
NetBeans 6.5.1, GlassFish v 2.1, Web Space Server 10
Patient Lookup Portlet with a Google Map, Route and Directions

Michael.Czapski@sun.com

July 2009

Table of Contents
Abstract..1
Introduction..1
Prerequisites..4
Copy Patient Lookup Project..4
Add Google Route Map and Directions components.......................................8
Summary ...24
References ..24

Abstract

In this walkthrough I will add a Google Map showing a Route between patient’s home
address location and the location of the facility of record, as well as directions to follow
along this route, to the Visual Web JSF Portlet developed in “Patient Lookup Visual
Web JSF Portlet with a nicer looking Google
Map”, at http://blogs.sun.com/javacapsfieldtech/entry/patient_lookup_visual_web_jsf.

Introduction

The business idea behind the functionality developed in this walkthrough is that
patients are looked after in various healthcare facilities. Healthcare workers need to
lookup patient details such as their identifier, gender, birth date or address. A relational
database holds patient details as well as other information of relevance such as
descriptions of various coded values. Patient details are available through a web
service. Facility list and details, used to narrow down the search for patients to a
specific facility, are available through a web service. These web services will be used
to construct the Portlet that will allow patient search and a display of patient details
with display a Google Map, centered at patient’s address, if one is available and is
valid for the purpose of mapping. The protlet will also have a map showing the route
alomng which to travel between patient’s home location and the location of the facility
of record, and directions to follow to get there. This Portlet will be deployed to the Sun
FOSS Web Space Server 10 Portal.

The previous document [12], walked through development and deployment of the
Patient Lookup Portlet with a better looking Google Map centered at the location
identified by patient address, if any. In this document I will add to the Patient Lookup
Portlet developed in [12] another map showing the route between patient’s location
and that of the facility of record as well as the directions to follow along that route.

Other documents in this series, see pre-requisites, walked the reader through the
process of implementing GlassFish ESB v2.1-based web services which return facility
list and facility details as well as patient details.

To give you some idea of what we will get at the end of the process here are
screenshots of the completed portlet running out of the Web Space Server Portal.

Note that this walkthrough builds on the Patient Lookup Portlet with a nicer looking
Google Map, built previously, and deals exclusively with Visual Web JSF portlet-
related technologies, Java Script and Google Maps API.

Prerequisites

To work through this material certain pre-requisites have to be met.

It is assumed that:

• MySQL RDBMS is installed and available, as discussed in [1]
• GlassFish ESB v2.1 is installed, as discussed in [2]
• Sun Web Space Server Portal is installed, as discussed in [3]
• Web Space Server is configured as discussed in [4]
• Facility Service Web Service is implemented and deployed, as discussed in [5]
• Patient Service Web Service is implemented and deployed, as discussed in [6]
• Patient Lookup Portlet with basic Google Map has been developed and tested

[11]

• Patient Lookup Visual Web JSF Portlet with a nicer looking Google Map has
been deployed and tested [12]

Unless these pre-requisites are met, you will not be able to complete this walkthrough.

Copy Patient Lookup Project

This document assumes that the Patient Lookup with a nicer looking Google Map
Portlet, developed in [12], is available for cloning.

To save the effort we will copy the project PatientLookupGooMapBetterVWJSFP [12]
and use it as the basis for elaboration.

Right-click the name of the project and choose Copy. Name the new project
PatientLookupGooRouteVWJSFP and click the Copy button. Right-click the name of
the new project and choose “Set as Main Project”.

Expand the project’s Web Pages folder, right-click on the
PatientLookupGooMapBetter.jsp page and choose Refactor -> Rename. Change the
name to PatientLookupGooRoute, check the “Apply Rename on Comments” and click
the “Refactor” button.

Note that the portlet backing class was also renamed.

Alas, there are a few configuration files which must be manually modified.

Expand the “Configuration Files” folder.

Open the liferay-display.xml and update portlet name and id.

Open liferay-portlet.xml and update portlet-name.

Open portlet.xml and update description, portlet-name, display-name, title and short-
title. Of these only the portlet-name and init-param -> value are critical.

Once done, deploy the portlet and exercise it in the browser to make sure it still
functions.

It works for me.

Add Google Route Map and Directions components

In [11] we developed a portlet that invokes the Google Map REST service, gratuitously
provided by the NetBeans and Google teams. This service returns a HTML fragment,
which includes Java Script scripts and other elements. We “injected” this HTML
fragment into an outputText container of our portlet. As a consequence the HTML
content, returned by the Google Map service, was rendered in the browser. During
that process the Google Maps service-provided Java Script scripts executed and
caused the content of the DIV element to be dynamically replaced with the Google
Map. At the same time the page got authenticated with the Google Map service and a
series of Google JavaScript scripts became available to be dynamically executed. In
[12] we used the fact that we are authenticated and that we can execute some of the
Google JavaScript scripts to get and manipulate Google Maps objects for a better
looking Google map. In this document we will add another Google Map with a route
between two points marked on the map, and a separate panel with directions to follow
to get form the starting point to the finishing point of the route.

Open the PatientLookupGooRoute.jsp in Design mode. Drag the Woodstock Layout
Panel to the canvas anywhere outside the existing layout panels.

Change the id property to lpRoute, panelLayout property to “Grid Layout” and style
property attributes to: font-size:12px, position: relative, height: 448px, width: 480px,
left: 0px, top: 0px. Once done, the new panel will appear below all existing panels in
Design View.

Right-click the panel and choose “Add Binding Attribute” so that we can manipulate
visible property of the panel in the Java class.

Copy the search button from the lpView panel and paste it into the lpRoute panel. Set
new buttons properties id: btnSearch03, style: font-size: 12px; left: 383px; top: 0px;
position: absolute; width: 90px.

Right-click on the button and notice that the Edit Action option has the
“btnSearch01_action() Event Handler” specified. We will leave it as is since all of the
search buttons should do the same thing – return the user to the Lookup panel.

Copy the Details button form the lpMapBetter panel to the lpRoute panel. Set new
buttons properties id: btnView03, style: font-size: 12px; left: 287px; top: 0px; position:
absolute; width: 90px.

We will create a new Google Map, using a Google JavaScript functions which give us
explicit control over certain aspects of the Map’s appearance and functionality. The
actual map will need to be displayed in a container on the page. Let’s create this

container. Switch to the JSP View tab, scroll down to the definition of the lpRoute
panel and paste the following text as the first child of the structure, just above the first
button, btnSearch03.

<h:outputText escape="false" id="Route" style="bord er-width: 2px;

border-style: inset; height: 400px; left: 0px; top: 35px; position:

absolute; width: 475px;"/>

The JSP text with the outputText pasted should look like that shown below.

This creates a SPAN element with id of Route, placed somewhat lower then the top of
the panel.

Switch to the Design mode. Inspect the hierarchy in the Navigator panel to make sure
all components are ordered and nested correctly.

We added a new panel to contain the map with the route. Now we need to add a
panel to contain the directions.

Drag a Woodstock Layout Panel component to the canvas anywhere outside the
existing layout panels.

Change the id property to lpDirections, panelLayout property to “Grid Layout” and style
property attributes to: font-size:12px, height: 448px; left: 0px; position: relative; width:
480px;. Once done, the new panel will appear below all existing panels in Design
View.

Right-click the panel and choose “Add Binding Attribute” so that we can manipulate
visible property of the panel in the Java class.

Copy the search button from the lpView panel and paste it into the lpDirections panel.
Set new button’s properties id: btnSearch04, style: font-size: 12px; left: 383px; top:
0px; position: absolute; width: 90px.

Right-click on the button and notice that the Edit Action option has the
“btnSearch01_action() Event Handler” specified. We will leave it as is since all of the
search buttons should do the same thing – return the user to the Lookup panel.

Copy the Details button form the lpMapBetter panel to the lpDirections panel. Set new
buttons properties id: btnView04, style: font-size: 12px; left: 287px; top: 0px; position:
absolute; width: 90px.

We will obtain Directions using a Google JavaScript functions. The actual directions
will need to be displayed in a container on the page. Let’s create this container. Switch
to the JSP View tab, scroll down to the definition of the lpDirections panel and paste
the following text as the first child of the structure, just above the first button,
btnSearch04.

<h:outputText escape="false" id="Directions" style= "border-width: 2px;

border-style: inset; height: 400px; left: 0px; top: 35px; position:

absolute; width: 475px; overflow: auto;"/>

The JSP text with the outputText pasted should look like that shown below.

This creates a SPAN element with id of Directions, placed somewhat lower then the
top of the panel. Switch to the Design mode. nspect the hierarchy in the Navigator
panel to make sure all components are ordered and nested correctly.

Now we are ready to add some code to get the Google Map with the Route and the
Directions.

The production of the route map and directions will be accomplished by a JavaScript
script.

Switch to the JSP View mode and scroll to the bottom of the existing JavaScript script.
Insert the following text before the </webuijsf:script> tag.

function doDirections(vFromAddress, vToAddress) {

 var vRouteID = "";

 var vDirectionsID = "";

 var vObj = document.getElementsByTagName('SPAN');

 for (var i = 0; i < vObj.length; i++) {

 if (vObj[i].id.lastIndexOf(":Route") > 0) {

 vRouteID = vObj[i].id;

 }

 if (vObj[i].id.lastIndexOf(":Directions") > 0) {

 vDirectionsID = vObj[i].id;

 }

 }

 if (GBrowserIsCompatible()) {

 var map = new GMap2(document.getElementById(vRo uteID));

 map.setUIToDefault();

 map.enableGoogleBar();

 var gdir

= new GDirections(map, document.getElementById(vDir ectionsID));

 gdir.load("from: " + vFromAddress + " to: "

+ vToAddress,{ "locale": "en_GB", "getSteps":true}) ;

 }

}

The relevant fragment of the JSP should look like this:

Notice the following, in the script:

1. This JavaScript script defines, but does not execute, the function
doDirections(vFromAddress, vToAddress), which accepts two
parameters, the patient address formatted in a way acceptable to th Google Map
API and the facility address formatted in a way acceptable to th Google Map API.

2. The first for loop inspects all SPAN elements in the Document Object Model,
looking for one whose name ends with :Route, and one whose name ends in
:Directions, saving the IDs of these container elements as a variable values
for use later

3. Create a new GMap2 object, passing the ID of the container element into which to
inject the map markup -
http://code.google.com/apis/maps/documentation/reference.html

4. Change the appearance of the map controls by setting UI to defaults

5. Add Google Search control to the map

6. Get directions between patient’s address and facility address and overly the map
with the route between the two points

Items 3-6 in the list above are strictly Google Map API-related.

We will need to inject more JavaScript code at runtime to invoke this function and pass
it appropriate parameters. To do this we need to add another outputText element to
the page, immediately below the script block we just added.

Insert the following text just below the </webuijsf:script> tag.

<h:outputText escape="false" id="dynScriptRoute"
style="visibility: hidden"/>

Switch to Design View, expand the document elements hierarchy in the Navigator
pane, right-click the dynScriptRoute outputText and choose “Add Binding Attribute”.

The outputText we just added will be populated with a JavaScript function invocation,
to which we will pass patient address and facility address. It is necessary to do this as
the values of the two parameters will change from patient to patient therefore can not
be hardcoded in the JSP.

The Details/View panel has a button, Map, which allows the user to switch to the Map
panel. We now have two more panels, the Route panel and the Directions panel. We
need to add two more buttons, Route and Directions to all relevant panels – lpView,
lpMap, lpRoute and lpDirections, so that the user can switch between panels. Each
panel will be “missing” the button that would switch to it if clicked in another panel,
much as we have done for the View and Map panels. The Map panel does not have
the Map button and the View panel does not have the Details button.

Let’s drag a new Button Woodstock component to the lpView panel and set button
properties to: is: btnDirections01, style: left: 0px; top: 0px; position: absolute; width:
90px, text: Directions. Right-click the button and choose “Add Binding Attribute”. Right-
click the button and choose “Edit action Event Handler”. This will switch NetBeans to
Java View with a skeleton of the btnDirections01_action() method displayed. We will
fill in the skeleton later. For now switch back to the Design View.

Copy btnDirections01 button and paste it into lpMapBetter panel. Set the properties to:
id: btnDirections05, style: left: 0px; top: 0px; position: absolute; width: 90px. Right-click
the button and choose “Add Binding Attribute”.

Copy the lpView -> btnDirections01 button and paste it into the lpRoute panel. Set
properties: id: btnDirections03, style: left: 0px; top: 0px; position: absolute; width: 90px.
Right-click the button and choose “Add Binding Attribute”.

We have a Directions button in all panels except the search panel and the directions
panel itself.

Let’s now add a Route button to panels lpView, lpMapBetter and lpDirections, leaving
out the search panel and the route panel.

Let’s drag a new Button Woodstock component to the lpView panel and set button
properties to: id: btnRoute01, style: left: 95px; top: 0px; position: absolute; width: 90px,
text: Route. Right-click the button and choose “Add Binding Attribute”. Right-click the
button and choose “Edit action Event Handler”. This will switch NetBeans to Java View
with a skeleton of the btnRoute01_action() method displayed. We will fill in the
skeleton later. For now switch back to the Design View.

Copy btnRoute01 button and paste it into lpMapBetter panel. Set the properties to: id:
btnRoute05, style: left: 95px; top: 0px; position: absolute; width: 90px. Right-click the
button and choose “Add Binding Attribute”.

Copy the lpView -> btnRoute01 button and paste it into the lpDirections panel. Set
properties: id: btnDirections04, style: left: 95px; top: 0px; position: absolute; width:
90px. Right-click the button and choose “Add Binding Attribute”.

We have a Route button in all panels except the search panel and the route panel
itself.

To complete adding visual components we need to add the Map button to the two new
panels.

Copy the lpView -> btnMap01 button and paste it into the lpRoute panel. Set
properties: id: lpMap03, style: left: 191px; top: 0px; position: absolute; width: 90px.
Right-click the button and choose “Add Binding Attribute”.

Copy the lpView -> btnMap01 button and paste it into the lpDirections panel. Set
properties: id: lpMap04, style: left: 191px; top: 0px; position: absolute; width: 90px.
Right-click the button and choose “Add Binding Attribute”.

To ensure the components are correctly nested inspect the Navigator panel The
outputText doSynScript must be the last child of the form form1.

In the original portlet we are testing to see if patient address is available. If it is not we
hide the Map button in the View / Details panel. If we can not display a map with
patient’s location then we can not display the route or directions either – we must hide
them as well. This is why we added binding attributes to the Route and Directions
buttons. Furthermore, even if patient’s address is available it does not necessarily
mean that facility address is available. Both are needed to obtain a route and
directions. So if the facility address is not available we must hide the Route and
Directions buttons in the lpView and lpMapBetter panels, so as to prevent a user from
switching to these panels.

Let’s now add Java code to manipulate dynamic objects at runtime, including
executing JavaScript scripts to dynamically modify page components.

Switch to Java mode and scroll to the prerender() method. Add statements setting
visibility property of the panel lpRoute and lp Directions to false.

Scroll to the location in the btnLookup_action() method where panel visibility is set and
add statements that set the visibility of panels lpRoute and lpDirectins to false. When
the lookup button is clicked we will either get redirected to the View panel or will
remain on the Lookup panel.

Scroll down to the btnSearch01_action() method and add statements that set the
visibility of panels lpRoute and lpDirectins to false.

Repeat the process for method btnView02_action().

Repeat the process for the method btnMap01_action().

Fill in skeleton btnRoute01_action method body with the following code:

Fill in skeleton btnDirections01_action method body with the following code:

We will now add new code to the end of the btnLookup_action() method to get the
address of the facility of record for the patient, if any, work out whether we can use it,
set the dynamic parameters to the JavaScript script that prepares the route map and
directions, and set the page to execute the scripts at page render time.

After the statement “dynScriptMap.setValue(sScript); ”, just before the
comment “// inject a script which will execute ” begin inserting
additional code, starting with the following:

// another map with route between patient and facil ity

//

// have patient address which is, notionally, mappa ble

// get facility address

//

String sFacAddr = "";

Now switch from the Project Explorer tab to the Services Explorer tab, expand Web
Services node through FacilitySvcPort and drag the web service operation
opGetFacilityDetails to the Java source window, dropping it on the line below the
String = sFacAdd = “”;

Accept the default in the dialogue box that appears.

Replace the slab of boilerplate code that was inserted, starting with try and ending with
the brace closing the catch, with the following code:

try {

 FacDetailsReq msgFacDetailsReq = new FacDetails Req();

 msgFacDetailsReq.setFacCode(patRes.getFACILITY());

 FacilitySvcService service = new FacilitySvcSer vice();

 FacilitySvcPortType port = service.getFacilityS vcPort();

 FacDetailsRes result1 = port.opGetFacDetails(ms gFacDetailsReq);

 if (result1.getAddressLine1() != null &&

 result1.getAddressLine1().trim().length() > 0) {

 sFacAddr += result1.getAddressLine1().trim();

 if (result1.getSuburbTown() != null &&

result1.getSuburbTown().trim().length() > 0) {

 sFacAddr += ", " + result1.getSuburbTow n().trim();

 if (result1.getState() != null &&

 result1.getState().trim().length() > 0) {

 sFacAddr += ", " + result1.getState ().trim();

 }

 if (result1.getPostCode() != null &&

 result1.getPostCode().trim().length() > 0) {

 sFacAddr += ", " + result1.getPostC ode().trim();

 }

 if (result1.getCountry() != null &&

 result1.getCountry().trim().length() > 0) {

 sFacAddr += ", " + result1.getCount ry().trim();

 }

 }

 }

} catch (Exception ex) {

 ex.printStackTrace();

}

To resolve issues right-click in the source window and choose Fix Imports.

What we are doing here is invoking the Facility Details web service operation, looking
at the result and setting the value of sFacAdd to the address of the facility, formatted
for use with the Google Map service, or setting it to an empty string, if one of the
conditions of address validity is not met.

For the facility address to be valid, the street address and city/suburb/town must be
present. Just how valid such an abbreviated address is will depend on the location of
the user. Google Maps service seems to be making assumptions about missing data
based on requester’s location.

If the address is not empty, and the patient’s address seems reasonable, we can inject
the JavaScript script which will invoke the Google map function that obtains the route
and the directions, given patient’s and facility’s addresses. If not, we will hide the
Route and Directions buttons.

Add the following statements below the closing brace of the try-catch statement:

btnRoute01.setVisible(false);
btnDirections01.setVisible(false);

This is what the new code should look like:

Immediately following the two statements that hide the two buttons add the following
code:

if (sFacAddr.trim().length() > 0) {

 // can try to display route from patient to fac ility
 // and directions
 //
 btnRoute01.setVisible(true);
 btnDirections01.setVisible(true);

 log("===>>> From " + sAddress + " to " + sFacAd dr);

 // provide address details to the script
 // the script will not get executed yet - it wi ll be
 // when the page gets rendered further
 //
 sScript = "";
 sScript += "<script language='JavaScript'>\n";
 sScript += "function doRouteScriptWithParams() { doDirections('"
 + sAddress + "', '" + sFacAddr + "');};";
 sScript += "</script>\n";
 dynScriptRoute.setValue(sScript);

}

If the facility address is valid we set visibility of the route and directions buttons to true
and inject a script that supplies patient and facility address to the script that actually
gets the new Google map.

Finally, insert invocation of the new script into the code block that already invokes the
doMapScriptWithParams, to set the JavaScript function that will create the better
looking Google Map and the Route and Directions objects, so it is executed when the
browser gets to the script as it renders the page.

// inject a script which will execute

// first the script with patient address for fixed map

//

sScript = "";

sScript += "<script language='JavaScript'>\n";

sScript += "doMapScriptWithParams();\n";
sScript += "doRouteScriptWithParams();\n";

sScript += "</script>\n";

doDynScript.setValue(sScript);

Note that this JavaScript fragment does not define a function, as did the previous
script, but rather invokes a previously defined function as soon as the browser gets to
render this part of the page (the end).

The Java code looks like this:

All done. Let’s deploy and exercise this portlet.

Right-click on the project name and choose Deploy.

Now that the portlet is deployed we need to add it to the portal page. If the early
version of the portlet is on the portal page it needs to be removed.

Choose A RED MEDICAL CENTRE from the list of facilities and enter 0439334 as
Local ID. Click the Lookup button.

Click the Map button.

It is expected that at least one facility and at least one patient have reasonable
addresses in order to test the route and directions functionality. If you don’t see Map,
and Route and Direction buttons, verify validity of addresses for the patient and for the
patient’s facility of record.

Click the Route button.

Click the Directions button.

Click the Search button.

We are done. This is what it took to add a Google Map that shows a Route between
two locations, and directions to follow, to the portlet created before.

Summary

In this document we elaborated on a design of a JSR-286-compliant Visual Web JSF
Portlet, deployed to the Sun Web Space Server 10 Portal, which used the Facility
Service and the Patient Service Web Service as data providers. We added a couple of
panels with a Google Map that shows a Route between two locations, and directions
to follow, obtained by directly manipulating Google Maps API JavaScript functions.

References

[1] MySQL Community Server and GUI Tools - Getting, Installing and Configuring, at h
ttp://blogs.sun.com/javacapsfieldtech/entry/mysql_community_server_and_gui.

[2] GlassFish ESB v2.1 download and installation, https://open-esb.dev.java.net/Downl
oads.html

[3] Adding Sun WebSpace Server 10 Portal Server functionality to the GlassFish ESB
v2.1 Installation, http://blogs.sun.com/javacapsfieldtech/entry/adding_sun_webspace_
server_10

[4] Making Web Space Server And Web Services Play Nicely In A Single Instance Of
The Glassfish Application Server, http://blogs.sun.com/javacapsfieldtech/entry/making
_web_space_server_and.

[5] GlassFish ESB v 2.1 - Creating a Healthcare Facility Web Service Provider, http://b
logs.sun.com/javacapsfieldtech/entry/glassfish_esb_v_2_1

[6] GlassFish ESB v2.1, MySQL v5.1 - Creating a Patient Service Web Service
Provider, http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql1

[7] GlassFish ESB v2.1, MySQL v5.1 - Make HL7 v2.3.1 Delimited Messages from
Custom Delimited Records with HL7 Encoder and HL7 BC,
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql

[8] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web Space
10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/entry/heal
thcare_facility_mashup_portlet_with

[9] GlassFish ESB v2.1, Web Space Server 10 - Creating a Patient Lookup Visual
Web JSF Portlet, http://blogs.sun.com/javacapsfieldtech/entry/creating_a_patient_look
up_visual

[10] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web
Space 10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/ent
ry/healthcare_facility_mashup_portlet_with

[11] GlassFish v 2.1, Web Space Server 10 - Patient Lookup Visual Web JSF Portlet
with a basic Google Map, http://blogs.sun.com/javacapsfieldtech/entry/glassfish_v_2_
1_web

 [12] Patient Lookup Visual Web JSF Portlet with a nicer looking Google Map,
http://blogs.sun.com/javacapsfieldtech/entry/patient_lookup_visual_web_jsf

