Java EE” -> “Web Service Testing Project”, named
EJBPersonSSLServerAuthSvc_WSTP. Use the secure WSDL URL, which for me will be:

https://orad1.ssc:28181/PersonAbsSvcService/EJBPers onSSLServerAuthSvc?WSDL

Create, populate and submit a SOAP request. Figure 5.11.9 illustrates the project and the request.

Figure 5.11.9 Submit SOAP request

Chapter 5, 81

Figure 5.11.10 shows the SOAP Response, the X.509 Certificate and the Crypto Suite, which
was provided and negotiated by the GlassFish Application Server to the SoapUI client during the
SSL Handshake.

Figure 5.11.10 SOAP Response and SSL information

SSL Handshake can be logged to the server.log by adding “-Djavax.net.debug=ssl:handshake” to
the GlassFish Application Server’s JVM Options. Figure 5.8.1 illustrates this in the GlassFish
Application Server Admin Console.

The web service, secured using SSL with Server-side Authentication, is operational. Let’s see if
we can access it using a non-secure URL, which for me would be:

http://orad1.ssc:28080/PersonAbsSvcService/ EJBPersonSSLServerAuthSvc

Create a new SOAP Request in the EJBPersonSSLServerAuthSvc_WSTP project and change the
endpoint URL to the non-secure one, as shown in Figure 5.11.11.

Figure 5.11.11 Create a new request and “[edit current …]” endpoint URL

Chapter 5, 82

Submit the request.

The SoapUI will give a blank response, which is perhaps misleading, and the server.log will
show the, familiar by now, WARNING-level message:

[#|2009-09-19T11:55:18.389+1000|WARNING|sun-
appserver2.1|javax.enterprise.system.container.ejb| _ThreadID=31;_ThreadName=http
SSLWorkerThread-28080-3;_RequestID=92f0cc01-3b4e-4e 89-8776-1ee02f2b5fac;|Invalid
request scheme for Endpoint EJBPersonSSLServerAuthS vc. Expected https . Received
http|#]

The web service endpoint is secured, using SSL with Server-side Authentication.

Let’s create an EJB-based web service client to exercise the service we just implemented.

Create a “New Project” -> “Java EE” -> “EJB Module”, named EJBPersonSSLServerAuthCli,
with the local GlassFish instance as the deployment target.

Create “New” -> “Web Service From WSDL”, named EJBPersonSSLServerAuthCli, in package
pkg.EJBPersonSSLServerAuthCli i, using WSDL from the CommonXML/TriggerCon.wsdl.

Create “New” -> “External WSDL Document(s)”, using the service WSDL URL. For me this
will be:

https://orad1.ssc:28181/PersonAbsSvcService/EJBPers onSSLServerAuthSvc?WSDL

Figure 5.11.12 shows the new WSDL in the project structure.

Figure 5.11.12 WSDL I the project structure

Create “New” -> “Web Service Client”, click “Local File”, Browse to the location of the WSDL
EJBPersonSSLServerAuthSvc.wsdl and select it. Figure 5.11.13 illustrates this step.

Chapter 5, 83

Figure 5.11.13 Use WSDL in the local file

Open the Java source of the client implementation, if not already open.

Replace the two lines of code, “//TODO …” and “throw new Unsupported…” with the code
shown in Listing 5.11.3.

Listing 5.11.3 Replacement code

 org.netbeans.xml.schema.person.PersonReq cR eq
 = new org.netbeans.xml.schema.perso n.PersonReq();
 cReq.setPersonID(msgPersonDetailsReq.getPer sonID());

 org.netbeans.xml.schema.person.PersonRes cR es
 = new org.netbeans.xml.schema.perso n.PersonRes();
 cRes.setPersonID(msgPersonDetailsReq.getPer sonID());

 // invoke service here

 return cRes;

The source, reformatted for better readability, is shown in Figure 5.11.14.

Chapter 5, 84

Figure 5.11.14 Client implementation code before service invocation is added

Variables cReq and cRes will contain request to the service and response from the service
respectively.

Expand Web Service References node all the way to the service operation and drag the service
operation onto the source window following the comment “// invoke service here”, as shown in
Figure 5.11.15.

Figure 5.11.15 Drag the service operation onto the source window

The code fragment, which was generated by the NetBeans tooling, reformatted for better
readability, is shown in Figure 5.11.16.

Chapter 5, 85

Figure 5.11.16 Service invocation skeleton code

Replace the lines inside the try { … } catch block with the code in Listing 5.11.4.

Listing 5.11.4 Code to invoke the service and process the reply

org.netbeans.j2ee.wsdl.commonxml.personabssvc.Perso nAbsSvcPortType port
 = service.getPersonAbsSvcPort();
org.netbeans.xml.schema.person.PersonRes result = p ort.getPersonDetails(cReq);

System.out.println("\n===>>> " + result.getFamilyNa me());

cRes.setFamilyName(result.getFamilyName());
cRes.setMiddleInitials(result.getMiddleInitials());
cRes.setGivenName(result.getGivenName());
cRes.setGender(result.getGender());

org.netbeans.xml.schema.person.PersonRes.AddressDet ails cAddr
 = new org.netbeans.xml.schema.person.Person Res.AddressDetails();
cAddr.setStreetAddress(result.getAddressDetails().g etStreetAddress());
cAddr.setCityTown(result.getAddressDetails().getCit yTown());
cAddr.setStateProvince(result.getAddressDetails().g etStateProvince());
cAddr.setPostCode(result.getAddressDetails().getPos tCode());
cAddr.setCountry(result.getAddressDetails().getCoun try());
cRes.setAddressDetails(cAddr);

org.netbeans.xml.schema.person.PersonRes.CreditCard Details cCard =
 new org.netbeans.xml.schema.person.PersonRe s.CreditCardDetails();
cCard.setCardNumber(result.getCreditCardDetails().g etCardNumber());
cCard.setCardType(result.getCreditCardDetails().get CardType());
cCard.setExpiryDate(result.getCreditCardDetails().g etExpiryDate());
cCard.setSecurityCode(result.getCreditCardDetails() .getSecurityCode());
cRes.setCreditCardDetails(cCard);

The new request, cReq, populated with the PersonID from the client, is submitted to the service
and the response, cRes, is sued to populate the response of the client.

To complete client implementation let’s replace the one line comment “// TODO handle …” with
the slab of code shown in Listing 5.11.5, then right-click inside the source window and choose
“Fix Imports”.

Chapter 5, 86

Listing 5.11.5 Convert exception into a Fault

ex.printStackTrace();
String sFltMsg = ex.getMessage();
PersonFlt pFlt = new PersonFlt();
pFlt.setPersonID(msgPersonDetailsReq.getPersonID()) ;
pFlt.setFaultDetail(sFltMsg);
org.netbeans.j2ee.wsdl.commonxml.triggercon.Trigger PersonFault sFlt =
null;
sFlt = new TriggerPersonFault(sFltMsg, pFlt);
throw sFlt;

Figure 5.11.17 shows the completed implementation code.

Figure 5.11.17 Client implementation

Build and Deploy the project.

The web service client we just built is itself a web service. We designed this client in this way so
that we can use the SoapUI plugin to invoke the client, rather then go to the trouble of working
out how else to invoke it and to build the appropriate implementation.

Chapter 5, 87

To create a SopUI project we need a WSDL URL. Expand the Web Service node in the client
project, right-click the web service name and choose Test Web Service.

Once the web browser window opens with the test page, right-click the WSDL link and choose
Copy Link Location, or equivalent, to copy WSDL URL to the clipboard.

For me the URL will be:

http://localhost:28080/TriggerConService/EJBPersonS SLServerAuthCli?WSDL

Default port number is 8080. I changed mine to 28080.

We can not actually test this service through the web browser. The service expects a structured
message, conforming to Person XML Schema. We would have to construct a XML instance
document and paste it into the text box. Even if we did go to that trouble the XML text would
have gotten “escaped” by the form processor and the resulting message would have been garbled
anyway.

As mentioned, we will use the SoapUI to trigger the client.

Create “New Project” -> “Java EE” -> “Web Service Testing Project”, named
EJBPersonSSLServerAuthCli_WSTP (this assumes that the SoapUI plugin has been installed – if
it has not then now is the time to obtain and install it). Use the WSDL URL just copied to the
clipboard as the service URL.

Once the project is created expand the nodes, right-click the service operation and choose “New
request”.

Set PersonID to some favorite value and click the Submit request “button”.

If all goes well, the service response will look similar to that shown in Figure 5.11.18.

Figure 5.11.18 Service Response

Chapter 5, 88

The service provider and the service consumer, communicating over secure channel using SSL
with Server-side Authentication, were implemented and exercised. We can no undeploy both the
client and the server.

Inspection of server.log of the local GlassFish instance will show the client-side of the SSL
Handshake. Inspection of the server.log of the remote GlassFish instance will show the server-
side of the SSL Handshake. The traces are worth studying at leas once to see what a normal
handshake looks like. Whenever there are issues with handshake, as might be the case when
server certificate is not trusted or the partner can not agree on the appropriate cipher suite to use,
the SSL handshake trace will be the first place to look to figure out who is objecting and to what
they are objecting.

5.12 EJB-based Person Svc with Mutual Authentication

5.x Chapter Summary

This chapter explored selected methods of applying security to the channel over which
SOAP messages are exchanged and the SOAP messages themselves, using a basic BPEL 2.0-
based invoker and provider set.

A pair of projects, an invoker and a provider, were used to provide application logic.

Composite Applications were used to apply different variants of security policies.

The following security policies were explored:

• None

• HTP BC Channel Security - SSL / TLS with Server-side Authentication

• HTTP BC Channel Security - SSL / TLS with Mutual Authentication

• EJB Channel Security - SSL / TLS with Server-side Authentication

•

• Message Encryption

•

For each variant an end-to-end solution was built and exercised. Server.log traces from both sides
were inspected and discussed as necessary to clarify what was happening during the process.

