
NetBeans 6.5.1 and GlassFish v 2.1
Creating a Healthcare Facility Visual Web Application

Michael.Czapski@sun.com

June 2009

Introduction

In some views SOA is represented as a series of 4 layers: Presentation Layer (SOA
1), Business Process Layer (SOA 2), Business Service Layer (SOA 3) and Technical
Layer (SOA 4). Typically each layer higher up in the hierarchy consumes services
exposed by the layer under it. So the Presentation Layer would consume services
provided by the Business Process or Business Service Layers. Service interfaces are
described using Web Services Description Language (WSDL), sheltering service
consumers from details of service implementation. Web Services are seen as the
technical means to implement the decoupled functional layers in a SOA development.
Decoupling allows implementations of business functionality at different layers to be
swapped in and out without disturbing other layers in the stack.

The business idea is that patients are looked after in various healthcare facilities.
Frequently applications need to allow selection of a facility and to access facility details
for display to human operators. A relational database is used to hold the details of
facilities which are a part of the healthcare enterprise. To shelter application
developers from the details of the data store facility list and details are made available
as a multi-operation web service. This web service will be used to construct the web
application that provides a user view into the facilities and facility details.

The previous document in this series, “GlassFish ESB v 2.1 - Creating a Healthcare F
acility Web Service Provider”, at http://blogs.sun.com/javacapsfieldtech/entry/glassfish
_esb_v_2_1, walked the reader through the process of implementing a GlassFish
ESB v2.1-based, multi-operation web service which returns facility list and facility
details. In this document I will walk through the process of developing a Visual Web
Application which will use the Web Service as a data provider. We will use the
NetBeans 6.5.1 IDE, which comes as part of the GlassFish ESB v2.1 installation. The
application will be implemented as a Visual Web JavaServer Faces Application using
JSF component provided by Project Woodstock. This application will introduce the
technology in a practical manner and show how a multi-operation web service can be
used as a data provider, decoupling the web application from the data stores and
specifics of data provision.

Note that this document is not a tutorial on JavaServer Faces, Visual Web JSF,
Project Woodstock components or Web Application development. Not also that all the
components and technologies used are either distributed as part of the NetBeans 6.5,
as part of the GalssFish ESB v2.1 or are readily pluggable into the NetBeans IDE. All
are free and open source.

It is assumed that a GlassFish ESB v2.1-based infrastructure, supplemented by the
Sun WebSpace Server 10 Portal functionality and a MySQL RDBMS instance, are
available for development and deployment of the web application discussed in this
paper. It is further assumed that the web service, developed using instructions in
“GlassFish ESB v 2.1 - Creating a Healthcare Facility Web Service Provider”, at
http://blogs.sun.com/javacapsfieldtech/entry/glassfish_esb_v_2_1, is available and
deployed to the infrastructure. The instructions necessary to install this infrastructure
are discussed in the blog entry “Adding Sun WebSpace Server 10 Portal Server

functionality to the GlassFish ESB v2.1 Installation” at http://blogs.sun.com/javacapsfie
ldtech/entry/adding_sun_webspace_server_10, supplemented by the material in blog
entry “Making Web Space Server And Web Services Play Nicely In A Single Instance
Of The Glassfish Application Server”, at http://blogs.sun.com/javacapsfieldtech/entry/
making_web_space_server_and.

Determining Service Endpoint and WSDL Location

This document assumes that a web application will use the web service developed
elsewhere as a data provider. To make it possible we need to know the endpoint
location of the service and the location of the WSDL. This information is available if
one knows where to look.

Let’s open the FacilitySvc.wsdl document in project FacilitySvc_BM and inspect the
properties of the soap:address node under the FacilitySvcService node.

Note the Location property value:

http://localhost:${HttpDefaultPort}/FacilitySvcService/FacilitySvcPort

The HttpDefaultPort is the port which SOAP/HTTP BCs use. At CA deployment time
this variable gets replaced with the actual port. To find out what this port is let’s switch
to the Services tab in Netbeans, expand Servers, expand JBI, expand Binding
Components, right-click sun-http-binding and choose Properties.

Observe the Default HTTP Port Number property value. For my installation this will be
29080. For a default installation it will be 9080. It can be changed.

So, the final service endpoint URL, from the soap:address Location property earlier,
will be:

http://localhost:29080/FacilitySvcService/FacilitySvcPort

This URL is the service location.

The WSDL for this service can be accessed, using the regular convention, at:

http://localhost:29080/FacilitySvcService/FacilitySvcPort?WSDL

With this knowledge we can use the service in related projects.

Making Service Available for use in a Web Application

To make a web service available for use as a data provider in a web application we
must “introduce” it to the NetBeans IDE. Switch to the Services Tab, right-click on the
Web Services node and choose Create Group.

Name this group “__HC Services”.

Right-click on the __HC Services node and choose Add Web Service...

Enter service WSDL URL and click OK. The service WSDL URL for me will be
http://localhost:29080/FacilitySvcService/FacilitySvcPort?WSDL

Expand __HC Services -> FacilitySvcPort, wait for the WSDL to be loaded and
appropriate classes to be generated, compiled and packaged.

Expand the node tree all the way to the operations, right-click on opFacList and
choose Test Method.

Click Submit button and, when execution is completed, inspect the results.

Now execute the test for the opGetFacDetails, providing facility code of STC.

This is yet another method of testing web services in NetBeans. We have valid
references to service operations, ready to be used in web applications and portlets.

Create Visual Web JSF Application

Of the variety of methods available in NetBeans to develop web applications I have
chosen the Visual Web JSF method. The reason is that it is visual, easy and quick, if
one knows what one is doing. I know enough to be dangerous but not enough to help
you out if you get into trouble with JSF or Visual Web JSF. This is a practical
cookbook for the specific web applications I built. Feel free to learn the technology and
ad-lib.

Create a New Project -> Java Web -> Web Application, FacilitySvcVWJSFA.

Accept defaults for Server Settings.

Check the checkbox next to Visual JavaServer Faces item, accept defaults for other
fields and click Finish.

Rename FacilitySvcVWJSFA -> Web Pages -> Page1 to FacilityLookup.

Open FacilityLookup.jsf in Design mode.

Drag the Woodstock Basic -> Label component onto the canvas and change its text
property to read “Choose Facility”.

Drag Woodstock Basic -> Drop Down List component to the canvas to the right of the
label. Change the General -> Id property of the component to ddFacilities.

Right-click on the drop down component and choose Auto-Submit On Change.

Save the project.

Switch from the Project view to Services view, locate the opGetFacList operation on
the web service we added to NetBeans view of web services, drag it onto the
FacilityLookup JSF page canvas and drop it right over the top of the drop down
component.

Right-click the drop down component and choose Add Binding Attribute.

Right-click the drop down component and choose Bind to Data.

Make sure facCode is selected in the Value field list and description is selected in
Display field list, the click OK.

Switch to the project view, right-click the name of the project and choose Run.

Your default web browser will be open with the web application as it stands now.

Note that the drop-down is empty. The server.log shows exceptions as well. We need
to initialize the call to the web service by providing dummy string value.

Switch to Java Tab and scroll down to the prerender() method.

Into the prerender method insert the following code.

FacListReq flReq = new FacListReq();
flReq.setDummyString("dummystring");
facilitySvcPortOpGetfacList1.setMsgFacListReq(flReq);

Run the application again.

There are no exceptions in the log and the drop-down contains descriptions of all
facilities.

Now that we have the drop down being populated we would like to display details of
the selected facility each time facility changes in the dropdown.

Let’s add 4 labels and 5 static fields to contain descriptions and values of the various
facility properties.

Let’s add labels for “Facility Code”, “Description”, “Address” and “Status”, select all
labels, right-click and choose Align and choose Right.

Let’s now drag 5 static fields and give them ID of stFacCode, stDescription,
stAddress1, stAddress2 and stStatus respectively.

Now right-click on each static field in turn and choose Add Binding Attribute.

This will allow us to manipulate contents of the fields at runtime.

So far nothing happens if we change the value of the ddFacilities drop-down. Let’s add
a handler to be executed when the value changes. Right-click the drop dpwn
component, choose Edit Event Handler and choose processValueChange.

This switches display to the Java mode, inserts a skeleton
ddFacilities_processValueChange() method and allows us to add custome Java code.

What we need to do here is to look at the new value of the ddFacilty (facility code), use
this code to look up facility details and populate facility details-related static fields with
the property values for the designated facility.

Let’s switch to the Services Tab, locate the opGetFacDetails web service operation
and drag it onto the Java canvas inside the ddFacility_processValueChange method.

Accept defaults in the dialog box that results.

A slab of boilerplate code will be added. I re-formatted it for better visibility.

Let’s remove sun.michael_czapski.xsds.facility and sun.michael_czapski.wsdld.facility
svc strings to minimize clutter and use NetBeans IDE facilities to resolve references
through the Java import mechanism. Right-click anywhere inside the Java source
window and choose Fix Imports.

The brokenness will be resolved and appropriate import statements will be added.

Looking at the statement FacDetailsReq msgFacDetailsReq = null; we
deduce that we have an opportunity to populate the request message with the facility
code and that we will get a response containing facility details 4 statements later. Let’s
populate the request message with the new facility code chosen in the drop down.

Now the service execution (port.opGetFacDetails(…)) will give us details for the
chosen facility. We can use the response message to populate all the static fields we
created earlier.

As you enter this code note how NetBeans helps through code completion and other
clever tricks.

.

Our ddFacility_processValueChange() method body is completed. Each time we
change the value in the drop down we will get the details of the facility displayed.

Let’s run the application, as it stands now, to see what it looks like and how it behaves.

Notice that we have the populated drop down, as we did before, but no facility details
for the selected facility.

Let’s choose a different facility and see what happens.

This time details for the new facility got displayed.

The reason we did not see the details when the web page first appeared was because
the ddFacility_provessValueChange was not executed the first time around. To make
it execute we need to add some code to the prerender method to first establish
whether this is the first time that the page is displayed, then to work out what the
facility code is the first time around and finally to force ddFacility_processValueChange
method to get executed so the facility details get displayed.

Let’s do these things a bit at a time.

Let’s switch to the Design mode, right-click on the drop down and choose Add Binding
Attribute.

Let’s switch to Java source mode and scroll down to the prerender() method.

At the end of the code already in the pre-render method let’s add the following:

log("===>>> " + ddFacilities.getValue());

Run the application again. Look at the server.log to see what this statement diaplays
the first time the application is run, the change facility in the drop down and see what
this statement displays the second time around.

The first time around I see:

When I choose “The Big Hospital” I see:

Knowing that this is happening allows us to determine whether we are displaying the
first time or the subsequent time.

First time around, as we noticed, we have no idea what the “selected” code is. We
may or may not be aware that at this point in the code the opGetFacList operation was
executed and the list of facilities is available. We do know that the first time around the
first facility will be the one “selected” in the drop down. We can exploit both of these to
work out what the facility code is.

Let’s add the following slab of code to the end of the prerender() method.

I will not explain what this does. Suffice it to say that
facilitySvcPortOpGetfacList1.getResultObjects() is a reference to the web service-
returned list of facility objects. The first item in that list will give us access to the facility
code. We create a new event in which we are setting the new value to that code and
explicitly executing ddFacility_processValueChange method. This causes the static
fields to be populated.

Here is the complete prerender() method.

Let’s run the application again, see what we get the first time around and what we get
when we change the facility selection.

First time around:

Choosing Sydney Technical Hospital:

This is it. That’s what it took to develop a web application that used the Facilities web
service as a data provider.

Summary

In this document we created and exercised a web application that provided a list of
Healthcare Facilities as a drop down and details of a specific Facility when chosen.

We used the NetBenas 6.5.1 IDE, included with the GlassFish ESB v 2.1
infrastructure. We used the Visual Web JavaServer Faces technologies, Project
Woodstock JSF components and JBI-based multi-operation web service. The
NetBeans IDE tooling assisted in rapidly developing the web application with minimum
of custom Java code. This web application, a component in SOA 1, Presentation
Layer, consumes SOA 3, Business Service service in a loosely coupled manner.

