
NetBeans 6.5.1, GlassFish v 2.1, Web Space Server 10
Patient Lookup Visual Web JSF Portlet with a basic Google Map

Michael.Czapski@sun.com

July 2009

Table of Contents
Abstract..1
Introduction..1
Prerequisites..3
Copy Patient Lookup Project..3
Add Google Map components ...7
Summary ...21
References ..22

Abstract

In this walkthrough I will add a basic Google Map panel to the Visual Web JSF Portlet,
developed in the previous writeup, “GlassFish ESB v2.1, Web Space Server 10 –
Creating a Patient Lookup Visual Web JSF Portlet”, at http://blogs.sun.com/javacapsfi
eldtech/entry/creating_a_patient_lookup_visual, which uses Facility-related and
Patient-related Web Service as data providers to implement search for Patient Details.

Introduction

The business idea behind the functionality developed in this walkthrough is that
patients are looked after in various healthcare facilities. Healthcare workers need to
lookup patient details such as their identifier, gender, birth date or address. A relational
database holds patient details as well as other information of relevance such as
descriptions of various coded values. Patient details are available through a web
service. Facility list and details, used to narrow down the search for patients to a
specific facility, are available through a web service. These web services will be used
to construct the Portlet that will allow patient search and a display of patient details
with display a Google Map, centered at patient’s address, if one is available and is
valid for the purpose of mapping. This Portlet will be deployed to the Sun FOSS Web
Space Server 10 Portal.

The previous document [9], walked through development and deployment of the basic
Patient Lookup Portlet. In this document I will add a basic Google Map to the Patient
Lookup Portlet.

Other documents in this series, see pre-requisites, walked the reader through the
process of implementing GlassFish ESB v2.1-based web services which return facility
list and facility details as well as patient details.

To give you some idea of what we will get at the end of the process here are
screenshots of the completed portlet running out of the Web Space Server Portal.

Note that this walkthrough builds on the Patient Lookup Portlet, built previously, but
deals exclusively with Visual Web JSF portlet-related technologies, Java Script and
Google Maps API.

Prerequisites

To work through this material certain pre-requisites have to be met.

It is assumed that:

• MySQL RDBMS is installed and available, as discussed in [1]
• GlassFish ESB v2.1 is installed, as discussed in [2]
• Sun Web Space Server Portal is installed, as discussed in [3]
• Web Space Server is configured as discussed in [4]
• Facility Service Web Service is implemented and deployed, as discussed in [5]
• Patient Service Web Service is implemented and deployed, as discussed in [6]
• Patient Lookup Portlet has been developed and tested [9]

Unless these pre-requisites are met, you will not be able to complete this walkthrough.

Copy Patient Lookup Project

This document assumes that the Patient Lookup Portlet, developed in [9], is available
for cloning.

To save the time and trouble we will copy the project PatientLookupVWJSFP [9] and
use it as the basis for elaboration.

Right-click the name of the project and choose Copy.

Name the new project PatientLookupGooMapBasicVWJSFP and click the Copy
button.

Right-click the name of the new project and choose “Set as Main Project”.

Expand the project’s Web Pages folder, right-click on the PatientLookup.jsp page and
choose Refactor -> Rename.

Change the name to PatientLookupGooMapBasic, check the “Apply Rename on
Comments” and click the “Refactor” button.

Note that the portlet backing class was also renamed.

Alas, there are a few configuration files which must be manually modified.

Expand the “Configuration Files” folder.

Open the liferay-display.xml and update portlet name and id.

Open liferay-portlet.xml and update portlet-name.

Open portlet.xml and update description, portlet-name, display-name, title and short-
title. Of these only the portlet-name and init-param -> value are critical.

Once done, deploy the portlet and exercise it in the browser to make sure it still
functions.

It works for me.

Add Google Map components

If you implemented the Facility Portlet with Google Map [10] some of the material here
may be familiar.

Open the PatientLookupGooMapBasic.jsp in Design mode. Drag the Woodstock
Layout Panel to the canvas anywhere outside the existing layout panels.

Change the id property to lpMapBasic, panelLayout property to “Grid Layout” and style
property attributes to: font-size:12px, position: relative, height: 452px, width: 480px.

Note that the new panel now appears below both existing panels in the Deign mode.

Right-click the panel and choose “Add Binding Attribute” so that we can manipulate
visible property of the panel in the Java class.

Let’s copy the search button from the lpView panel and paste it into the lpMapBasic
panel.

Let’s change properties of this new button to id: btnSearch02, style property attributes:
left: 383px, top: 0px, position: absolute, width: 90px.

Right-click on the button and notice that the Edit Action option has the
“btnSearch01_action() Event Handler” specified. We will leave it as is since all of the
search buttons should do the same thing – return the user to the Lookup panel.

In the not too distant future we will invoke a Google Map REST service, pass to it an
address of the patient, and get back a HTML fragment which includes a bunch of Java
Script scripts. We will need to inject this HTML fragment into the existing HTML so that
it gets rendered by the browser and so that the browser executes the Java Script
scripts embedded inside it.

To inject the HTML we need a non-Woodstock outputText container. Switch to the
JSP mode, scroll down to the webuijsf:layoutPanel element with id: lpMapBasic and
insert the following code on a new line.

<h:outputText escape="false" id="otMapBasic" style="left: 0px; top:

35px; position: absolute"/>

This creates a SPAN element with id of otMapBasic, places somewhat lower then the
top of the panel. Switch to the Design mode, right-clik on the new outputText element

and choose “Add Binding Attribute”. We will need to access this component in the
Java code later.

The result should look something like this (where I re-formatted the text somewhat).

Ignore the warning shown in my picture on line 67.

So far we have just one button on each of the lpView and lpMapBasic panels. We
would like to be able to switch between the Details view and the Map view. To do this
we need to add two buttons, one on the lpView panel which will switch to the
lpMapBasic panel and one on the lpMapBasic panel which will switch to the lpView
panel. Let’s call these buttons btnMap01 (for the lpView panel) and btnView02 (for the
lpMapBasic panel).

Drag a Woodstock Button component onto the lpView panel. Change its properties as
follows: id: btnMap01, text: Map, style attributes: left: 191px, width: 90px, top: 0px.

Right-click on the btnMap01 button and choose “Add Binding Attribute”. We will need
to show and hide this button in Java depending on whether a mappable address is
available.

Right-click the btnMap01 button and choose “Edit action Event Handler”. This will
switch the view to Java mode and create boilerplate code for the action handler. We
will attend to this later. Switch back to the Deign view.

Drag a Woodstock Button component onto the lpMapBasic panel and set its
properties as follows: id: btnView02, text: Details, style attributes: top: 0px, left: 287px,
width: 90px.

Right-click on the btnView02 button and choose “Edit action Event Handler”. This will
switch the view to Java mode and create boilerplate code for the action handler. We
will attend to this later. Switch back to the Deign view.

Switch to the Design mode and inspect the hierarchy in the Navigator panel to make
sure all components are ordered and nested correctly.

Now we are ready to add the Java code to get the Google Map and manipulate the
components we added. Switch to Java mode and scroll to the prerender() method.
Ass a statement that sets the visible property of the lpMapBasic panel to false, hiding
it.

Scroll to the end of the btnLookup_action() method and set the visibility of the panel
lpMapBasic to false. When the lookup button is clicked we will either get redirected to
the View panel or will remain on the Lookup panel.

Scroll down to the btnSearch01_action() method and add the change to visibility of the
lpMpaBasic there as well.

Copy the 4 lines of code shown in the picture above and paste them into the body of
the btnMap01_action() method, replacing the two lines of comment.

Change the visible setting of the lpFind panel to false and lpMapBasic to true – the
Map button was clicked so the Map panel must be displayed and the Lookup panel
must be hidden.

Copy the 4 lines of code shown in the picture above and paste them into the body of
the btnView02_action() method, replacing the two lines of code.

Change the visible setting of the lpView panel to true and lpMapBasic panel to false.
Button with the caption Details was clicked. We need to show the view panel and hide
the Map panel.

Scroll back to the bottom of the btnLookup_action() method. We will be adding more
code between the end of the details setting statements and the beginning of the
visibility setting statements.

The Google Map REST Service, which we will be invoking shortly, requires a
reasonable address. A reasonable address is one which has a street name and a city.
If the address has a street number, a state/province and a postal code - so much the
better. Some example valid addresses are:

foro romano, rome
edwin street, croydon
edwin street, croydon, uk

In the example above “edwin street, croydon” would be for the Edwin Street, Croydon,
NSW, AU because I live in Sydney and the Google Maps works out from what it thinks
my systems location is, which country and geographical region to place the partial
address like this. As soon as I add the country code, UK, Croydon gets to be in
Greater London. Some addresses, which might otherwise appear valid, may not be
mappable because they do not exist.

This leads us to the following:

1. If the address has a street name and a city / suburb then it is superficially
valid and can be used for mapping

2. If the address is mappable then invoke the Google Map service and show the
btnMap02 button

3. If either street name or city / suburb is missing the address is invalid and can
not be mapped

4. If address is not mappable do not invoke the Google Map service and hide
the btnMap02 button/

Let’s now add the slab of Java code which works out whether the address is
mappable according to the rules set out above.

If the address is mappable let’s assemble a single address string which to pass to the
Google Map service. It will be of the form “street address, city, state, post code,
country”, where “foro romano, rome,,,” is valid so we will not be fussy about multiple
commas.

Add the following code to assemble the address string.

The Map button should only be visible if there is a mpappable address. Set the
visibility property of that button to the value of the blHave Address Boolean.

Create a conditional expression, based on the blHaveAddress Boolean, with which to
surround the Google Map REST service invocation.

In the left panel switch from the Project Explorer view to the Services view, expand
web services through Google -> Map Service and drag the getGoogleMap operation
onto the canvas inside the conditional expression just created.

Customize the service invocation in the dialogue box by setting zoom to 14 and iframe
to true.

Modify the generated code so that it uses the sAddress string, which we assembled
before, as the address the service will use.

Assign the result to the outputText component on success and set the btnMap01
visibility to false on exception.

Switch back to the Project Explorer view in the left hand pane, expand the Source
Packages folder through to org.netbeans.google.saas, open
googlemapservice.porperties and fill in the value of the API Key.

If you don’t have the Google Map Service AP Key then get it from Google - see [10],
pages 47-50 for details.

Right-click on the project name and choose Deploy.

Now that the portlet is deployed we need to add it to the portal page. If the early
version of the portlet is on the portal page it needs to be removed.

When creating the Patient Service web service we created and populated a database
table with seed data. Some of the facility/local id combinations are:

facility local_id last_name first_name middle_i

nitial

addr1 city state post_c

ode

count

ry

ARMC 0101018 WHITEHURST JULIA (null) 1/97

FARRINGDON

VILLAGE

WERRINGTON

DOWNS

NSW 2747 AU

ARMC 0439334 POHL ANNE-MARIE (null) 164 Edwin

Street North

Croydon NSW 2132 AU

ARMC 0461040 WESTWOOD JOKA (null) 1/97

FARRINGDON

VILLAGE

PENRITH NSW 2750 AU

ARMC 0468815 HARIHARAN JOSE EVASCO (null) 100 SMITH ST ST CLAIR NSW 2753 AU

ARMC 0498727 DEGRENIS DAGWOOD (null) 1/97

FARRINGDON

VILLAGE

NORTH SYDNEY NSW 2759 AU

ARMC 0532821 SANDERS GRACE (null) (null) WERRINGTON NSW 2750 AU

ARMC 0533086 KRYSIAK BABY OF

DENISE

(null) 100

STRANGE ST

JAMISONTOWN NSW 2782 AU

ARMC 0533805 ZAHRA LEANNE GAI (null) 100

FRUITBOWEL

CLOSE

 WERRINGTON 2745

ARMC 0534005 STYZINSKI JOSEPHINE (null) 1/97

FARRINGDON

VILLAGE

Dianella NSW 2747 AU

ARMC 0534006 DUNSTAN VIOLET MADGE (null) (null) LONDONDERRY NSW 2148 AU

STC 100000 CAESAR JULIUS (null) Foro Romano ROME (null) (null) it

Choose A RED MEDICAL CENTRE from the list of facilities and enter 0439334 as
Local ID. Click the Lookup button.

Click the Map button.

Click the Details button.

Click the Search button.

Click the Search button, noting that the Local ID field is cleared. Without entering
anything into the Local ID field click the Lookup button. Notice the error message.

Enter a local id which is not in the database, for example 11. Click the Lookup button
and notice the error message.

This error message was explicitly set in the btnLookup_action() method when the web
service invocation returned with no record.

We are done. This is what it took to develop a portlet, which used the Facilities Service
web service and the Patient Service web service as a data providers, and deploy it to
the Web Space Server 10 Portal.

Summary

In this document we walked through the process of developing a JSR-286-compliant
Visual Web JSF Portlet, deployed to the Sun Web Space Server 10 Portal, which
used the Facility Service and the Patient Service Web Service as a data providers. We
used the NetBeans 6.5.1 IDE, which comes as part of the GlassFish ESB v2.1
installation, the Portal Pack 3.0.1 NetBeans Plugin and the JSF Portal Bridge
infrastructure provided by the Web Space Server 10. The Portlet was implemented as
a Visual Web JavaServer Faces Portlet using JSF components provided by Project
Woodstock.

Because the portlet used the web service data providers the interfaces between it and
the data stores was defined in the appropriate WSDL definitions. The enterprise,
where this portlet is used, can change the implementation of both web services and,
as long as the interface does not change, the protlet will not need to change. This is
how loose coupling is achieved in Service Oriented Architectures. The portlet is a
component in the SOA Layer 1, Presentation Layer.

References

[1] MySQL Community Server and GUI Tools - Getting, Installing and Configuring, at h
ttp://blogs.sun.com/javacapsfieldtech/entry/mysql_community_server_and_gui.

[2] GlassFish ESB v2.1 download and installation, https://open-esb.dev.java.net/Downl
oads.html

[3] Adding Sun WebSpace Server 10 Portal Server functionality to the GlassFish ESB
v2.1 Installation, http://blogs.sun.com/javacapsfieldtech/entry/adding_sun_webspace_
server_10

[4] Making Web Space Server And Web Services Play Nicely In A Single Instance Of
The Glassfish Application Server, http://blogs.sun.com/javacapsfieldtech/entry/making
_web_space_server_and.

[5] GlassFish ESB v 2.1 - Creating a Healthcare Facility Web Service Provider, http://b
logs.sun.com/javacapsfieldtech/entry/glassfish_esb_v_2_1

[6] GlassFish ESB v2.1, MySQL v5.1 - Creating a Patient Service Web Service
Provider, http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql1

[7] GlassFish ESB v2.1, MySQL v5.1 - Make HL7 v2.3.1 Delimited Messages from
Custom Delimited Records with HL7 Encoder and HL7 BC,
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v2_1_mysql

[8] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web Space
10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/entry/heal
thcare_facility_mashup_portlet_with

[9] GlassFish ESB v2.1, Web Space Server 10 - Creating a Patient Lookup Visual
Web JSF Portlet, http://blogs.sun.com/javacapsfieldtech/entry/creating_a_patient_look
up_visual

[10] Healthcare Facility Mashup Portlet with Google Map - GlassFish v 2.1, Web
Space 10, Web Service and REST Service, http://blogs.sun.com/javacapsfieldtech/ent
ry/healthcare_facility_mashup_portlet_with

