
NetBeans 6.5.1, GlassFish v 2.1, Web Space Server 10
Patient Lookup Visual Web JSF Portlet with a Nicer Google Map

Michael.Czapski@sun.com

July 2009

Table of Contents
Abstract..1
Introduction..1
Prerequisites..4
Copy Patient Lookup Project..4
Add Google Map components ...8
Summary ...22
References ..22

Abstract

In this walkthrough I will add a nicer looking Google Map, with Google Search
functionality, to the Visual Web JSF Portlet, developed in “GlassFish v 2.1, Web
Space Server 10 - Patient Lookup Visual Web JSF Portlet with a basic Google Map”,
at http://blogs.sun.com/javacapsfieldtech/entry/glassfish_v_2_1_web.

Introduction

The business idea behind the functionality developed in this walkthrough is that
patients are looked after in various healthcare facilities. Healthcare workers need to
lookup patient details such as their identifier, gender, birth date or address. A relational
database holds patient details as well as other information of relevance such as
descriptions of various coded values. Patient details are available through a web
service. Facility list and details, used to narrow down the search for patients to a
specific facility, are available through a web service. These web services will be used
to construct the Portlet that will allow patient search and a display of patient details
with display a Google Map, centered at patient’s address, if one is available and is
valid for the purpose of mapping. This Portlet will be deployed to the Sun FOSS Web
Space Server 10 Portal.

The previous document [11], walked through development and deployment of the
Patient Lookup Portlet with a basic Google Map centered at the location identified by
patient address, if any. It was a fairly basic Google Map, as Google maps go. In this
document I will add a better Google Map to the Patient Lookup Portlet developed in
[11].

Other documents in this series, see pre-requisites, walked the reader through the
process of implementing GlassFish ESB v2.1-based web services which return facility
list and facility details as well as patient details.

To give you some idea of what we will get at the end of the process here are
screenshots of the completed portlet running out of the Web Space Server Portal.

Note that this walkthrough builds on the Patient Lookup Portlet with basic Google
Map, built previously, but deals exclusively with Visual Web JSF portlet-related
technologies, Java Script and Google Maps API.

Prerequisites

To work through this material certain pre-requisites have to be met.

It is assumed that:

• MySQL RDBMS is installed and available, as discussed in [1]
• GlassFish ESB v2.1 is installed, as discussed in [2]
• Sun Web Space Server Portal is installed, as discussed in [3]
• Web Space Server is configured as discussed in [4]
• Facility Service Web Service is implemented and deployed, as discussed in [5]
• Patient Service Web Service is implemented and deployed, as discussed in [6]
• Patient Lookup Portlet with basic Google Map has been developed and tested

[11]

Unless these pre-requisites are met, you will not be able to complete this walkthrough.

Copy Patient Lookup Project

This document assumes that the Patient Lookup with basic Google Map Portlet,
developed in [11], is available for cloning.

To save the effort we will copy the project PatientLookupGooMapBasicVWJSFP [11]
and use it as the basis for elaboration.

Right-click the name of the project and choose Copy.

Name the new project PatientLookupGooMapBetterVWJSFP and click the Copy
button.

Right-click the name of the new project and choose “Set as Main Project”.

Expand the project’s Web Pages folder, right-click on the
PatientLookupGooMapBasic.jsp page and choose Refactor -> Rename.

Change the name to PatientLookupGooMapBetter, check the “Apply Rename on
Comments” and click the “Refactor” button.

Note that the portlet backing class was also renamed.

Alas, there are a few configuration files which must be manually modified.

Expand the “Configuration Files” folder.

Open the liferay-display.xml and update portlet name and id.

Open liferay-portlet.xml and update portlet-name.

Open portlet.xml and update description, portlet-name, display-name, title and short-
title. Of these only the portlet-name and init-param -> value are critical.

Once done, deploy the portlet and exercise it in the browser to make sure it still
functions.

It works for me.

Add Google Map components

In [11] we developed a portlet that invokes the Google Map REST service, gratuitously
provided by the NetBeans and Google teams. This service returns a HTML fragment,
which includes Java Script scripts and other elements. We “injected” this HTML
fragment into an outputText container of our portlet. As a consequence the HTML
content, returned by the Google Map service, was rendered in the browser. During
that process the Google Maps service-provided Java Script scripts executed and
caused the content of the DIV element to be dynamically replaced with the Google
Map. At the same time the page got authenticated with the Google Map service and a
series of Google JavaScript scripts became available to be dynamically executed. We
will use the fact that we are authenticated and that we can execute some of the
Google JavaScript scripts to get and manipulate Google Maps objects.

Open the PatientLookupGooMapBetter.jsp in Design mode. Drag the Woodstock
Layout Panel to the canvas anywhere outside the existing layout panels.

Change the id property to lpMapBetter, panelLayout property to “Grid Layout” and
style property attributes to: font-size:12px, position: relative, height: 452px, width:
480px, left: 0px, top: 0px.

The new panel now appears below all existing panels in the Design View.

Right-click the panel and choose “Add Binding Attribute” so that we can manipulate
visible property of the panel in the Java class.

Copy the search button from the lpView panel and paste it into the lpMapBetter panel.
Set new buttons properties id: btnSearch05, style: font-size: 12px; left: 383px; top:
0px; position: absolute; width: 90px.

Right-click on the button and notice that the Edit Action option has the
“btnSearch01_action() Event Handler” specified. We will leave it as is since all of the
search buttons should do the same thing – return the user to the Lookup panel.

Copy the Details button form the lpMapBasic panel to the lpMapBetter panel. Set new
buttons properties id: btnView05, style: font-size: 12px; left: 287px; top: 0px; position:
absolute; width: 90px.

Once the buttons are copied, select the lpMap panel and set its visible property to
false. We will have a better map to look at so we will hide the original map.

Note that once you uncheck the “visible” checkbox the panel and its content will
disappear from the Design View window. You can still access it through the Navigator
panel.

We will create a new Google Map, using a Google JavaScript functions which give us
explicit control over certain aspects of the Map’s appearance and functionality. The
actual map will need to be displayed in a container on the page. Let’s create this
container. Switch to the JSP View tab, scroll down to the definition of the lpMapBetter
panel and paste the following text as the first chilled of the structure, just above the first
button, btnSearch03.

<h:outputText escape="false" id="betterMap" style=" border-width: 2px;

border-style: inset; height: 400px; left: 0px; top: 35px; position:

absolute; width: 475px"/>

The JSP text with the outputText pasted should look like that shown below.

This creates a SPAN element with id of betterMap, placed somewhat lower then the
top of the panel. Switch to the Design mode, right-click on the new outputText element

and choose “Add Binding Attribute”. We will need to access this component in the
Java code later.

The result, in JSP View, should look something like this (where I re-formatted the text
to somewhat improve readability).

Switch to the Design mode and inspect the hierarchy in the Navigator panel to make
sure all components are ordered and nested correctly.

Now we are ready to add the Java code to get the better looking Google Map and
manipulate the components we added.

The production of the better looking map will be accomplished by a JavaScript script.
Switch to the JSP View mode and scroll to the source around where line 14 is in the
following picture.

Paste the following text as the first child of the form1 node, between lines 14 and 15.

 <webuijsf:script id="gooScripts ">
function doMapFixed(sAddress, vLabelHTML) {
 var vRouteID = "";
 var vObj = document.getElementsByTagName('SPAN');
 for (var i = 0; i < vObj.length; i++) {
 if (vObj[i].id.lastIndexOf(" :betterMap") > 0) {
 vRouteID = vObj[i].id;
 }
 }

 var map = new GMap2(document.getElementById(vRo uteID));
 var geocoder = new GClientGeocoder();
 geocoder.getLatLng(
 sAddress,
 function(point) {
 if (!point) {
 alert(address + " not found");
 } else {
 map.setCenter(point, 13);
 var marker = new GMarker(point);
 map.addOverlay(marker);
 marker.openInfoWindowHtml(vLabelHTML);
 }
 }
);
 map.setUIToDefault();
 map.enableGoogleBar();
}
 </webuijsf:script>

The relevant fragment of the JSP should look like this:

Notice the following, in the script:

1. This JavaScript script defines, but does not execute, the function
doMapFixed(sAddress, vLabelHTML), which accepts two parameters,
sAddress – the patient address formatted in a way acceptable to Google Maps
API and vLabelHTML – the HTML markup that will be used by the GoogleMap
API to present a balloon/label describing the location on the map.

2. The first for loop inspects all SPAN elements in the Document Object Model,
looking for one whose name ends with :betterMap, then setting saving the ID
of that container element as a variable value for use later

3. Create a new GMap2 object, passing the ID of the container element into which to
inject the map markup -
http://code.google.com/apis/maps/documentation/reference.html

4. Modify the map object such that the map is centered at the Loattitude/Longtitude
of the patient’s address and the label marking that location uses the HTML
markup provided

5. Change the appearance of the map controls by setting UI to defaults

6. Add Google Search control to the map

Items 3-6 in the list above are strictly Google Map API-related.

We will need to inject more JavaScript code at runtime to invoke this function and pass
it appropriate parameters. To do this we need to add another outputText element to
the page, immediately below the script block we just added.

Insert the following text just below the </webuijsf:script> tag.

<h:outputText escape="false" id="dynScriptMap"
style="visibility: hidden"/>

Switch to Design View, expand the document elements hierarchy in the Navigateor
pane, right-click the dynScriptMap outputText and choose “Add Binding Attribute”.

The outputText we just added will be populated with a JavaScript function invocation,
to which we will pass patient address and the label to display on the map. It is
necessary to do this as the values of the two parameters will change from patient to
patient therefore can not be hardcoded in the JSP.

Finally, at the end of the page, after all elements are laid out and all the scripts are
parsed, we need to trigger the script that will run the dynamic script with address and
label text.

Switch back to the JSP mode, scroll down to the bottom and insert the following code
between “</webuijsf:panelLayout>” and “</webuijsf:form>”, that is as the last child of
the for1 object.

<h:outputText escape="false" id="doDynScript" style ="visibility: hidden"/>

The JSP code will look like that in the picture below.

Switch to Design mode, expand the page hierarchy in the Navigator pane, right-click
on the doDynScript outputText element and choose “Add Binding Attribute”.

Now we will add some Java code to manipulate dynamic objects at runtime, including
executing JavaScript scripts to dynamically modify page components.

Switch to Java mode and scroll to the prerender() method. Replace the statement
setting visibility property of the panel lpMapBasic with a statement setting visibility of
the panel lpMapBetter to false.

Scroll to the end of the btnLookup_action() method and replace the statement that
sets the visibility of the panel lpMapBasic to false with one that set the visibility of the
panel lpMapBetter to false. When the lookup button is clicked we will either get
redirected to the View panel or will remain on the Lookup panel.

Scroll down to the btnSearch01_action() method and replace the statement that sets
the visibility of the panel lpMapBasic to false with one that set the visibility of panel the
lpMapBetter to false as well.

Repeat the process for method btnView02_action().

Modify the code in the method btnMap01_action() replacing lpMapBasic with
lpMapBetter.

We will now add new code to the end of the btnLookup_action() method to prepare
the address and the label, and trigger the JavaScript that will get us the improved
Google Map.

At the end of the btnLookup_action() method, just before the statement “return null;”
begin inserting additional code, stating with the following:

// additional map
//
// assemble label for the additional map

//
String sMapLabel = "";
sMapLabel += patRes.getFACILITY() + " / " + patRes. getLOCALID() + "
";
sMapLabel += stPatNames.getValue() + "
";
sMapLabel += sAddress;

Now add the following statements to define a JavaScript function that will pass the
patient address and label text to the better map creation function. You can use what
values are available to construct the label. This code makes a 3-line label with patient
ID on one line, patient names on the second line and patient address on the last line.

// additional map with different appearance and
// patient-specific label
//
// this gives the script address and label input
// but does not execute the script
// it will be executed once trhe end of the page is rendered
// by which time all scriptes will have been "rende red"
// at the client side
//
String sScript = "";
sScript += "<script language='JavaScript'>\n";
sScript += "function doMapScriptWithParams() {\n";
sScript += " doMapFixed('" + sAddress + "', '" + sMapLabel + "');\n";
sScript += "};\n";
sScript += "</script>\n";
dynScriptMap.setValue(sScript);

Finally, add the following statements to set the JavaScript function that will create the
better looking Google Map, so it is executed when the browser gets to the script as it
renders the page.

// inject a script which will execute

// first the script with patient address for fixed map

//

sScript = "";

sScript += "<script language='JavaScript'>\n";

sScript += "doMapScriptWithParams();\n";

sScript += "</script>\n";

doDynScript.setValue(sScript);

Note that this JavaScript fragment does not define a function, as did the previous
script, but rather invokes a previously defined function as soon as the browser gets to
render this part of the page (the end).

The Java code looks like this:

All done. Let’s deploy and exercise this portlet.

Right-click on the project name and choose Deploy.

Now that the portlet is deployed we need to add it to the portal page. If the early
version of the portlet is on the portal page it needs to be removed.

Choose A RED MEDICAL CENTRE from the list of facilities and enter 0439334 as
Local ID. Click the Lookup button.

Click the Map button.

Enter an address into the Google Search entry box and click the Search button.

Click the Details button.

Click the Search button.

Click the Search button, noting that the Local ID field is cleared. Without entering
anything into the Local ID field click the Lookup button. Notice the error message.

Enter a local id which is not in the database, for example 11. Click the Lookup button
and notice the error message.

This error message was explicitly set in the btnLookup_action() method when the web
service invocation returned with no record.

We are done. This is what it took to add a better looking Google Map to the portlet
created before.

Summary

In this document we elaborated on a design of a JSR-286-compliant Visual Web JSF
Portlet, deployed to the Sun Web Space Server 10 Portal, which used the Facility
Service and the Patient Service Web Service as data providers. We added a panel
with a better looking Google Map, obtained by directly manipulating Google Maps API
JavaScript functions.

References

[1] MySQL Community Server and GUI Tools - Getting, Installing and Configuring, at h
ttp://blogs.sun.com/javacapsfieldtech/entry/mysql_community_server_and_gui.

[2] GlassFish ESB v2.1 download and installation, https://open-esb.dev.java.net/Downl
oads.html

[3] Adding Sun WebSpace Server 10 Portal Server functionality to the GlassFish ESB
v2.1 Installation, http://blogs.sun.com/javacapsfieldtech/entry/adding_sun_webspace_
server_10

[4] Making Web Space Server And Web Services Play Nicely In A Single Instance Of
The Glassfish Application Server, http://blogs.sun.com/javacapsfieldtech/entry/making
_web_space_server_and.

[5] GlassFish ESB v 2.1 - Creating a Healthcare Facility Web Service Provider, http://b
logs.sun.com/javacapsfieldtech/entry/glassfish_esb_v_2_1

[6] GlassFish ESB v2.1, MySQL v5.1 - Creating a Patient Service Web Service
Provider, http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql1

[7] GlassFish ESB v2.1, MySQL v5.1 - Make HL7 v2.3.1 Delimited Messages from
Custom Delimited Records with HL7 Encoder and HL7 BC,
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql

[8] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web Space
10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/entry/heal
thcare_facility_mashup_portlet_with

[9] GlassFish ESB v2.1, Web Space Server 10 - Creating a Patient Lookup Visual
Web JSF Portlet, http://blogs.sun.com/javacapsfieldtech/entry/creating_a_patient_look
up_visual

[10] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web
Space 10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/ent
ry/healthcare_facility_mashup_portlet_with

[11] GlassFish v 2.1, Web Space Server 10 - Patient Lookup Visual Web JSF Portlet
with a basic Google Map, http://blogs.sun.com/javacapsfieldtech/entry/glassfish_v_2_
1_web

