
Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

1 of 59

GlassFish ESB v2.2 Field Notes

Michael.Czapski@sun.com
January 2010, Release 1.0.0.1

Table of Contents
Introduction..1
Exercise Environment..3
Solution Implementation..5
Overview of Drainer Projects ..8
Overview of Receiver Projects ..10
Overview of Sender Projects ...13
Load Balancer Preparation...16

Load Balancer configuration for the HL7 BC-based Solution17
Load Balancer configuration for the HTTP BC-based Solution..............................18

Appliance Preparation..18
Appliance Customization...19
Shared Resources Configuration..24
Project Deployment ...28

HL7 Projects ..28
Using the NetBeans IDE..29
Using the GlassFish Application Server Admin Console....................................31

HL7 BC and Load Balancer Timing Parameters ...33
WS Projects..35
JMS Projects ..38
Test Preparation ...39
Testing resilience of the HL7 BC-based Solution ...43
Testing resilience of the HTTP BC-based Solution (Web Service)51
Testing resilience of the JMS BC-based Solution ...56
Summary..59

Introduction
It seems frequently assumed that architecting and deploying Highly Available (HA)
solutions requires Application Server and/or Operating System clustering. When it
comes to SOA and Integration solutions this is not necessarily a correct assumption.
Load Balanced (LB) and Highly Available HA) SOA and Integration solutions may
not require that degree of complexity and sophistication. Frequently, protocol, binding
component, JBI and architectural application design properties can be exploited to
design highly available solutions. Testing LB and HA solutions requires infrastructure
consisting of multiple hosts and the ability to “crash” hosts at will. With virtualization
technologies available now it is far easier to use multiple virtual machines then to use
physical machines. It is also easier and potentially less destructive to “crash” virtual
machines then it is to do so with physical machines.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

2 of 59

In this Note a heterogeneous, non-clustered collection of hosts will be used to
implement and exercise three load balanced, highly available GlassFish ESB-based
solutions. The environment consists of a number of independent “machines”, which
are not a part of an Operating System Cluster. Each “machine” hosts a GlassFish
Application Server. Application Servers are independent of one another and are not
clustered. This is to demonstrate that load balanced, highly available, horizontally
scalable solutions, based on the GlassFish ESB software alone, can be designed and
implemented.

The specific class of solutions to which this discussion applies is the class of solutions
which:

1. are exposed as request/reply services
a. HL7 messaging with explicit Application Acknowledgement

or
b. Request/Reply Web Services

or
c. JMS in Request/Reply mode

2. implement business logic as short lived processes
3. are

a. atomic
or

b. are idempotent
or

c. tolerant of duplicate messages

Classes of solutions with characteristics different from these named above require
different approaches to high availability and horizontal scalability, and are not
discussed here.

In this Note only high availability and scalability of receiver solutions is addressed.
This aspect is the focus because a failure to process a message by a receiver may
result in message loss –generally a bad thing.

Paradoxical as it may sound; senders are special cases of receivers. Just as a receiver
is triggered by arrival of a message so too is a sender. Making sure that the sender
trigger message does not get lost is much the same as making sure the message a
receiver receives does not get lost. This means that the same considerations apply to
senders and to receivers.

This note discusses an exercise involving an example load balanced, highly available,
horizontally scalable healthcare environment, processing HL7 v2 messages.
Discussion includes customization of generic GlassFish ESB v2.2 VMware Virtual
Appliances for a specific Load Balancing and High Availability exercise and
deploying ready-made GlassFish ESB solutions. The exercise for HL7 BC-based,
Web Service-based and JMS-based highly available, load balanced, and horizontally
scalable receivers, processing HL7 v2.3.1 messages, will be conducted and discussed.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

3 of 59

At the end of the Note we will have three GlassFish ESB VMware Appliances with
GlassFish ESB v2.2 Runtime infrastructure, ready to use for further GlassFish ESB
Load Balancing and High Availability exercises.

The reader will be convinced, one hopes, that for the applicable class of GlassFish
ESB-based solutions, load balancing and dynamic failover without message loss
work. For that class of solutions this provides for high availability and horizontal
scalability without resorting to Application Server or Operating System clustering.

Exercise Environment
The runtime environment for the non-clustered Load Balancing and High Availability
exercise will consist of three VMware Virtual Machines, each with GlassFish ESB
v2.2 runtime installation, and the VMware Host machine which will serve as the Load
Balancer machine, in addition to its regular duties as the VMware host.

Note that the VMware Virtual Machines, which will be used for this exercise, will use
1280, 640 and 640 Megabytes of physical memory each. The VMware Host must have
at least 512 Megabytes of memory for its own Operating System so the absolute
minimum physical memory required in the Host is 3 gigabytes. It will be a tight fit on
a machine with so little memory so it will be much better to have a machine with
sufficient physical memory to allow at least 1536, 1024 and 1024 Megabytes of
memory for the VMware virtual machines (gfesb01, gfesb02 and gfesb03 respectively)
and at least 1 Gigabyte of memory extra for the Host OS. This adds up to over 4.5
Gigabytes of physical memory. This also eliminates Operating Systems like 32-bit
Windows XP, which will only support 3.2 Gigabytes of memory. Naturally, there may
be multiple VMware Hosts used. Each VMware Virtual Machine could be running on
its own physical machine, eliminating the memory shortage issue and OS memory
support restrictions.

The schematic below depicts the “physical” environment.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

4 of 59

gfesb02 and gfesb03 will be configured identically, from the GlassFish ESB solution
perspective. They will host the same projects and will share the common JMS
infrastructure with shared JMS Queues to which each will forward messages. Each
message received by either of the two hosts will be processed identically.

Further hosts, with the GlassFish ESB environment configured like that on gfesb02
and gfesb03, can be added to horizontally scale the receiver solution.

To facilitate discussion of the solution, the host environment will be shown as though
gfesb01 consisted of two separate hosts, which it is not.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

5 of 59

This is to convey the separation of the sender from the drainer and make diagrams
more readable.

Solution Implementation
The solution is designed to exercise a heterogeneous, non-clustered, highly available,
failure-proof configuration for HL7-based, Web Service-based and JMS-based
messaging implementations.

For each transport protocol in use there are three components: a Sender, a Receiver
and a Drainer.

The sender component reads multiple records from a file in a file system and sends
each record as a separate message to the receiver, using the transport with which it is
configured. It then waits for an application acknowledgement – a response message,
send back by the receiver. The acknowledgement is written to a file with a unique
name containing the message ID and a date/time stamp.

The receiver receives a message over the transport configured for it, sends the
message to an external, shared JMS server, generates an application
acknowledgement and sends it back to the sender.

The drainer receives a message from the external, shared JMS server, where the
receiver put it, and writes it to a file with the unique name containing the message ID
and a date/time stamp.

Receiver components use a common, shared JMS Server. This JMS server is assumed
to be highly-available and hosted separately from the receiver components, such that a
failure of a receiver host does not cause the failure of the JMS Server.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

6 of 59

Both the HL7 BC-based, the Web Service-based and the JMS-based solutions process
HL7 v2.3.1 ADT A03 messages, sent from the sender to the receiver, and HL7 v2.3.1
ACK messages, retuned by the receiver to the sender as application
acknowledgments.

A typical A03 message might look like:

Highlighted is the Message Control ID field, which embeds a message sequence
number.

A typical acknowledgement message might look like:

Highlighted is the part of the Message Control ID of the message to which this is an
acknowledgment.

Discussion of the HL7 version 2.3.1 messaging standard is well beyond the scope of
this discussion. Please see www.hl7.org for material on the topic.

The Message ID, which is critical in this implementation to recognition of gaps in
message sequence and out-of-order message delivery, is embedded in each message.
Since each message is either a HL7 v2.3.1 ADT A03 message or a HL7 v2.3.1 ACK
message, MSH-10, Message Control ID filed in the A03 and MSA-2 Message Control
ID in the ACK are used to carry a unique Message ID. The message id looks like that
shown below:

000000_CTLID_20080910112956

The first 6 digits of the message id are the serial number, which is unique, and
contiguously increasing in each message. Message 1 will be 000000, message 2 will
be 000001 and so on.

Names of files written by the sender, containing application acknowledgements, will
start with the message id. Any breaks in sequence will be readily apparent to a human
by inspection of file names in the destination directory.

Names of files written by the drainer, containing application messages, will start with
the message id. Any breaks in sequence will be readily apparent to a human by
inspection of file names in the destination directory.

Each receiver will determine the name of the host on which it is running and will
embed that name in the message id prior to passing the message on. The names of the
files written by the drainer and the sender will contain that host name. This will allow

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

7 of 59

a human to determine which receiver (on which host) processed the message. The
round-robin load balancing and fail-over processing will be readily apparent on
inspection of file names.

File names will look like these shown below. Note the sequence numbers, message
types (01MSG and 02A___), processing hosts (gfesb02, gfesb03) and timestamps
embedded in file names.

If the sender fails, nothing much can be done about that fact, except to try to get a
sender up and running as quickly as possible. If the sender runs in a regular clustered
environment, that is configured to do so, it can be started on another node in the
cluster and resume sending. Since this discussion is about horizontal scaling, load
balancing (LB) and high availability (HA) of receivers, there will be no further
discussion of senders, except as far as their configuration impacts load balancing and
high availability of receivers.

Three types of solutions are used in the exercise – a HL7 BC-based, a Web Service-
based (SOAP over HTTP) and a JMS-based. Each uses a different protocol and each
behaves differently in the face of a failure of the receiver.

Each of the messaging streams is serialized at the sender in such a way that the sender
will not send a new message until it received an acknowledgment for the previous
message. This restriction is implemented to allow a human to observe messaging, load
balancing, retries and fail-over in human time. This also allows a degree of control of
when to crash a receiver host to simulate host failure. In a regular implementation,
which does not care about message sequencing, this restriction would not be imposed.

To simulate time used for processing by a receiver, each receiver executes a BPEL
Wait for a random duration of between 0 and 10 seconds. Only when the wait is over
does a receiver generate and send an application acknowledgement. This allows the
host on which the receiver runs to be crashed, and to interrupt processing so the
acknowledgment to a message being processed at the time never gets delivered.
Crashing a currently executing host explicitly induces retry and redelivery.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

8 of 59

The HL7 BC-based and the Web Service-based solutions will use a load balancer to
distribute workload between participating hosts and to ensure continuity of message
delivery in the face of failing receivers. The JMS-based solution will not use the load
balancer because the receivers are configured as “competing consumers”, an
Enterprise Integration Patterns (EIP) pattern which describes multiple independent
receivers which can process JMS messages from a single JMS Queue. A “natural”
load balancing takes place anyway.

When message flow proceeds unimpeded, and the load balancer is configured to
distribute requests in a round-robin manner, messages are received and processed by
alternating receivers. Event in the case of JMS receivers, which don’t used the load
balancer, messages are processed by alternating receivers.

What makes the solution highly available are the multiple receivers capable of
processing messages on multiple independent hosts, and senders’ ability to recognize
that a message failed to be received and their ability to retry delivery.

In all cases it is critical to ensure that the sender recognizes that the receiver crashed
and to retry. The retry must be timely. The time taken to wait for a response before
concluding that it is not going to come must not be so long that it unduly slows down
message processing, and must not be so short that a longer then normal time to
produce a response causes the sender to re-send the request when no receiver failure
actually occurred.

Discussion of specific solutions includes discussion of the timing parameters and
other aspects of sender, receiver and load balancer configurations, which affect high
availability and load balancing.

Overview of Drainer Projects
Each Drainer project receives messages from a JMS Queue and writes them into a
specific file system directory, one file per message.

The BPEL process model, which implements the HL7 Drainer (HL7Drnr), is depicted
below.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

9 of 59

The JMS BC is configured as a one-way service receiving messages from a JMS
Queue hosted on a shared JMS Server.

The File BC is configured to write each message to a separate file whose name is
derived form the message id in the message.

The Composite Application Service Assembly below illustrates connectivity aspects
of the solution.

The process constructs a file name, based on the message control id embedded in the
HL7 ADT A03 message, and writes the entire JMS payload to a file with that file
name.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

10 of 59

WSDrnr and JMSDrnr have the same structure and connectivity, though each writes
files to a different file system directory.

All project sources are available for download at
http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/GFESB_HA_LB_NetBeans_projects.zip/details.

Overview of Receiver Projects
Each Receiver receives messages from the binding component appropriate to the
protocol it supports, obtains the name of the host on which the process instance runs,
waits for a random period of up to 10 seconds, sends the message payload to the JMS
Server, constructs a HL7 ACK message using data from the HL7 ADT A03 message
it received, and sends the ACK as a response to the sender.

The BPEL process model which implements the HL7 Receiver (HL7Rcvr) is depicted
below.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

11 of 59

The “GetHostName” and “WaitRandTime” scopes are collapsed to de-clutter the
diagram. Blog entries “GlassFish ESB v2.1 - Using JavaScript Codelets to Extend
BPEL 2.0 Functionality” at
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_using and
“GlassFish ESB v2.1 Field Notes - JavaScript Codelets to Make BPEL Process Wait
for a Random Duration Up to a Maximum number of Milliseconds” at
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_field discuss how
JavaScript and Java can be embedded in BPEL to provide required functionality.

The HL7 BC is configured to receive HL7 ADT A03 request messages and to return
HL7 ACK response messages.

The JMS BC is configured as a one-way service sending messages to a JMS Queue
hosted on a shared JMS Server.

The Composite Application Service Assembly below illustrates connectivity aspects
of the solution.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

12 of 59

The process sends the entire HL7 BC payload to the JMS Server, and then constructs
a HL7 ACK message using data from the HL7 ADT A03 message which it is
handling. It also modifies the Message Control ID to embed the name of the host on
which it is executing and to embed the “message type”.

The details in the illustration above are too small to see what is going on, however all
project sources are available for download at
http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/GFESB_HA_LB_NetBeans_projects.zip/details

Both the JMSRcvr and the WSRcvr follow the same pattern as the HL7Rcvr, varying
only the inbound Binding Component. Message processing is identical.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

13 of 59

Overview of Sender Projects
Unlike the Drainer and the Receiver projects, which were virtually identical, the
Sender projects vary somewhat in order to accommodate different recovery and
redelivery handling capabilities of the sending binding components. All three
protocols, HL7 MLLP, SOAP over HTTP and JMS are TCP based. How they deal
with service disruption varies from binding component to binding component.

In general, a Sender reads a file containing multiple HL7 ADT A03 records and sends
each as a separate message to the receiver either via a load balancer or via a JMS
Server. Each sender waits for a response, the HL7 ACK message, and writes that
ACK message to a separate file, whose name is derived from the message control ID
of the ACK message.

The HL7Sndr, discussed here, is the simplest of the three, and superficially not unlike
a receiver.

The HL7 BC is configured to send HL7 ADT A03 request messages and to receive
HL7 ACK response messages.

The File BC is configured to poll a designated directory for files whose name matches
a pattern and to write responses to the same directory.

The Composite Application Service Assembly below illustrates connectivity aspects
of the solution.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

14 of 59

Note the QoS icons indicating that QoS properties are changed from their defaults.
The QoS properties on the File BC side are configured to serialize message handling.
In conjunction with the sender waiting for an acknowledgement this causes one
message at a time to be processed.

This is the same for all senders regardless of protocol.

For the HL7 BC the QoS properties are configured to define timings and counts,
affecting redelivery handling and discussed in detail in section “HL7 BC and Load
Balancer Timing Parameters”. The HL7 BC, unlike other BCs, implements explicit,
HL7 protocol mandated, redelivery handling logic so there is no need and no use
configuring redelivery handling parameters through the CASA QoS properties.

WSSndr CASA QoS parameters fore the HTTP BC are set to provide serialization
and to provide redeliver handling configuration.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

15 of 59

In addition, the WSSender BPEL process explicitly overrides the default HTTP
“connection: keep-alive” header with “connection: close”, to ensure each request is
issued over a different TCP session and to allow the load balancer to do its work.

Together with the redelivery handling parameters in the CASA QoS for the HTTP
BC, this ensures that the lack of a timely acknowledgement is recognized by the BC,
causes redelivery handling to be invoked, and the request to be re-issued.

The HTTP BC timing parameters are further discussed in section “WS Projects”.

The JMSSndr is more complex because the response timeout exception is not
propagated to the JMS BC in such a way that explicit redelivery handling
functionality configured through the QoS parameters is invoked. The QoS parameters
on the JMS BC side are not configured. Instead, the JMS BC returns an empty
response message to the BPEL process once the timeout period, configured in the
JMS BC WSDL extension, expires.

Since an empty response does not trigger a fault, explicit logic is required to allow the
JMSSndr to recognize the failure and explicitly resend the message a pre-configured
number of times.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

16 of 59

The JMS BC timing parameters are further discussed in section “JMS Projects”.

All project sources are available for download at
http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/GFESB_HA_LB_NetBeans_projects.zip/details

Load Balancer Preparation
For this exercise I use the VMware host, the machine in which the VMs run, as the
load balancer host. The load balancer software I use is the PEN Load Balancer,
obtainable from http://siag.nu/pen/. There are distributions for Windows, variety of
Linux flavors and other popular Operating Systems.

Pen distribution for Windows can be downloaded from http://siag.nu/pub/pen/ - I use
pen-0.17.1a.exe. It is a Windows executable compiled with Cygwin libraries. You
may need cygwin.dll (http://www.cygwin.com/) to run it.

Whichever operating system you use, the command line options used to support load
balancing discussed in this document are the same.

Here is a dump of the pen help message.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

17 of 59

The pen load balancer can be run as a daemon/service and can support multiple
configurations in the same instance. I chose to run separate instances of pen, in the
foreground (-f), to clearly separate each load balancing configuration and to show
message exchange (-a –ddddf) for each configuration separately.

The pen load balancer is only one of the critical components in the load balancing and
high availability configuration which uses it. The sender and the receiver must also be
correctly configured to achieve the desired effect. This is discussed in the sections
pertaining to the JBI solutions themselves.

Load Balancer configuration for the HL7 BC-based Solution
The HL7 BC-based solution uses the following command line options for the load
balancing configuration:

pen-0.17.1a.exe -C 44000 -X -a -S 2 -d -ddddd -f -l
pen.log -p pen.pid -r -w pen.stats.html 34001 gfesb02
gfesb03

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

18 of 59

Critical options are:
-r Use Round Robin load balancing algorithm
34001 Listen on port 34001 – this is configured in the HL7 BCs

Any tcp connection requests to the host running pen, to port 34001, will be redirected
to hosts gfesb02 and gfesb03, to their port 34001.

All other options are not critical. Peruse the pen man page to see what they are and
what they do.

Load Balancer configuration for the HTTP BC-based Solution
The HTTP BC-based solution uses the following command line options for the load
balancing configuration:

pen-0.17.1a.exe -C 44001 -X -a -S 2 -d -ddddd -f -l
pen.log -p pen.pid -r -w pen.stats.html -t 5 -b 60 9080
gfesb02 gfesb03

Critical options are:
-r Use Round Robin load balancing algorithm
-t 5 Time out connection request after 5 seconds
-b 60 Blacklist an inactive target for 60 seconds
9080 Listen on port 9080 for connection requests

Any tcp connection requests to the host running pen, to port 9080, will be redirected
to hosts gfesb02 and gfesb03, to their port 9080.

Appliance Preparation
Following instructions in Blog entries “GlassFish ESB v2.x Field Notes - Preparing
Basic JeOS Appliance for GlassFish ESB LB and HA Testing”, at
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_x_field and “GlassFish
ESB v2.2 Field Notes - Installig GlassFish ESB on the Basic JeOS Appliance for LB
and HA Testing” at
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_2_field, create three
appliances whose host names are gfesb01, gfesb02 and gfesb03. When finished, the
three appliances will be identical.

The host gfesb01 will be used for the shared JMS. Hosts gfesb02 and gfesb03 will be
a part of a heterogeneous non-Cluster. To provide a collective name for both we will
use an alias hostname of ghesbha. Add this alias, pointing to the host on which the
load balancer will be running, to the /etc/hosts file on gfesb01, which will be
connecting to the non-cluster via the load balancer.

My host environment is based on a Toshiba Tecra M5 with 3.2Gb of real memory,
running Windows XP, SP3. To run three virtual machines on that platform requires
careful management of physical memory. I reconfigured the gfesb01 appliance to use
1280Mb of memory (it has 6 projects deployed), and gfesb02 and gfesb03 to use
640Mb of memory each (each runs three projects). Between them the three VMs use

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

19 of 59

2.5Gb of real host memory, leaving just enough for the host OS to run, with the few
essential applications used to interact with the vm environment.

Appliance Customization
Some of the GlassFish ESB projects, which will be deployed to the GalssFish ESB
appliances, will process HL7 v2 messages using the HL7 Binding Component. To
facilitate that, GlassFish ESB runtime in each of the appliances must have the HL7
Binding Component installed. The basic appliance prepared so far has the GlassFish
ESB v2.2 standard runtime. This runtime does not have the HL7 BC.

Download the HL7 BC from https://open-esb.dev.java.net/Downloads.html. To do
so, navigate to the site, click the “Select component(s) for download” button and click
the “download” link corresponding to the HL7 BC (make sure it is from the v2.1
distribution).

Save the hl7-component-installer.jar to a convenient location.

Extract the JAR named component.jar from the hl7-component-installer.jar.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

20 of 59

To remember what it is, rename component.jar to hl7_component.jar.

Install the HL7 BC on each of the three virtual machines – for each virtual machine:

1. Make sure the Virtual machine is started and the GlaassFsih ESB instance is
running (as it should since the machine is configured to start it at boot)

2. Start the GalssFish Applicatin Server Admin Console on the GlassFish ESB
instance.

3. Expand the JBI node in the node tree, click on the Components node and click
on the Install button on the right hand window

4. Click on the Browse button, locate and select the hl7_component.jar archive
(previously extracted from hl7-component-installer.jar and renamed form
component.jar)

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

21 of 59

5. Click Next
6. Accept all default values by clicking Finish

The HL7 Binding Component should now be installed and ready to use.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

22 of 59

Remember to do this for all three hosts, gfesb01, GTFESB02 and gfesb03.

To prevent the GlassFish Application Server Admin Console form going off to the
Internet to try to get a Sun Commercial displayed in the bottom of the initial window,
add the following JVM argument:

-Dcom.sun.enterprise.tools.admingui.NO_NETWORK=true

On gfesb02 and gfesb03 edit /etc/hosts and add an address mapping entry for gfesb01:

On gfesb01 also add an address mapping entry for name gfesbha corresponding to the
address of the host on which the load balancer will be run.

On gfesb01 create the following directory hierarchy, making sure that it is owned bu
user osol and group staff:

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

23 of 59

/GFESBv22Projects/GFESB_HA_LB/data

The data directory will contain HL7 files to be processed and these produced as the
result of processing. Obtain and unzip into the sources sub-directory of the data
directory, content of the archive HL7_messages_sources.zip. This archive can be
obtained from http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/HL7_messages_sources.zip/details.

Only ADT_A03_output_nnnnn.hl7 files will be used. Keep or delete other files as you
see fit. One or more of the files in the data directory will be used to exercise the
HL7xxxx solution.

On gfesb01 create the following directory hierarchy:

/GFESBv22Projects/GFESB_HA_LB/data_jms

From the data/sources directory copy ADT_A03_output_nnnnn.hl7 files to the
data_jms directory. These will be used to exercise the JMSxxxx solution.

On gfesb01 create the following directory hierarchy:

/GFESBv22Projects/GFESB_HA_LB/data_ws

From the data/sources directory copy ADT_A03_output_nnnnn.hl7 files to the
data_ws directory. These will be used to exercise the WSxxxx solution.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

24 of 59

Shared Resources Configuration
All receivers will send messages to a shared, highly-available JMS infrastructure. To
address the same infrastructure, each of the two Application Servers, on gfesb02 and
gfesb03, must have a JMS Connection Pool which points to that shared JMS
infrastructure.

Strictly speaking creation of a connection pool is not necessary. Each sender to JMS
and receiver from JMS could be simply configured with the URL of the form
mq://jmshost:jmsport, however this would require changes to the WSDL each time
the host or the port was changed, with build and deploy for each affected project. By
providing a JNDI-referenced pool we externalize these things to the Application
Server so the service assembly can be deployed to any application server with the
right pool.

On each of gfesb02 and gfesb03, configure the resources as follows:

1. Create a New JMS Host – Configuration � Java Message Service �JMS
Hosts

a. Name: shared_jms_host
b. Host: gfesb01
c. Port: 7676 (or whatever port the host was configured to use for JMS –

check that by looking at configuration of the default_JMS_host on
gfesb01).

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

25 of 59

2. Create a New Connection Pool – Resources � Connectors � Connector

Connection Pools

a. Name: jmq_tx_shared_jmq
b. Resource Adapter: sun-jms-adapter
c. Connection Definition: javax.jms.ConnectionFactory
d. Click Next

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

26 of 59

e. Description: Shared, Transactional JMQ

f. Connection Validation: Required
g. Transaction Support: XA Transaction

h. Additional Properties:

i. Options: JMSJCA.sep=,
ii. Password: admin
iii. ConnectionURL: mq://(shared_jms_host)
iv. UserName: admin

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

27 of 59

3. Create a New Connector Resource – Resources � Connectors � Connector
Resources:

a. Name: jms/tx/shared_jmq
b. Pool Name: jmq_tx_shared_jmq
c. Status: Enabled
d. Click OK

These resources will be used in receiver projects to identify the shared JMS
infrastructure and to interact with it.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

28 of 59

Project Deployment
Archive GFESB_HA_LB_deployables_SAs.zip, at
http://mediacast.sun.com/users/Michael.Czapski-
Sun/media/GFESB_HA_LB_deployables_SAs.zip/details, contains the ready-to-
deploy service assemblies for all projects used in the exercise. Download the archive
and unzip it to a convenient directory on a host that has a modern web browser and
connectivity to the virtual appliances gfesb01, gfesb02 and gfesb03.

HL7 Projects
Projects HL7Sndr_CA and HL7Drnr_CA will be deployed to gfesb01. Project
HL7Rcvr_CA will be deployed to gfesb02 and gfesb03.

There are at least three different ways to deploy projects to a remote server. The two
discussed below are using the NetBeans tooling on the development machine to
deploy to remote instances of the GlassFish Application Server and using the
GlassFish Application Server Admin Console on each of the remote GlassFish
instances.

If all the virtual machines and the development environment are co-located on the
same physical host the memory requirements of all components are additive. On my
Toshiba Tecra M5 with 3.2Gb of useable memory I could not run both the NetBeans
IDE and the three VMs all at once. I resorted to starting two out of three VMs,
deploying HL7Drnr to gfesb01 and HL7Rcvr to one of the gfesb02 or gfesb03, then
shutting gfesb02/03 down, starting the other and deploying to it, then deploying
HL7Sndr to gfesb01. Once deployments were completed I shut down NetBeans to
recover the physical memory I needed to run the three VMs concurrently.

Using the GlassFish Application Server Admin Console is somewhat more
cumbersome, in that one has to start the Console individually on each VM, but has the

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

29 of 59

advantage of smaller memory footprint. I was able to deploy components while all
three VMs were running.

You will choose the method that is best for you.

Using the NetBeans IDE
If using NetBeans to deploy Service Assemblies it is necessary to add each of the
target servers to the Servers list in NetBeans’ Services tab.

Repeat the steps below for gfesb01, gfesb02 and gfesb03.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

30 of 59

To deploy HL7Rvcr to gfesb02, for example. Right-click HL7Rcvr_CA, choose
Properties, select “Running Project”, select “GlassFish v2.x (GlassFish v2.x
gfesb02)” (or gfesb03) and click OK.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

31 of 59

Once the deployment target is set, which is what just happened, right-click
HL7Rcvr_CA and choose Deploy.

Deploy HL7Sndr_CA and HL7Drnr_CA to gfesb01.
Deploy HL7Rcvr_CA to gfesb02 and gfesb03.

Using the GlassFish Application Server Admin Console.
Use a modern Web Browser to Start the GlassFish Application Server Admin Console
on gfesb01 (http://gfesb01:4848). Log in as user admin with password adminadmin
(or whatever password you provided at installation time). Select JBI � Service
Assemblies node.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

32 of 59

Click “Deploy” in the right hand window.

Navigate to where the HL7Drnr_CA.zip Composite Application Service Assembly is
stored, choose it and click Next.

This will cause the HL7Drnr_CA.zip to be transferred to the target host, ready to be
deployed in the next step.

Confirm the details and click Finish to deploy the Service Assembly.

Once deployed, the Service Assembly will appear in the list.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

33 of 59

Follow this method to deploy the HL7Sndr_CA.zip to gfesb01 and HL7Rvcr_CA.zip
to gfesb02 and gfesb03.

HL7 BC and Load Balancer Timing Parameters
The set of HL7 BC-based projects use the HL7 BC retry processing functionality to
detect connection disruption and take steps to resubmit a message. Selected timing
parameters in the HL7 BC in the sender are coordinated with the PEN load balancer’s
timing parameters and the expected duration of HL7Rcvr’s processing to support
seamless failover.

As discussed in section “Load Balancer configuration for the HL7 BC-based
Solution”, pen load balancer command line I use looks like this:

pen-0.17.1a.exe -C 44000 -X -a -S 2 -d -ddddd -f -l
pen.log -p pen.pid -r -w pen.stats.html 34001 gfesb02
gfesb03

By default pen’s connect timeout is 5 seconds. If it fails to connect to the server in
that time it will blacklist the server for a default period of 30 seconds. With round
robin load balancing algorithm in operation (-r) a failed server will add 5 seconds to
the time it takes to send a message every 30 seconds because pen will try to determine
if the server came back to life and can be used for processing.

The HL7Rcvr (and all other receivers) introduce a random delay of between 0 and 10
seconds for each message they process. This is to simulate real work being done and
slow everything down to the human speed. This means that a receiver may on
occasion take in excess of 10 seconds to process a message.

Since the sender expects an application acknowledgement it must be prepared to wait
for that acknowledgement in face of delays introduced by the receiver and these
introduced by the load balancer.

A connection timeout of at least 5 seconds, preferably 10 seconds, and response
timeout of at least 15 seconds (5 + 10), preferably 30 seconds, is a minimum

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

34 of 59

requirement. These timing parameters require tuning based on experience with the
solution behavior.

Sender timings are defined in the HL7Sndr’s HL7 BC configuration, represented by
the HL7Sndr_HL7Out.wsdl in the NetBeans project HL7Sndr.

In particular:
MAX_CONNECT_RETRIES, defined as “retry up to 2 times with a 20 second delay

between retries” (2;20), will cause the HL7 BC to retry a connection to the
load balancer, consequently to an alternate host, if a connection fails. The 20
second delay is more then is required to allow the pen load balancer to try a
connection to the server, timeout if it is not available, and try to connect to
another server.

TIME_TO_WAIT_FOR_RESPONSE, defined as 20000 milliseconds (20 seconds) is
twice the maximum expected processing time (random value of up to 10
seconds) plus the load balancer connect timeout (5 seconds) and has a margin
of 5 seconds added to minimize the potential of loosing a response that
happens to take more then 15 seconds to return.

The HL7 BC configuration in the sender must account not only for the expected
maximum time it may take to return an application acknowledgement but also for the
potential delays introduced by the load balancer and the network infrastructure.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

35 of 59

WS Projects
WSSndr_CA and WSDrnr_CA must be deployed to gfesb01. WSRcvr_CA must be
deployed to gfesb02 and gfesb03. The steps to deploy the projects are the same as for
the HL7 BC-based projects discussed in previous sections.

The HTTP BC-based projects use the WSSndr CASA redelivery handling QoS
Properties to configure detection of connection disruption and message resubmission,
in conjunction with modification of the default HTTP connection header.

Timing parameters in the HTTP BC CASA QoS properties are coordinated with t eh
pen load balancer timing parameters and the expected duration of WSRcvr’s
processing to support seamless failover.

As discussed in section “Load Balancer configuration for the HTTP BC-based
Solution”, pen lpad balancer command line used for this set of projects looks like this:

pen-0.17.1a.exe -C 44001 -X -a -S 2 -d -ddddd -f -l
pen.log -p pen.pid -r -w pen.stats.html -t 5 -b 60 9080
gfesb02 gfesb03

The pen load balancer is configured for round robin load balancing (-r). Each request
will be submitted to a different server, if HTTP headers permit. By default the HTTP
“connection: keep-alive” header is added by the infrastructure underlying the HTTP
BC and the load balancer keeps the single connection established by the sender for all
requests the sender sends. When the receiver fails the load balancer closes the
connection and the sender re-tries, causing the load balancer to open a connection to
the surviving receiver. This is fine for fail-over but not for load balancing. Forcing
connection closure after each request, HTTP header “connection: close”, allows the
load balancer to load balance requests at the cost of creating and destroying
connections for each request.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

36 of 59

The WSSndr BPEL process implements the HTTP header modification using the
NMProperties functionality.

The read timeout (-t 5) is an arbitrary number of seconds we are prepared to wait
before concluding the server is not going to accept the connection and giving up on
the server for the time defined by the blacklist period.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

37 of 59

Blacklist period of 60 seconds (-b 60) is a compromise between the frequency at
which a potentially dead server is probed, which costs –t x seconds, and the time it
takes for a server that is ready to process workload to be used by the load balancer,
which may cost up to –b x seconds.

Accommodating the load balancer and WSRcvr timings, the WSSndr HTTP BC
configuration for connect and read timeout is:

Read Timeout = 30000 (Max 10000 for WSRcvr processing x 2 + 5000 for PEN Read
Timeout x 2)

The HTTP BC configuration in the sender must account not only for the expected
maximum time it may take to return an application acknowledgement but also for the
potential delays introduced by the load balancer and the network infrastructure, and
any HTTP header-based connection longevity requirements.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

38 of 59

JMS Projects
JMSSndr_CA and JMSDrnr_CA must be deployed to gfesb01. JMSRcvr_CA must be
deployed to gfesb02 and gfesb03. The steps to deploy the projects are the same as for
the HL7 BC-based projects.

A JMS-based sender typically sends a message to the JMS Server, receives a
“transport acknowledgment” from the JMS Server and continues, regardless of
whether the message got delivered to the next component. To ensure delivery past the
JMS Server, the JMSSndr client and the JMSRcvr service cooperate at the application
level. The JMSSndr expects the JMSRcvr to return a specific acknowledgment
message when it processes the message it received. This means that when the
JMSRcvr fails the JMSSndr will block waiting for the application acknowledgment it
will never get.

The sender must be configured to retry delivery if it does not receive an application
acknowledgement in the expected time. This is a bit trickier then would initially
appear. The JMSSndr submits a message to the JMS Server, and then waits for the
acknowledgement message (request/reply). When the JMS server receives a message,
the message becomes available to the JMSRcvr, which pick it up and starts processing
it.

Redelivery handling configuration in the JMS BC and redelivery handling
configuration in the Composite Application Service Assembly (CASA) are designed
to deal JMS BC’s inability to deliver to the JMS Server. By the time the JMSRcvr
received a message the JMS BC in JMSSndr will have successfully delivered the
message. JMS BC-level and CASA-level redelivery handling logic will not be
effective.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

39 of 59

If the JMSRcvr host fails, the acknowledgement message will not get sent back to the
JMS Server and will not become available to the JMSSndr. JMS BC in the JMSSndr
will eventually time out.

As apparently operating in GlassFish ESB v2.2, the JMSSndr will not get a fault on
timeout, as expected, but rather it will get an empty message. The JMS BC-based
sender must implement explicit logic to recognize that the acknowledgment message
is empty, meaning the send failed, and explicitly retry sending the message.

The only configuration parameters that are effective are time to live (before message
is expired and thrown out by the messaging service) and Timeout (waiting for a
reply). The latter controls how much time will elapse before the JMSSndr receives an
empty ACK message.

Because there is no load balancer involved, the JMS BC configuration in the sender
must account only for the expected maximum time it may take to return an application
acknowledgement.

The implementation of retry functionality in the JMSSndr is briefly discussed in
section “Overview of Sender Projects”.

Test Preparation
The environment must be brought to the state ready for testing in the configuration
shown below.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

40 of 59

To prepare the environment perform the following steps:

1. Start gfesb01 VM until it shows the IP address
2. Start Putty/SSH Client on gfesb01 and tail server.log (run the unix tail

program, or a Windows equivalent, to continuously display server.log as it is
being written to)

3. Start gfesb02 VM until it shows the IP address
4. Start Putty/SSH Client on gfesb02 and tail server.log
5. Start gfesb03 VM until it shows the IP address
6. Start Putty/SSH Client on gfesb03 and tail server.log
7. Move the Putty/SSH Client console windows around in such a way that the

bottom 1/3rd of each is shown, with a “tail” command continuously showing
the server.log on each of the hosts.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

41 of 59

8. Start pen load balancer on port 34001 for the HL7 BC-based projects
9. Start pen load balancer on port 9080 for the HTTP BC-based projects
10. Move pen console windows in such a way such that they are both visible. Note

that for pen server 0 is gfesb02 and server 1 is gfesb03.

11. Submit 5 message sets for HL7xxx, WSxxx and JMSxxx on gfesb01 by
copying the ADT_A03_output_5.hl7 file to data, data_jms and data_ws
directories, to prime the infrastructure and make sure all components work

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

42 of 59

12. Observe messages being sent through the pen load balancer

13. Observe messages being processed by the gfesb02 / gfesb03

14. once all messages are processed, clear output directories data, data_jms and

data_ws of messages

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

43 of 59

Testing resilience of the HL7 BC-based Solution
While we can test machine failure will all three streams of messages being processed
concurrently, testing a stream at a time, at least initially, will be better to verify
correct operation of the configuration.

We intend to start with all machines and all components started and processing
messages. This is what was happening in the preparation stage discussed in the
previous section. We expect messages to be processed in a round robin manner,
alternating between gfesb02 and gfesb03. Once 15 or so messages are processed, we
will “crash” gfesb03 by closing the VMware Player window in which it runs. This
will cause retry functionality, after timeout period, to be invoked. We expect message
flow to continue without message loss and we expect messages to now be processed
by gfesb02 only. This should be reflected in names of the output files. Once we see
enough messages processed by gfesb02, we will boot gfesb03 again and wait for it to
start the GlassFish Application Server and deploy all the receivers. As soon as the
HL7Rcvr has been deployed and the most recent load balancer blacklist interval for
the gfesb03 expired, we expect to see gfesb03 to start picking up messages again. We
expect this to also be reflected in the names of the output files.

Let’s begin by copying the file ADT_A03_output_101.hl7, containing 101 ADT A03
messages, to the data directory, and observing the console windows and the output
directory until around 15 messages are processed.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

44 of 59

ACK for message ID 000000.

gfesb03 handles message 000004, waiting 9.841 seconds before returning the ACK.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

45 of 59

Six messages processed, alternating between gfesb02 and gfesb03. All messages were
processed in sequence, so far.

Let’s now crash the gfesb03 to simulate system failure.

Pen reports that server failed and tries another server.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

46 of 59

Last message in progress at the gfesb03 at the time of the “failure” was message
000013.

The messages are now being handled exclusively by gfesb02.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

47 of 59

Output file names indicate no break in message sequence. No message loss occurred.

Every so often pen load balancer will try to connect to the failed server and if
unsuccessful will blacklist it for the default 30 seconds before trying again.

Let’s now boot gfesb03 to bring it back into service.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

48 of 59

Start a Putty/SSH Client session and tail server.log again, when the VMware Player
console window shows the IP Address, to see where in the startup process the
Application Server is. It will continue starting and deploying projects for a little
while, before all are ready.

Once the server becomes available and the load balancer retries, it gets a connection
and starts sending messages.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

49 of 59

The first message picked up by gfesb03, for my test, is message number 000048.

Once things settle down, message processing returns to the round robin pattern,
alternating between gfesb02 and gfesb03.

Notice, in the listing above, that messages 000049, 000050 and 000051 were
delivered twice. The time taken to deliver acknowledgements was exceeded and the
HL7Sndr timed out and re-sent the message. In my severely memory-constrained
environment this issue is easy to induce. In an environment which is not as
constrained this should be a rare occurrence.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

50 of 59

This highlights the importance of correctly calculating timing parameters and the
consequences of message processing taking longer then expected. In these cases
messages were duplicated, but none was lots. Whether this is acceptable depends on
the nature of the solution and its ability to cope with duplicate messages.

Let’s now crash gfesb02 to make sure that gfesb0-3 will pick up and complete
processing.

The last message gfesb02 processed, in my test, was 000078. Following messages are
processed by gfesb03.

Let’s now boot gfesb02 in preparation for the Web Service (HTTP BC-based) test.

In my test gfesb02 started in time to join the fry and process the last message.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

51 of 59

The test is finished.

We are, hopefully, convinced that load balancing and fail-over without message loss,
work for a solution using the HL7 BC.

We are also convinced that this configuration provides high availability and facilitates
horizontal scaling (addition of more receivers). Receiver hosts can be added and
removed without interrupting message flow.

We know that while messages will not be lost, in certain circumstances they can be
duplicated. This must be must be accounted for in solutions that use this kind of
technology for high availability.

Testing resilience of the HTTP BC-based Solution
(Web Service)
We will start with all machines and all components started and processing messages.
We expect messages to be processed in a round robin manner, alternating between
gfesb02 and gfesb03. Once 15 or so messages are processed, we will “crash” gfesb03
by closing the VMware Player window in which it runs. This will cause retry
functionality, after timeout period, to be invoked. We expect message flow to
continue without message loss and we expect messages to now be processed by
gfesb02 only. This should be reflected in names of the output files. Once we reach 30
or so messages, we will boot gfesb03 again and wait for it to start the GlassFish
Application Server and deploy all the receivers. As soon as the WSRcvr has been

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

52 of 59

deployed and the most recent load balancer blacklist interval for the gfesb03 expired,
we expect to see gfesb03 to start picking up messages again. We expect this to also be
reflected in the names of the output files.

The pen load balancer considers gfesb02 to be server 0 and gfesb03 to be server 1.

Let’s begin by copying the file ADT_A03_output_101.hl7, containing 101 ADT A03
messages, to the data_ws directory, and observing the console windows and the
output directory until around 15 messages are processed.

Message processing commences and alternates between gfesb02 and gfesb03.

The load balancer sees “connection: close” HTTP header, which was set in the
WSSndr BPEL process, and closes the connection after each reply. This is what
facilitates round robin processing.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

53 of 59

We now crash gfesb03 and see what files are being written to the output directory –
this is our primary indication of correctness of message processing.

For me all messages following message 000027 were processed by the surviving
gfesb02.

Let’s boot gfesb03 and see it picks up the workload.

While gfesb03 is not available the load balancer tries to connect to it every 60 seconds
to see if it becomes available.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

54 of 59

While gfesb03 boots and starts deploying applications it may be in a state which
convinces the WSSndr (HTTP BC) that it is available for processing messages, where
in fact it is not. The solution we are exercising copes with this situation in the same
way as it does with the server not being there at all – it times out and retries.

Once gfesb03 is ready and the load balancer connects to it, it re-joins the fold and
starts processing its share of the workload.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

55 of 59

Here too we see some message duplication. The first highlighted set of messages,
000053, was both submitted by gfesb02. The first time message acknowledgment did
not came soon enough and caused redelivery. Since gfesb03 was not available the
retry used gfesb02, the only available host. In the second case, message 000055,
gfesb03 was already available and was asked to process the message again. As before,
messages were duplicated but none was lost.

Once things settled down, message processing proceeds to completion, with messages
being processed alternating between gfesb02 and gfesb03.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

56 of 59

Load balancing works. Fail-over works. The HTTP BC-based receiver solution is
highly available. Additional hosts can be dynamically introduced to horizontally scale
the solution for extra processing capacity.

Testing resilience of the JMS BC-based Solution
We will start with all machines and all components started and processing messages.
We expect messages to be processed in a round robin manner, alternating between
gfesb02 and gfesb03. Once 15 or so messages are processed, we will “crash” gfesb03
by closing the VMware Player window in which it runs. This will cause retry
functionality, after timeout period, to be invoked. We expect message flow to
continue without message loss and we expect messages to now be processed by
gfesb02 only. This should be reflected in names of the output files. Once we have
seen enough messages, we will boot gfesb02 again and wait for it to start the
GlassFish Application Server and deploy all the receivers. As soon as the JMSRcvr
has been deployed we expect to see gfesb02 to start picking up messages again. We
expect this to also be reflected in the names of the output files.

Recall that this solution implements the “Competing Consumers” EIP pattern, using
JMS as the shared infrastructure. Since there is no load balancer we will not see server
selection.

Let’s begin by copying the file ADT_A03_output_101.hl7, containing 101 ADT A03
messages, to the data_jms directory, and observing the console windows and the
output directory until around 15 messages are processed.

Message processing commences and alternates between gfesb02 and gfesb03.
Console windows provide feedback on messaging activity.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

57 of 59

JMSSndr logs the wait for acknowledgement attempt, which is synonymous with an
attempt to deliver a message to the receiver. “0 iteration” means the first time delivery
is attempted. This will be successful until receiver fails, at which point “1 iteration:”
will be shown, meaning that the retry functionality in the JMSSndr was invoked.

So far messages were processed mostly by alternating receivers. The round robin
sequence is not strictly followed since there is no way to configure it. If the receiver
processes a message fast enough it may get another message.

Let’s crash gfesb02, for a change, and see retry functionality in action.

Console window on gfesb01 shows retry activity.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

58 of 59

Note, in the first callout, that the ACK was returned by it was empty. The explicit
retry logic cause another attempt to be made (second callout), which succeeded and
returned a non-empty ACK (third callout).

Message processing then settled down to gfesb03 only.

Let’s start gfesb02. Once started, it rejoined the fold and started processing messages
as before.

Exercising Load Balanced, Highly Available, Horizontally Scalable HL7 v2 Processing Solutions

59 of 59

Once things settled down processing continued in a round robin fashion until the run
was completed.

Load balancing works. Fail-over works. The JMS BC-based receiver solution is
highly available. Additional hosts can be dynamically introduced to horizontally scale
the solution for extra processing capacity.

Summary
This note walked through the preparation of the GlassFish ESB v2.2 VMware Virtual
Appliances for Load Balancing and High Availability exercise and deploying ready-
made GlassFish ESB solutions. The exercise for HL7 BC-based, Web Service-based
and JMS-based highly available, load balanced, and horizontally scalable receivers,
processing HL7 v2.3.1 messages, was conducted and discussed.

We now have three GlassFish ESB VMware Appliances with GlassFish ESB v2.2
Runtime infrastructure, ready to use for further GlassFish ESB Load Balancing and
High Availability exercise.

We are now convinced that for the applicable class of GlassFish ESB-based solutions
load balancing and dynamic failover without message loss work. For these classes of
applications this provides for high availability and horizontal scalability without
resorting to Application Server or Operating System clustering.

